
SML
Spice Manipulation Language

Ron Alleyne
Rob Toth

Spencer Greenberg
Michael Apap



What is SPICE?
• Simulation Program with Integrated Circuit Emphasis

– Uses complex systems of equations to solve for 
voltages at circuit nodes and currents through circuit 
branches

• SPICE Predecessor
– CANCER Computer Analysis of Non-Linear Circuits 

Excluding Radiation (Ron Roher,1970’s)

• Circuits are described using network lists or netlists and 
commands are used to invoke simulation



What is SPICE?

• Sample circuit and netlist:

Title – My Circuit’s Spice Code
.options post reltol=1e-6 
.op
Vin 1 0 3
R1 1 2 10
R2 2 0 20
.END



Why not SPICE?

• SPICE netlists are difficult to interpret

• SPICE netlists of large circuits are difficult to 
create

• SPICE lacks programming functionality that an 
engineer may want before or during simulation
– SPICE does not allow for dynamic circuit definitions
– SPICE does not allow for circuit elements to be 

defined based on mathematical derivations



What is SML?

• SPICE Manipulation Language is a 
wrapper for SPICE code

• Small, yet powerful, C++ like language
• Allows for intuitive definition of circuit 

topology
• Fully integrated with hspice variant of 

SPICE



Why SML?

• Offers the engineer the power to:
– easily manipulate cumbersome circuit designs 

using SML list objects
– harness the full strength of the underlying 

SPICE engine 
– dynamically define circuit element 

connections and their properties
– inject SPICE code which can reference SML 

circuit elements.



SML How-To

• Data Types
– Simple Types

• String - Stores a sequence of characters

• Int - Stores a c++ long integer value

• Float – Stores a c++ double floating point value

• List – 1-indexed array that can store any SML Object



SML How-To

• Data Types
– Basic Two Terminal Circuit Elements

• res
A resistor object

• cap
A capacitor object

• ind
A inductor object

• cs
A current source object

• vs
A voltage source object



SML How-To

• Data Types
– More Circuit Elements (Semi-Conductors)

• Diode
A diode object.

• Bjt
A bi-polar junction transistor 

• Mosfet
A metal oxide semiconductor field effect transistor 



SML How-To

• Operators
– Basic Operators

• +,-,*,/
• =,==,<,>,<=,>=
• print(object_name)

– List and String Operators
• @
• #

– Circuit Operators
• ->



SML How-To

• Circuit Element Properties

• Connection Circuit Elements

c1.capacitance = .00555

c1.initial_voltage = 10

i1.inductance = 4

myVs.voltage = 12

myBjt.base->c1.pos myMosfet.source->c1.neg

c1.neg->i1.pos



SML How-To

• Sample input file: myCircuit.sml
$[ .op 
.dc #Vin 1 10 1
.print dc v(#Vin.pos ) v(#r1.pos ,#r1.neg )]$
res r1 
res r2
vs Vin
Vin.voltage = 3
r1.resistance = 10
r2.resistance = 20
Vin.pos->r1.pos
r1.neg->r2.pos
Vin.neg->ground
R2.neg->ground



SML How-To

• Execution Command:
sml myCircuit.sml myCircuit.sp

This spice list generated by SML Compiler for myCircuit.sml
*options 
.options post reltol=1e-6 
*simulation commands, all parameters (models, etc) 

.op 

.dc  vVin 1 10 1

.print dc v( node1 ) v( node1 , node2 )
rr1 node1 node2 20.00
rr2 node2 0 10.00
vVin node1 0 3.00
.end



SML How-To

• List Example:
$[
.op
]$
vs vin
vin.voltage=10
list l
res r1
res r2
res r3
r1.pos -> r2.pos
r1.pos -> r3.pos
r1.neg -> r2.neg
r1.neg -> r3.neg
l @ r1
l @ r2
l @ r3
list g = l
g[1].pos -> l[1].neg
vin.neg->ground
l[1].pos->vin.pos
g[1].neg->ground



SML How-To

• List Example Output:

This spice list generated by SML Compiler for inputlist.sml
*options 
.options post reltol=1e-6 
*simulation commands, all parameters (models, etc)

.op
vvin node1 0 10.00
rl_xyz1 node1 node2 0.00
rl_xyz2 node1 node2 0.00
rl_xyz3 node1 node2 0.00
rg_xyz4 node2 0 0.00
rg_xyz5 node2 0 0.00
rg_xyz6 node2 0 0.00
.end



SML How-To

• Resistor Capacitor Bank Example:
$[
.op
.print v( #vin )
]$

vs vin
vin.voltage=10
int a = 1
float f = 0.01
list l
while(a < 25)
{
res r
r.resistance = a * 100
r.pos->vin.pos
r.neg->ground
cap c
c.capacitance = f * 2 
c.pos->vin.pos
c.neg->ground
c.initial_voltage= f * f
l@r
l@c
a=a+1
f=f+0.01
}
vin.neg->ground



SML How-To

• Resistor Capacitor Bank Output:
This spice list generated by SML Compiler for inputrescapbank50.sml
*options 
.options post reltol=1e-6 
*simulation commands, all parameters (models, etc)

.op

.print v(  vvin )
vvin node1 0 10.00
rl_xyz1 node1 0 100.00
cl_xyz2 node1 0 0.02 IC=0.00
rl_xyz3 node1 0 200.00
cl_xyz4 node1 0 0.04 IC=0.00
rl_xyz5 node1 0 300.00
cl_xyz6 node1 0 0.06 IC=0.00
rl_xyz7 node1 0 400.00
cl_xyz8 node1 0 0.08 IC=0.00
rl_xyz9 node1 0 500.00
cl_xyz10 node1 0 0.10 IC=0.00
rl_xyz11 node1 0 600.00
cl_xyz12 node1 0 0.12 IC=0.00
rl_xyz13 node1 0 700.00
cl_xyz14 node1 0 0.14 IC=0.00
rl_xyz15 node1 0 800.00
cl_xyz16 node1 0 0.16 IC=0.01
rl_xyz17 node1 0 900.00
cl_xyz18 node1 0 0.18 IC=0.01
rl_xyz19 node1 0 1000.00
cl_xyz20 node1 0 0.20 IC=0.01

rl_xyz21 node1 0 1100.00
cl_xyz22 node1 0 0.22 IC=0.01
rl_xyz23 node1 0 1200.00
cl_xyz24 node1 0 0.24 IC=0.01
rl_xyz25 node1 0 1300.00
cl_xyz26 node1 0 0.26 IC=0.02
rl_xyz27 node1 0 1400.00
cl_xyz28 node1 0 0.28 IC=0.02
rl_xyz29 node1 0 1500.00
cl_xyz30 node1 0 0.30 IC=0.02
rl_xyz31 node1 0 1600.00
cl_xyz32 node1 0 0.32 IC=0.03
rl_xyz33 node1 0 1700.00
cl_xyz34 node1 0 0.34 IC=0.03
rl_xyz35 node1 0 1800.00
cl_xyz36 node1 0 0.36 IC=0.03
rl_xyz37 node1 0 1900.00
cl_xyz38 node1 0 0.38 IC=0.04
rl_xyz39 node1 0 2000.00
cl_xyz40 node1 0 0.40 IC=0.04
rl_xyz41 node1 0 2100.00
cl_xyz42 node1 0 0.42 IC=0.04
rl_xyz43 node1 0 2200.00
cl_xyz44 node1 0 0.44 IC=0.05
rl_xyz45 node1 0 2300.00
cl_xyz46 node1 0 0.46 IC=0.05
rl_xyz47 node1 0 2400.00
cl_xyz48 node1 0 0.48 IC=0.06
.end



Inside SML

• Architecture – Built in C++!!

Input
File

System 
Driver

Lexer Parser

Static and 
Semantic
Analyzer

InterpreterCode 
Generator

Output 
File



Inside SML

• Lexer
– Takes a stream of characters and converts them into a stream of 

tokens. 
– Comments and white space are ignored. 
– Output of the lexer is passed to the parser. 

• Parser 
– Takes a stream of tokens and builds from it an abstract syntax tree 

based on our ANTLR grammar.

• Static and Semantics Analyzer
– Walks through the abstract syntax tree.
– For each node corresponding to a binary operation the types of the left 

and right expression are tested for consistency. 
– The symbol table is also constructed during this stage and memory is 

allocated for constant expressions and local variables.



Inside SML

• Interpreter
– The interpreter walks through the abstract 

syntax tree after the static and semantic 
analyzer has verified that it is correct.  

– Objects are set in memory and operators are 
evaluated. 

– Conditionals, loops, SML connections and 
objects are evaluated. 

– Symbol table left with all the appropriate 
information based on the program.



Inside SML

• Code Generator
– implemented in codeGen.h. 
– Key functions

• spicify()
– takes the symbol table of circuit element object as its input and 

create a netlist of the input circuit’s topology
• nodeWalker() 

– visits all nodes and invokes nodeCruncher() where necessary
• nodeCruncher() 

– minimizes the number of circuit element terminals or nodes 
needed to identify connections in the circuit

• SMLInjecter() 
– takes injected SPICE and resolves SML object references



Lessons Learned

• Spencer Greenberg
– crucial to decide how each element of a language will be implemented 

before deciding on the language itself.
– learned the extreme importance of code reuse. 
– would have been a good idea to test each finished portion of code. 

• Ron Alleyne
– Our organization was very clear and straightforward; however when we 

tried to combine our efforts bugs began to develop.  
– I learned that creating your own language requires a different type of 

workload then regular programming.  
– Weekly deadlines and clear cut goals are a necessity.  



Lessons Learned

• Michael Apap
– I learned that developing a sound plan is a necessity when trying to 

develop something at this scale.

– learned that no matter how much planning and organization is done, 
when all the parts come together there will be some connection issues.

• Rob Toth
– After working on the Interpreter for SML I learned a lot on the power of 

programming languages.

– I was able to create my own while loops (nested!) and if statements, all 
at the same time using our SML objects to develop circuits.  



THE END


