
SystemC 1.3
Languages for Embedded Systems

Prof. Stephen A. Edwards
Summer 2005
NCTU, Taiwan



Designing Big Digital Systems

Even Verilog or VHDL’s behavioral modeling is not
high-level enough

People generally use C or C++



Standard Methodology for ICs

System-level designers write a C or C++ model

Written in a stylized, hardware-like form

Sometimes refined to be more hardware-like

C/C++ model simulated to verify functionality

Model given to Verilog/VHDL coders

Verilog or VHDL specification written

Models simulated together to test equivalence

Verilog/VHDL model synthesized



Designing Big Digital Systems

Every system company was doing this differently

Every system company used its own simulation library

“Throw the model over the wall” approach makes it easy
to introduce errors

Problems:

System designers don’t know Verilog or VHDL

Verilog or VHDL coders don’t understand system design



Idea of SystemC

C and C++ are being used as ad-hoc modeling languages

Why not formalize their use?

Why not interpret them as hardware specification
languages just as Verilog and VHDL were?

SystemC developed at my former employer Synopsys to
do just this



What Is SystemC?

A subset of C++ that models/specifies synchronous digital
hardware

A collection of simulation libraries that can be used to run
a SystemC program

A compiler that translates the “synthesis subset” of
SystemC into a netlist



What Is SystemC?

Language definition is publicly available

Libraries are freely distributed

Compiler is an expensive commercial product

See www.systemc.org for more information



Quick Overview

A SystemC program consists of module definitions plus a
top-level function that starts the simulation

Modules contain processes (C++ methods) and instances
of other modules

Ports on modules define their interface

Rich set of port data types (hardware modeling, etc.)

Signals in modules convey information between instances

Clocks are special signals that run periodically and can
trigger clocked processes

Rich set of numeric types (fixed and arbitrary precision
numbers)



Modules

Hierarchical entity

Similar to Verilog’s module

Actually a C++ class definition

Simulation involves

• Creating objects of this class

• They connect themselves together

• Processes in these objects (methods) are called by
the scheduler to perform the simulation



Modules

SC_MODULE(mymod) {

/* port definitions */
/* signal definitions */
/* clock definitions */

/* storage and state variables */

/* process definitions */

SC_CTOR(mymod) {

/* Instances of processes and modules */
}

};



Ports

Define the interface to each module

Channels through which data is communicated

Port consists of a direction

input sc in

output sc out

bidirectional sc inout

and any C++ or SystemC type



Ports

SC_MODULE(mymod) {

sc_in<bool> load, read;

sc_inout<int> data;

sc_out<bool> full;

/* rest of the module */
};



Signals

Convey information between modules within a module

Directionless: module ports define direction of data
transfer

Type may be any C++ or built-in type



Signals

SC_MODULE(mymod) {

/* ... */
/* signal definitions */
sc_signal<sc_uint<32> > s1, s2;

sc_signal<bool> reset;

/* ... */
SC_CTOR(mymod) {

/* Instances of modules that connect to the signals */
}

};



Instances of Modules

Each instance is a pointer to an object in the module
SC_MODULE(mod1) { ... };

SC_MODULE(mod2) { ... };

SC_MODULE(foo) {

mod1* m1;

mod2* m2;

sc_signal<int> a, b, c;

SC_CTOR(foo) {

m1 = new mod1("i1"); (*m1)(a, b, c);

Connect instance’s
ports to signals

m2 = new mod2("i2"); (*m2)(c, b);

}

};



Processes

Only thing in SystemC that actually does anything

Procedural code with the ability to suspend and resume

Methods of each module class

Like Verilog’s initial blocks



Three Types of Processes

METHOD: Models combinational logic

THREAD: Models testbenches

CTHREAD: Models synchronous FSMs



METHOD Processes

Triggered in response to changes on inputs

Cannot store control state between invocations

Designed to model blocks of combinational logic



METHOD Processes
SC_MODULE(onemethod) {

sc_in<bool> in;

sc_out<bool> out;

void inverter();

Process is simply a
method of this class

SC_CTOR(onemethod) {

SC_METHOD(inverter);
Create an instance
of this process

sensitive(in);
Trigger when in

changes
}

};



METHOD Processes

Invoked once every time input “in” changes

Should not save state between invocations

Runs to completion: should not contain infinite loops

Not preempted
void onemethod::inverter()

bool internal;

internal = in;

Read a value from a
port

out = ˜internal;
Write a value to an
output



THREAD Processes

Triggered in response to changes on inputs

Can suspend itself and be reactivated

Method calls wait to relinquish control

Scheduler runs it again later

Designed to model just about anything



THREAD Processes
SC_MODULE(onemethod) {

sc_in<bool> in;

sc_out<bool> out;

void toggler();

Process a method
of the class

SC_CTOR(onemethod) {

SC_THREAD(toggler);

Create an instance
of the process

sensitive << in;
Alernate sensitivity
list notation

}

};



THREAD Processes

Reawakened whenever an input changes

State saved between invocations

Infinite loops should contain a wait()

void onemethod::toggler() {

bool last = false;

for (;;) {

last = in; out = last; wait();

Relinquish control
until the next
change of signal
on this process’s
sensitivity list

last = ˜in; out = last; wait();

}

}



CTHREAD Processes

Triggered in response to a single clock edge

Can suspend itself and be reactivated

Method calls wait to relinquish control

Scheduler runs it again later

Designed to model clocked digital hardware



CTHREAD Processes
SC_MODULE(onemethod) {

sc_in_clk clock;

sc_in<bool> trigger, in;

sc_out<bool> out;

void toggler();

SC_CTOR(onemethod) {

SC_CTHREAD(toggler, clock.pos());

Instance of this
process created
and relevant
clock edge
assigned

}

};



CTHREAD Processes

Reawakened at the edge of the clock

State saved between invocations

Infinite loops should contain a wait()

void onemethod::toggler() {
bool last = false;
for (;;) {

wait_until

Relinquish control
until the next clock
cycle in which the
trigger input is 1

(trigger.delayed() == true);
last = in; out = last;
wait();
last = ˜in; out = last;
wait();

Relinquish control until
the next clock cycle

}
}



A CTHREAD for Complex Multiply
struct complex_mult : sc_module {

sc_in<int> a, b, c, d;
sc_out<int> x, y;
sc_in_clk clock;

void do_mult() {
for (;;) {

x = a * c - b * d;
wait();
y = a * d + b * c;
wait();

}
}

SC_CTOR(complex_mult) {
SC_CTHREAD(do_mult, clock.pos());

}

};



Watching

A CTHREAD process can be given reset-like behavior

SC_MODULE(onemethod) {
sc_in_clk clock;
sc_in<bool> reset, in;

void toggler();

SC_CTOR(onemethod) {
SC_CTHREAD(toggler, clock.pos());
watching

Process will be restarted from the
beginning when reset is true

(reset.delayed() == true);
}

};



Local Watching

It’s hard, but the SystemC designers managed to put a
more flexible version of abort in the language

Ugly syntax because they had to live with C++

Only for SC CTHREAD processes



Local Watching
void mymodule::myprocess() {

W_BEGIN

watching(reset.delayed() == true);

W_DO

/* do something */
W_ESCAPE

/* code to handle the reset */
W_END

}



SystemC Types

SystemC programs may use any C++ type along with any
of the built-in ones for modeling systems



SystemC Built-in Types

• c bit, sc logic

Two- and four-valued single bit

• sc int, sc unint

1 to 64-bit signed and unsigned integers

• sc bigint, sc biguint

arbitrary (fixed) width signed and unsigned integers

• sc bv, sc lv

arbitrary width two- and four-valued vectors

• sc fixed, sc ufixed

signed and unsigned fixed point numbers



Numeric Types

• Integers

Precise

Manipulation is fast and cheap

Poor for modeling continuous real-world behavior



Fixed and Floating Point Types

• Floating-point numbers

Less precise

Better approximation to real numbers

Good for modeling continuous behavior

Manipulation is slow and expensive

• Fixed-point numbers

Worst of both worlds

Used in many signal processing applications



Integers, Floating-point, Fixed-point

Integer

Fixed-point

Floating-point ×2



Using Fixed-Point Numbers

High-level models usually use floating-point for
convenience

Fixed-point usually used in hardware implementation
because they are much cheaper

Problem: the behavior of the two are different

How do you make sure your algorithm still works after it
has been converted from floating-point to fixed-point?

SystemC’s fixed-point number classes facilitate simulating
algorithms with fixed-point numbers



SystemC’s Fixed-Point Types

sc fixed<8, 1, SC RND, SC SAT> fpn;

8 is the total number of bits in the type

1 is the number of bits to the left of the decimal point

SC RND defines rounding behavior

SC SAT defines saturation behavior



Rounding

What happens when your result doesn’t land exactly on a
representable number?

Rounding mode makes the choice



SC RND

Round up at 0.5
What you expect?



SC RND ZERO

Round toward zero
Less error accumulation



SC TRN

Truncate
Easiest to understand



Overflow

What happens if the result is too positive or too negative
to fit in the result?

Saturation? Wrap-around?

Different behavior appropriate for different applications



SC SAT

Saturate
Sometimes desired



SC SAT ZERO

Set to zero
Odd Behavior



SC WRAP

Wraparound
Easiest to implement



SystemC Semantics

Cycle-based simulation semantics

Resembles Verilog, but does not allow the modeling of
delays

Designed to simulate quickly and resemble most
synchronous digital logic



Clocks

The only thing in SystemC that has a notion of real time

Only interesting part is relative sequencing among
multiple clocks

Triggers SC CTHREAD processes or others if they
decided to become sensitive to clocks



Clocks

sc_clock clock1("myclock", 20, 0.5, 2, false);

2 0.5 of 20

20



SystemC 1.0 Scheduler

Assign clocks new values

Repeat until stable

• Update the outputs of triggered SC CTHREAD
processes

• Run all SC METHOD and SC THREAD processes
whose inputs have changed

Execute all triggered SC CTHREAD methods. Their
outputs are saved until next time



Scheduling

Clock updates outputs of SC CTHREADs

SC METHODs and SC THREADs respond to this change
and settle down

Bodies of SC CTHREADs compute the next state



Why Clock Outputs?

Why not allow Mealy-machine-like behavior in FSMs?

Difficult to build large, fast systems predictably

Easier when timing worries are per-FSM

Synthesis tool assumes all inputs arrive at the beginning
of the clock period and do not have to be ready

Alternative would require knowledge of inter-FSM timing



Implementing SystemC

Main trick is implementing SC THREAD and
SC CTHREAD’s ability to call wait()

Implementations use a lightweight threads package

/* ... */

wait();

Instructs thread package to save
current processor state (register,
stack, PC, etc.) so this method
can be resumed later

/* ... */



Implementing SystemC

Other trick is wait until()

wait until(continue.delayed() == true);

Expression builds an object that can check the condition

Instead of context switching back to the process,
scheduler calls this object and only runs the process if the
condition holds



Determinism in SystemC

Easy to write deterministic programs in SystemC

• Don’t share variables among processes

• Communicate through signals

• Don’t try to store state in SC METHODs

Possible to introduce nondeterminism

• Share variables among SC CTHREADs: They are
executed in nondeterministic order

• Hide state in SC METHODs: No control over how
many times they are invoked

• Use nondeterministic features of C/C++



Synthesis Subset of SystemC

At least two

“Behavioral” Subset

• Implicit state machines permitted

• Resource sharing, binding, and allocation done
automatically

• System determines how many adders you have

Register-transfer-level Subset

• More like Verilog

• You write a “+”, you get an adder

• State machines must be listed explicitly



Do People Use SystemC?

Not as many as use Verilog or VHDL

Growing in popularity

People recognize advantage of being able to share
models

Most companies were doing something like it already

Use someone else’s free libraries? Why not?



Conclusions

C++ dialect for modeling digital systems

Provides a simple form of concurrency:

Cooperative multitasking

Modules

Instances of other modules

Processes



Conclusions

SC METHOD

• Designed for modeling purely functional behavior

• Sensitive to changes on inputs

• Does not save state between invocations

SC THREAD

• Designed to model anything

• Sensitive to changes

• May save variable, control state between invocations



Conclusions

SC CTHREAD

• Models clocked digital logic

• Sensitive to clock edges

• May save variable, control state between invocations



Conclusions

Perhaps even more flawed than Verilog

Verilog was a hardware modeling language forced into
specifying hardware

SystemC forces C++, a software specification language,
into modeling and specifying hardware

SystemC 2.0 quite a change: moved to a more flexible,
event-driven modeling style. Modeling, not synthesis the
main focus.

Will it work? Time will tell.


