
1

�

�

�

��������

�
�

	��
��
����
�������� ������

Adam Lally
apl2107@columbia.edu

October 21, 2004

2

Table of Contents

1 Introduction... 4
1.1 Organization of this Manual ... 4
1.2 Notation... 4

2 Lexical Structure... 6
2.1 Character Set ... 6
2.2 Line Terminators... 6
2.3 Whitespace.. 6
2.4 Comments ... 6
2.5 Literals .. 6
2.6 Keywords .. 7
2.7 Identifiers .. 8
2.8 Separators.. 8
2.9 Operators... 8

3 Types... 9
3.1 Span... 9
3.2 Sequence ... 9

4 The Structure of a Program... 10
5 Variables ... 11
6 Statements ... 12

6.1 Block ... 12
6.2 Expression Statement.. 12
6.3 If Statement... 12
6.4 ForAll Statement... 12
6.5 While Statement.. 13
6.6 Break Statement .. 13
6.7 Emit Statement.. 13
6.8 Empty Statement... 13

7 Expressions ... 14
7.1 Value Conversions .. 14
7.2 Lvalue Expressions ... 14
7.3 Primary Expressions ... 15
7.4 Unary Expressions .. 16
7.5 Multiplicative Expressions.. 16
7.6 Additive Expressions .. 17
7.7 Relational Expressions.. 17
7.8 Conditional Expressions ... 18
7.9 Assignment Expressions ... 19
7.10 Expressions ... 19

8 Execution .. 20
8.1 Input and Output of a Spaniel Program .. 20
8.2 Startup ... 20
8.3 Procedure Invocation and Execution .. 21

9 Built-in Procedures ... 23
9.1 first .. 23

3

9.2 rest... 23
9.3 print ... 23
9.4 println.. 23
9.5 annotate ... 23
9.6 reMatch ... 23
9.7 matching.. 24
9.8 subspans .. 24
9.9 instancesOf.. 24
9.10 javacall .. 25

Appendix A – Sample Program .. 26

4

1 Introduction
Spaniel (Span-based Information Extraction Language) is a programming language
designed to support programming tasks related to information extraction. In general
terms, Information Extraction is the task of building structured databases from
unstructured, natural-language text. One example would be identifying named entities
such as persons, places, and organizations and determining relations between them, such
as which persons are employed by which organizations.

1.1 Organization of this Manual
This manual is organized as follows:

Section 2 describes the lexical structure of the language, which is based on C and Java.

Section 3 describes the data types used in Spaniel. These consist of primitive types as
well as two special types – span and sequence. Spaniel's treatment of spans and
sequences of spans are what primarily differentiate it from other languages. Note that
Spaniel is not a strongly-typed language, so variables do not have declared types and may
take on any type of value.

Section 4 describes the high-level structure of a Spaniel program.

Section 5 describes variables in Spaniel.

Section 6 describes statements, which are again modeled after C and Java.

Section 7 describes expressions, and defines the precedence and associativity of the
language's operators.

Section 8 describes the execution of a spaniel program. Execution of a Spaniel program
is unusual in one regard: procedures do not return values and abruptly terminate, but
instead emit values and may continue to execute. Thus all procedures implicitly return
sequences of values.

Section 9 describes the built-in procedures that a Spaniel runtime environment is required
to provide.

Appendix A is an example of a syntactically valid Spaniel program.

1.2 Notation

1.2.1 Grammars
Syntactic structures are specified using a context-free grammar(CFG). Lexical structures
are specified using regular expressions. Both use the syntax of the ANTLR language

5

(http://www.antlr.org/). However, this manual does not contain the exact ANTLR rules
used to build a Spaniel parser. Most notably, this manual does use rules with left-
recursion, in order to simplify the discussion.

1.2.2 Fonts
Italics is used to indicate important terms where they are first defined.
Monospace font is used to indicate grammar symbols or actual source code.

6

2 Lexical Structure
This section specifies the lexical structure of Spaniel.

2.1 Character Set
The character set for the Spaniel language is 8-bit ASCII, excluding the characters with
ASCII codes 0, 1, and 2.

2.2 Line Terminators
LineTerminator : ('\r' ('\n')? | '\n');

Lines are terminated by the carriage return character ('\r'), the newline character ('\n'), or a
carriage return followed by a newline, which is considered just a single line terminator.

2.3 Whitespace
WS : (' ' | '\t' | LineTerminator);

Whitespace includes line terminators as well as the space and tab characters. Except for
within String Literals, and for the fact that it separates tokens, whitespace is ignored.

2.4 Comments
Comment: (EndOfLineComment | BlockComment);
EndOfLineComment: '/' '/' (InputCharacter)* LineTerminator;
BlockComment: '/' '*' CommentTail;
CommentTail:
 '*' CommentTailStar |
 LineTerminator CommentTail |
 ~('*' | '\r' | '\n') CommentTail;
CommentTailStar:
 '/' | '*' CommentTailStar |
 LineTerminator CommentTail |
 ~('*' | '/' | '\r' | '\n') CommentTail;

As in Java, there are two types of comments. End of line comments begin with the
characters // and end at the next LineTerminator. Block comments begin with the
characters /* and end with the characters */. Comments are ignored, except that they
separate tokens.

Comments do not nest. Also, comments do not occur within String Literals.

2.5 Literals
Literal:

IntLiteral |
FloatLiteral |
StringLiteral |
"true" |
"false" |
"null";

7

The strings true and false represent literal Boolean values, and null represents the
null value. Other literals are as follows.

2.5.1 Integer Literals
IntLiteral: '1'..'9' (Digit)*;
Digit: ('0'..'9');

The value of an integer literal is defined as the value that would be returned by the Java
method call Integer.parseInt when passed the text of the integer literal. This is a
32-bit integer value. It is a compile time error if an integer literal causes
Integer.parseInt to throw an exception, which would be the case for integer
literals that are greater than 2147483647.

2.5.2 Floating-point Literals
FloatLiteral: IntLiteral FloatTail | Fraction (Exponent)?;
FloatTail: (Fraction (Exponent)? | Exponent);
Fraction: '.' (Digit)+;
Exponent: 'e' ('+'|'-')? Digits;

The value of a floating-point literal is defined as the value that would be returned by the
Java method Double.parseDouble when passed the text of the floating-point literal. This
is a 64-bit IEEE floating-point value. It is a compile time error if a floating-point literal
causes Double.parseDouble to throw an exception.

2.5.3 String Literals
StringLiteral: '"'! (~('"' | '\n' | '\r') | '"'! '"')* '"'! |
 (CharacterCode)+;
CharacterCode:
 '#'! HexDigit (HexDigit)?;
HexDigit: (Digit | 'A'..'F' | 'a'..'f');

There are two types of String Literals:

(1) A sequence of characters enclosed in double-quotes. The value of such a string
literal is the string consisting of the exact characters so-enclosed, with the
exception that to represent a double quote character within a string literal, two
consecutive double-quote characters are used. Newline characters may not be
included in this type of string literal.

(2) A sequence of character codes, where each character code consists of the #
character, followed by one or two hexadecimal digits. The value of each
character code is the character whose ASCII value is represented by the
hexadecimal digits, and the value of the string literal is the string of such values.
This form is necessary to represent linefeed and carriage return characters (#A
and #D, respectively) within string literals.

2.6 Keywords
The following character sequences are keywords:

8

break
else
emit
forAll
if
proc
while

2.7 Identifiers
ID: IdentifierStart (IdentifierChar)*; {but not keyword or literal}
IdentifierStart: '_' | 'A'..'Z' | 'a'..'z';
IdentifierChar: IdentifierStart | '0'..'9';

Identifiers are character sequences beginning with a letter or underscore and consisting of
letters, underscores, and digits, not including keywords or the literals true, false, and
null.

2.8 Separators
LPAREN: '(';
RPAREN: ')';
LBRACKET: '[';
RBRACKET: ']';
LBRACE: '{';
RBRACE: '}';
COMMA: ',';
SEMI: ';';
DOT: '.';
COLON: ':';

2.9 Operators
ASSIGN : '=';
EQ : '=' '=';
NOTEQ : '!' '=';
LT: '<';
LE: '<' '=';
GT: '>';
GE: '>' '=';
PLUS: '+';
MINUS: '-';
TIMES: '*';
DIV: '/';
MOD: '%';
AND: '&' '&'; //use single?
OR : '|' '|'; //use single?
NOT : '!';

9

3 Types
Spaniel is not a strongly-typed language, so there are no type definitions in the syntax of
the language. However, to understand the semantics of the language it is important to
understand the types to which expressions can evaluate. The following types exist in
Spaniel:

• Integer: 32-bit signed integer value
• Float: 64-bit IEEE floating point value
• String: sequence of ASCII characters
• Boolean: true or false
• Span (see section 3.1)
• Sequence (see section 3.2)

In addition, expressions can evaluate to null, which indicates the lack of a value. The
null value is not of any type.

3.1 Span
Conceptually, a span represents a region of a text document to which information is
attached. Spaniel defines this as a core type because it is useful in the information
extraction applications that Spaniel is designed to support.

Specifically, a span (sometimes called a span object) is a structure with arbitrarily many
fields, but with three specific field names reserved: begin, end, and type.

The fields begin and end are expected to hold integer values that hold the start and end
character offsets of the span. The field type is expected to hold a String that identifies
what the span represents. Attempting to assign the wrong type of value to one of these
fields results in a run-time error, an exception to the general lack of type checking in
Spaniel.

3.2 Sequence
A sequence is an ordered collection of values. The values in a sequence need not all be
of the same type, and a sequence may contain other sequences, to arbitrary levels of
nesting.

Spaniel has some unusual properties involving sequences. For one, all Spaniel
procedures return sequences (see section 8.3). Also, in Spaniel expression evaluation,
sequences of a single element, in most contexts, are treated equivalently to the single
element alone (see section 7.1).

10

4 The Structure of a Program
program: (procedure)+
procedure: "proc"^ ID formal_params block;
formal_params: LPAREN! (ID (COMMA! ID)*)? RPAREN!;

A Spaniel program is one or more procedures. Each procedure has a name (identifier), a
list of formal parameters (zero or more comma-separated identifiers), and a block (the
body of the procedure). A block is zero or more statements enclosed in curly braces.
The syntax and emantics of blocks and statements are described in section 5.

Any valid Spaniel program must contain a procedure whose name is main, which is the
initial procedure invoked by the Spaniel interpreter when the program is run. The main
procedure must take at least one parameter. It is a compile time error if a Spaniel
program does not meet these constraints.

The details of procedure execution are described in section 8.

11

5 Variables
A variable is a storage location that can take a value of any of the types listed in section
3. In Spaniel, variables do not have declared types; any variable may take on any value.
Generally, a variable is created when it is referenced for the first time.

There are three types of variables:

• Procedure Parameter Variables: each time a procedure is invoked, a new variable
is created for each formal parameter in that procedure declaration. These
variables have the same name as the formal parameters, and their initial values are
taken from the actual parameters in the procedure invocation.

• Local Variables: a local variable is created whenever the execution of an
expression encounters an identifier that is (a) not known to be the name of an
existing variable and (b) is not the initial identifier within a procedure call
expression (section 7.3.3), and thus known to be the name of a procedure. The
initial value of a local variable is always the null value.

• Field Variables: a field is a named slot within a value of type Span, as defined in
section 3. A field variable is created whenever a field is referenced within an
lvalue expression (section 0), and no field with that name already exists within the
span. The initial value of a field variable is always the null value.

Procedure parameter variables and local variables exist only within the invocation of the
procedure in which they were created. They cease to exist when execution of the
procedure terminates (as described in section 8).

Field variables exist as long as they are referenceable (which is as long as the span object
containing the field variable is referenceable). A Spaniel interpret should arrange to
garbage collect unreferenceable span objects and their field variables.

12

6 Statements
statement:
 block |

expression_statement SEMI! |
 if_stmt |
 forAll_stmt |
 while_stmt |
 break_stmt SEMI! |
 emit_stmt SEMI! |
 SEMI! /* empty statement */;

6.1 Block
block: LBRACE! (statement)* RBRACE!;

A block is zero or more statements enclosed in curly braces. A block is executed by
executing each of its statements, in order, unless otherwise indicated.

6.2 Expression Statement
expression_statement:
 assignment SEMI! |
 proc_call_exp SEMI!;

Two types of expressions – assignments (section 7.9) and procedure calls (section 7.3.3)
– can be used as statements. The expression is evaluated, causing any side effects it may
have to take place.

6.3 If Statement
if_stmt:

"if" LPAREN! expression RPAREN! statement ("else"! statement)?;

The expression is evaluated. If it evaluates to true, the first statement is executed. If it
evaluates to false, the statement after the else, if present, is executed. If the
expression evaluates to a non-boolean value, it is a runtime error.

6.4 ForAll Statement
forAll_stmt: "forAll"^ LPAREN! ID COLON! expression RPAREN! statement;

The expression is evaluated. If it does not evaluate to a sequence, it is a run-time error.
Otherwise, let s equal the sequence to which it evalutes, and execute the following:

(1) If s is an empty sequence, the ForAll statement's execution completes.
(2) Assign the first element of s to the variable named by the identifier in the ForAll

statement
(3) Execute the sub-statement
(4) Let the new value of s be the sequence formed by removing the first element from

the current value of s.
(5) Goto step 1.

13

6.5 While Statement
while_stmt: "while" LPAREN! expression RPAREN! statement;

Execution of a while statement is as follows:

(1) Evaluate the expression. If it evaluates to false, the while statement's execution
completes.

(2) Execute the sub-statement.
(3) Goto step 1.

6.6 Break Statement
break_stmt: "break"^;

When a break statement executes, it causes execution of the immediately enclosing forAll
or while statement to immediately complete.

A break statement outside of a forAll or while statement causes a compile-time error.

6.7 Emit Statement
emit_stmt: "emit"^ expression;

When an emit statement executes, its expression is evaluated. The resulting value is
appended to the sequence of values that the currently executing procedure will return
when it terminates. See section 8 for details on procedure execution.

6.8 Empty Statement
A semicolon by itself is a valid statement, whose execution does nothing.

14

7 Expressions
Expressions are parts of a program that can be evaluated to produce a value. When
expressions are evaluated, they may also cause side effects to take place. Ultimately it is
the side effects of expressions that perform the work of the program and generate its
output. Expressions always occur within statements; the specification for statements in
section 5 defines when expressions are to be evaluated.

Most expressions, when evaluated, produce (evaluate to) a value of one of the types
defined in section 3. The only exception is lvalue expressions (section 0), which evaluate
to variables.

7.1 Value Conversions
In Spaniel expression evaluation, sequences of a single element, in most contexts, are
treated equivalently to the single element alone. Specifically, the following rule applies
to the expression specifications below:

If the expression specification does not explicitly state how sequence values are
treated, then any sequence value consisting of one exactly one element is
automatically converted to that one element during evaluation of the expression.

This value conversion is important in light of the fact that all Spaniel procedures
technically return sequences.

7.2 Lvalue Expressions
lvalue_exp : ID (DOT lvalue_exp)?;

An lvalue expression is an identifier, optionally followed by a dot followed by another
lvalue expression. Lvalue expressions are so named because they can appear on the left
side of an assignment. That is, lvalue expressions evaluate to variables, which are
storage locations to which values can be assigned.

An lvalue expression consisting of a single identifier evaluates to the variable whose
name is that identifier (see section 5). An lvalue expression of the form ID DOT
lvalue_exp is evaluated by first evaluating the lvalue_exp after the dot. By
definition, this will evaluate to a variable. Let v be the value of this variable. If v is not
of type span, it is a runtime error. Otherwise, the lvalue expression evaluates to the
variable that is the field named ID in span v.

For simplicity, Spaniel uses a more restricted syntax for lvalues than other languages
such as C and Java. Lvalues in Spaniel can only contain identifiers, separate by dots,
thus for example proc(x).field is not valid in Spaniel. This turns out not to be a
very useful expression anyway, because of the fact that procedures in Spaniels always
return sequences, which are not lvalues.

15

In the remainder of this specification, unless otherwise specified, the terminology "the
value of an expression" or "the value to which an expression evaluates," when applied to
lvalue expressions, should be taken to mean the value of the variable to which the lvalue
expression evaluates.

7.3 Primary Expressions
primary_exp :
 lvalue_exp |
 literal |
 span_exp |

proc_call_exp |
 LPAREN! expression RPAREN! ;

Primary expressions are the core expressions from which other expressions are built.
They include lvalue expressions as well as literals, span expressions, procedure calls, and
parenthesized expressions.

7.3.1 Literals
The syntax for literals is defined in section 2.5.

Integer, Floating-point, and String Literals evaluate to the values defined in section 2.5,
which are of type Integer, Float, and String, respectively.

The literals true and false evaluate to the Boolean-typed values true and false,
respectively.

The literal null evaluates to the null value.

7.3.2 Span Expressions
span_exp: LBRACKET! expression COMMA! expression RBRACKET!

When a span expression is evaluated, a new value of type span (the "new span object") is
created. The value of the first sub-expression is then assigned to the begin field
variable of that the new span object, and the value of the second sub-expression is
assigned to the end field variable of the new span object. The type field variable of the
new span object is set to the null value.

7.3.3 Procedure Calls
proc_call_exp: ID actual_params
actual_params: LPAREN! (expression (COMMA! expression)*)? RPAREN!;

It is a compile-time error if the identifier that begins a procedure call expression does not
match the name of any defined procedure, either built-in (see section 9) or declared
within the user's program (see section 4), or if the number of arguments in the procedure
call expression does not match the number of arguments in the procedure declaration.

16

Otherwise, the procedure so named is referred to as the "named procedure" in the
description below:

When a procedure call expression is evaluated, first each of the sub-expressions are
evaluated, in order. Then the named procedure is invoked, with actual parameters equal
to the values to which the sub-expressions evaluated. The details of procedure invocation
are specified in section 8. The procedure call expression evaluates to the value returned
by this invocation, which is always of type Sequence.

7.3.4 Parenthesized Expressions
An expression enclosed in parentheses evaluates to the same variable or value (including
a sequence value) that the enclosed expression evaluates to.

7.4 Unary Expressions
unary_exp: PLUS^ unary_exp | MINUS^ unary_exp | NOT^ unary_exp |
 primary_exp ;

There are three unary operators in Spaniel: +, -, and !. A unary expression is defined to
be one of these operators, followed by another unary expression. The unary operators
associate to the right. For purposes of the grammar, a primary expression is also
considered to be a unary expression.

When a unary expression is evaluated, its sub-expression is first evaluated. The value to
which the sub-expression evaluates is called the operand.

In a unary expression containing a + operator, the operand must evaluate to type Integer
or Float, otherwise it is a run-time error. The unary expression evaluates to the same
value as its operand.

In a unary expression containing a – operator, the operand must evaluate to type Integer
or Float, otherwise it is a run-time error. The unary expression evaluates to the arithmetic
negation of its operand. If overflow occurs, it is a run-time error.

In a unary expression containing a ! operator, the operand must evaluate to type Boolean
or type Sequence, otherwise it is a run-time error. For a Boolean-typed operand, the
unary expression evaluates to the Boolean negation of its operand. (i.e. !true evaluates to
false and !false evaluates to true). For a Sequence-typed operand, the unary expression
evaluates to true if the sequence is empty, and false if it is not empty.

7.5 Multiplicative Expressions
mult_exp: mult_exp (TIMES^ | DIV^ | MOD^) unary_exp |
 unary_exp;

The multiplicative operators are *, /, and %. They associate to the left. For purposes of
the grammar, a unary expression is also considered a multiplicative expression. For
multiplicative expressions that do contain an operator, evaluation is as follows:

17

If both operands evaluate to integers, then the expression evaluates to the result of
performing integer multiplication(*), division(/), or modulo(%) on the operand values.

If one operand evaluates to a float and the other to an integer or a float, then the
expression evaluates to the result of performing floating-point multiplication(*) or
division(/) on the operand values. Use of the operator % in this case is a run-time error.

If both operands evaluate to spans, then for the * operator the expression evaluates to the
intersection of the spans. That is, [a,b]*[c,d] evaluates as follows:

• If c>b or a>d, the expression evaluates to null
• Otherwise, the expression evaluates to [max(a,c), min(b,d)].

In all other cases, the result is a run-time error.

7.6 Additive Expressions
add_exp: add_exp (PLUS^ | MINUS^) mult_exp |
 mult_exp;

The additive operators are + and -. They associate to the left. For purposes of the
grammar, a multiplicative expression is also considered an additive expression.
For additive expressions that do contain an operator, evaluation is as follows:

If both operands evaluate to integers, then the expression evaluates to the result of
performing integer addition(+) or subtraction(-) on the operand values.

If one operand evaluates to a float and the other to an integer or a float, then the
expression evaluates to the result of performing floating-point addition(+) or subtraction(-
) on the operand values.

If both operands evaluate to spans, then for the + operator, the expression evaluates to
the minimal enclosing span of the operands. That is, [a,b]+[c,d] evaluates to [min(a,c),
max(b,d)]. Use of the – operator in this case is a run-time error.

In all other cases, the result is a run-time error.

7.7 Relational Expressions
rel_exp: add_exp ((EQ^ | NOTEQ^ | LT^ | LE^ | GT^ | GE^) add_exp)?;

The relational operators are ==, !=, <, <=. >, and >=. They do not associate, and always
evaluate to a value of type Boolean. For purposes of this grammar, additive expressions
are also considered relational expressions. For relational expressions that do contain an
operator, evaluation is as follows:

An expression using the == operator evaluates to true if both of its values evaluate to the
same type and have values that are equal. Otherwise it evaluates to false. For spans,

18

equal means having begin and end values that are eual. For sequences, equal means that
all elements of the first sequence equal all elements of the second sequence, in order.

An expression using the != operator evaluates to true if == would have evaluated to
false, and evaluates to false if == would have evaluated to true.

For the remaining relational operators, it is a run-time error if either operand evaluates to
type Boolean, String, or Sequence, or if one operand evaluates to type Span and the other
does not.

An expression using the < operator evaluates to true if its first operand is less than its
second operand. Otherwise it evaluates to false. For spans, s1 < s2 if and only if
(s1.begin < s2.begin) or (s1.begin == s2.begin and s1.end > s2.end). The greater-than
symbol is correct; the consequence of this is that for spans with the same begin value,
longer spans are less than shorter spans, and thus appear first in an ordered sequence of
spans, which is a desirable property for iteration over nested spans.

An expression using the <= operator evaluates to true if either < or == would have
evaluated to true, and false otherwise.
An expression using the > operator evaluates to true if its first operand is greater than its
second operand. Otherwise it evaluates to false. For spans, s1 > s2 if and only if
(s1.begin > s2.begin) or (s1.begin == s2.begin and s1.end < s2.end). The consequence of
this is that for spans with the same begin value, shorter spans are greater than longer
spans, which is consistent with the definition of the < operator.

An expression using the >= operator evaluates to true if either > or == would have
evaluated to true, and false otherwise.

7.8 Conditional Expressions
Conditional expressions (both && and || expressions) in Spaniel require operands that
evaluate to either Booleans or sequences. If an operand evaluates to an empty sequence,
that operand is considered to have evaluated to false in the descriptions that follow. If an
operand evaluates to a non-empty sequence, that operand is considered to have evaluated
to true in the descriptions that follow. If either operand evaluates to a value of a type
other than Boolean or Sequence, it is a run-time error.

7.8.1 And Expressions
and_exp: and_exp AND rel_exp |
 rel_exp;

The and operator is &&. It is left associative. For the purposes of the grammar, a
relational expression is also considered an And expression.

When an And expression is evaluated, its first operand is immediately evaluated. If it
evaluates to false, the And expression also evaluates to false. The second operand
expression is not evaluated in this case.

19

If the first operand evaluates to true, the second operand expression is then evaluated.
The And expression then evaluates to the same value as the second operation expression.

7.8.2 Or Expressions
or_exp: or_exp AND and_exp |
 and_exp;

The or operator is ||. It is left associative. For the purposes of the grammar, an and
expression is also considered an Or expression.

When an Or expression is evaluated, its first operand is immediately evaluated. If it
evaluates to true, the Or expression also evaluates to true. The second operand
expression is not evaluated in this case.

If the first operand evaluates to false, the second operand expression is then evaluated.
The Or expression then evaluates to the same value as the second operation expression.

7.9 Assignment Expressions
assign_exp: assignment | or_exp;
assignment: lvalue_exp ASSIGN^ assign_exp;

An assignment expression is an assignment or an or expression. An assignment if an
lvalue expression followed by the assignment operator, =, followed by an assignment
expression. The = operator is right associative.

When an assignment expression is evaluated, its right operand is first evaluated. The
value of this expression is then assigned to the variable to which the left operand (which
must be an lvalue expression) evaluates. The assignment expression then evaluates to
that same value.

7.10 Expressions
expression: assign_exp;

Where it appears elsewhere in this grammar, an expression means any assignment
expression.

20

8 Execution

8.1 Input and Output of a Spaniel Program
The Spaniel language is designed to support the annotation task, which is defined as
follows: Given a text document and some (possibly empty) set of annotations over spans
of that document, produce a new set of annotations that represent additional information
inferred from that document. (See the white paper Spaniel – Span Based Information
Extraction Language, for a simple example.)

As such, the input to a Spaniel program always includes an annotated document, which is
logically just a character string, along with zero or more span objects (see section 3). The
actual representation of the input is not relevant to the Spaniel programmer, and this
choice is left up to the Spaniel interpreter. One choice is XML; that is, the following
string might be the input to the interpreted Spaniel program:

<Person gender="male">John Smith</Person> works for
<Organization type="corporation">IBM</Organization>.

This represents the string "John Smith works for IBM" and two span objects, one with
fields begin=0, end=10, type="Person", and gender="male", and the second with fields
begin=21, end=24, type="Organization," and type="corporation."

The output of a Spaniel program also always includes an annotated document. For
example, a Spaniel program that took the above input might infer a "Works For" relation
between John Smith and IBM, and represent that as an annotation over the entire span of
the document. This could then be written out to an XML representation similar to that
shown above. Spaniel programs post annotations to the output document using the
annotate built-in procedure defined in section 9.

The input to a Spaniel program may include other arguments, in addition to the annotated
document, that can be used to parameterize the behavior of the program. Also, the output
of a Spaniel program can include console output generated by calls to the print and
println procedures defined in section 9, as well as arbitrary output generated by calls
into Java, which are made using the javacall procedure also defined in section 9.

8.2 Startup
The following steps take place when a Spaniel program is run:

1. The Spaniel program's source code is parsed, building an intermediate
representation over which the rest of execution will operate. If any syntax errors
are detected, they are reported and execution ends.

2. Static semantics checks are performed. These include checks that the following
are true:

21

• There is a main procedure declared, and it has at least one argument
• No procedure is defined more than once
• No procedure is defined using the same name as a built-in procedure
• All procedure call expressions refer to defined procedures (either built-in or

user-defined)
• break statements do not occur outside of loops
If any of these conditions do not hold, an error is reported an execution ends.

3. The input to the program, which is in whatever format the interpreter has
specified, is read and converted to an internal annotated document data structure,
called the implicit annotated document.

4. The main procedure of the Spaniel program is invoked, passing the arguments
determined by the input. The first argument is always the span that defines the
entire implicit annotated document; that is, begin = 0, end = the length of the
document text, and type = "Document". Procedure invocation and execution is
described in the next section.

5. When execution of main completes, the implicit annotated document, possibly
modified by the execution of the program, is written out using any format and
output stream chosen by the interpreter, and execution of the program ends.

8.3 Procedure Invocation and Execution
Procedure invocation and execution in Spaniel are somewhat unusual. The basic idea is
that there is no return statement that signals the completion of the procedure and
specifies a single returned value. Instead, there is an emit statement that specifies one
value in a sequence of values to be returned from the procedure. Conceptually, procedure
execution continues past the emit statement until the procedure completes normally, by
executing the last statement in the procedure's block of statements (body). At that point,
the "return value" of the procedure is the sequence containing the values that were
emitted by the emit statements, in the same order in which those emit statements were
executed.

Specifically, procedure invocation is defined as follows:

When a procedure call expression (section 7.3.3) is evaluated, a new activation record
(this is logically similar to an activation record in other languages, but there are
differences in the way it may be used.) Procedure parameter variables and local variables
are created within that activation record. The procedure parameter variables are
initialized to the values passed from the procedure call expression, and the local variables
are initialized to null.

There are then two options for an interpreter to choose to implement procedure
execution:

(1) Transfer control to the invoked procedure and execute its method body. Each
time an emit statement is executed, add the emitted value to an implicit sequence-

22

typed variable representing the return value of the procedure (contained within the
activation record). When the method body execution completes, return control to
the procedure call expression, whose evaluation then completes; the procedure
call expression evaluates to the sequence of emitted values. The activation record
is then deallocated.

(2) The procedure call expression immediately completes, and evaluates to an active

sequence object which contains a reference to the invoked procedure, its
activation record, and current instruction pointer (initially pointing at the first
statement in the procedure body). Then, each time the next element is requested
from the active sequence object, run the invoked procedure until either its next
emit statement executes or its execution completes. If an emit statement is
executed, that is the next value in the active sequence. If the procedure execution
completes, there is no next value in the active sequence.

Spaniel procedures were designed to support implementation choice #2, because it is
thought to be useful in many applications of annotating a document. For example, you
may want to tokenize the document and do something with each token. Rather than
tokenizing in one pass and then iterating back through the tokens, you can write a
procedure tokens() that emits tokens, and another procedure can execute
forAll(t:tokens()), and then do something with each token t emitted by the tokens()
procedure, after which each token can be discarded.

23

9 Built-in Procedures
The following procedures are required to be built-in to any Spaniel interpreter. It is a
compile-time error if a user's program declares a procedure with any of these names. As
previously noted, all Spaniel procedures return sequences.

9.1 first
If s is a value of type Sequence, first(s) will return the sequence containing only
the first element of s. Otherwise, it will return the an empty sequence

9.2 rest
If s is a value of type Sequence, rest(s) will return the sequence containing all
elements of s except the first.

9.3 print
print(v) will print a string representation of v to the console (technically, to whatever
output stream the interpreter dictates). If v is of type string, v itself will be printed.
Otherwise, the interpret should convert the value to a string in whatever way it chooses.
The empty sequence is returned.

9.4 println
println(v) will print a string representation of v to the console (technically, to
whatever output stream the interpreter dictates), followed by a newline. If v is of type
string, v itself will be printed. Otherwise, the interpret should convert the value to a
string in whatever way it chooses. The empty sequence is returned.

9.5 annotate
annotate(s,t) performs two operations. First, it assigns t to s.type. (That is, it
labels a span.) Then, it posts s to the implicit annotated document, so that it will be in the
output of the program, and will be accessible to the built-in functions that examine the
implicit annotated document. The sequence containing s is returned.

As specified in the definition of the span type and the definition of the lvalue expression
(dot operator), it is a runtime error if s is not a span or t is not a string. Additionally it is
a runtime error if the begin and end values do not allow it to be posted to the implicit
annotated document (i.e. if begin > end, or begin < 0, or end > length of document).

9.6 reMatch
reMatch(r,s) searches for the first match of regular expression r over the span s (that
is, between character positions s.begin and s.end of the implicit annotated
document). If match is found, a new span object is created, its begin field is set to the
first character position of the match, and its end field is set to one plus the last character
position of the match. In addition, its _group field is set to the number of the top-level

24

group within the regular expression that matched. For example, if r ==
"(foo)|(bar)", then _group will be set to 1 if "foo" matched and to 2 if "bar"
matched. reMatch(r,s) returns the sequence containing the new span object as its
only element. If no match is found, reMatch(r,s) returns the empty sequence.

It is a runtime error if r is not a string or could not be parsed as a regular expression, or if
s is not a span or is an invalid span (i.e. if begin > end, or begin < 0, or end > length of
document).

9.7 matching
matching(r,s) returns the sequence containing all non-overlapping matches of
regular expression r over the span s, in order of increasing start position. This procedure
is built-in for convenience purposes, as it can be easily implemented in Spaniel as:

proc matching(r,s)
{
 nextMatch = reMatch(r,s);
 while(nextMatch)
 {
 nextStart = nextMatch.end;
 emit nextMatch;
 nextMatch = reMatch(r,[nextStart,s.end]);
 }
}

9.8 subspans
If s is a span, subspans(s) returns the sequence containing all subspans of s that are
contained in the implicit annotated document. Here, a subspan of s is defined as a span x
such that x.begin >= s.begin and x.end <= s.end. The order of the sequence is
such that each element is always >= the previous element. (See the defition of <= for
spans in section 7.7.)

9.9 instancesOf
If s is a span, instancesOf(s,t) returns all subspans x of s such that x.type ==
t. It is built-in for convenience purposes, as it can easily be implemented in Spaniel as:

proc instancesOf(s,t)
{
 forAll(x : subspans(s))
 {
 if (x.type == t)
 emit x;
 }
}

25

9.10 javacall
The special procedure javacall allows a Spaniel program to make a call to a Java
method. Unlike other Spaniel procedures, javacall does not have a fixed number of
arguments.

javacall(c,a1,a2,…,an) executes by first instantiating a Java class named c,
which must implement the interface
edu.columbia.apl2107.spaniel.JavaProcedure. Second, the init()
method of that class is called, passing it the Java array {a1', a2', …, an'}, where ai' is the
java equivalent of the Spaniel value ai (this is to be formally defined in the JavaDocs for
the JavaProcedure interface).

Then, the next() method of that class is called to produce the next value in the
sequence that javacall(c,a1.a2,…an) will evaluate to. When next() returns
null, there is no next element. This step by step evaluation is done to support both
procedure execution styles specified in section 8.3.

An interpreter implementation may, but need not, choose to implement all of the built-in
functions in this section using the javacall mechanism.

26

Appendix A – Sample Program
The following is a syntactically valid Spaniel program. The intent of this program is to
tokenizer text, then detect sentence boundaries, then detect phone numbers, an finally to
detect mentions of phone calls between two phone numbers, using a very simple rule.
Note that this program has not been verified to be semantically correct.

/*
 * Spaniel Example Program
 * Phone Number and Phone Call Detector
 */

/* Tokenize text */
proc tokens(span)
{
 tokenPattern = "([A-Za-z]+)|([\.\?!,;:\'])";
 forAll (t : matching(tokenPattern,span))
 {
 token = annotate(t,"Token");
 //the "matching" procedure sets property _group of the
 //spans it returns to the regexp group matched. We can use
 //this to determine if the token is a word or punctuation.
 if (t._group == 1)
 token.tokenType = "Word";
 else
 token.tokenType = "Punctuation";
 emit(token);
 }
}

/* Annotate sentences */
proc sentences(tokenSequence)
{
 start = null;
 //iterate over token sequence
 forAll (x: tokenSequence)
 {
 if (start == null)
 start = x;
 //sentences are ended by a ., ?, or ! character
 if (x.tokenType == "Punctuation" &&
 matching("[.?!]",x))
 {
 emit (annotate ([start.begin, x.end],"Sentence"));
 start = null;
 }
 }
}

/* Annotate Phone Numbers */
proc phoneNumbers(span)
{
 forAll(p: matching("\((\d\d\d\)|\d\d\d-)\d\d\d-\d\d\d\d", span))
 {
 emit (annotate(p, "PhoneNumber"));

27

 }
}

/* Annotate Phone Calls */
proc phoneCalls(span)
{
 forAll(num1 : instancesOf("PhoneNumber"))
 {
 forAll (num2 : instancesOf("PhoneNumber",[num1.end,span.end]))
 {
 if (matching("from",[span.begin, num1.begin]) &&
 matching("to",[num1.end, num2.begin]))
 {
 emit(annotate([sentence.begin, n2.end], "PhoneCall"));
 }
 }
 }
}

/* Main Program */
proc main(doc)
{
 forAll (s: sentences(tokens(doc)))
 {
 phoneNumbers(s);
 phoneCalls(s);
 }
}

