

Authors
Benjamin Chan
Jonathan So
Shawn Tay
Jen Yu Wang

CHAPTER 1

Introduction to F2

1.1 Background

The development of information technology has revolutionized this 21st century.
The existence of the World Wide Web continuously changes the life style of
modern man as well as the business practice of the market. The invention of the
Shockwave Flash software lies in the center of this internet age. The concept of
the Internet gives rise to the idea of transporting graphics and animation across
the web. Presently, over 436 million people around the globe have access to a
variety of Macromedia Flash content. Macromedia Flash is a graphics, animation
generation technology that provides a consistent display of graphical experience
across different system platforms. Flash allows users to create scalable,
interactive animation and 2 dimension graphics for the web, such as animated
logos, long-form animations, navigation controls, and even complete websites,
all delivered via Shockwave files (.swf, the exported Flash file format). Unlike
traditional animation and movie file formats, the content and concept behind
Flash is intuitive and easy to grasp for users. At the moment, Macromedia Flash
and Director Programs are the two main sources available for authoring web-
viewable Flash files. Both softwares rely heavily on an elaborate and expensive
graphical interface. (Flash sells for $499, and Director $1,199.) Furthermore, these
softwares lack portability across different operating systems (Only available for
Windows and Macintosh users).

The programming language F2 is an alternative for users to produce viewable
Shockwave files. This language has overcome several deficiencies that plague
Macromedia Flash and Director programs. The language is designed to enable
the user to program simple Flash functionalities in a non-graphical, traditional
text-based programming environment. Oh yes, it�s free.

1.2 Design Goal of F2

F2 is a flash graphics-purpose, object-oriented programming language. It is
designed to be simple enough that it can achieve fluency similar to many
commonly used flash functionalities. The F2 programming language is related to
Java but is organized for the purpose of an intuitive coding approach towards
flash graphics.

1.2.1 Precision
Since both Macromedia Flash and Director are graphical environments, certain
operations such as the aligning, spacing, sizing and positioning of objects rely
entirely on visual estimation. F2 eliminates the need to approximate during
situations such as centering, horizontal line up, or exact positioning given a fix
pixel number in height. F2 allows one to explicitly specify the object properties
and position coordinates.

1.2.3 Availability

The availability of Macromedia Flash and Director has been greatly reduced by
the expensive cost of these software. Although not as powerful and
comprehensive, F2 is an open source program. It is free for all users who want to
make flash graphics. Moreover, users running Linux or other popular Unix-
based operating systems can overcome the inaccessibility of Macromedia
programs through F2. F2 is compatible with all popular operating systems, not
limited Windows and Macintosh. Built upon Java, which is extremely portable
language, F2 has also inherited this nice feature of Java.

1.2.4 Simplicity

F2 is a clear, simple, and intuitive language that allows the user to construct
graphics and animation through coding. Based on the concept of Macromedia
Flash, F2 attempts to recapitulate the functionalities provide by Macromedia
Flash without the incorporation of a user interface. In addition, it is not a
graphical extension of a non-graphical language such as Java�s complex graphics
libraries Swing or AWT. F2 is in itself, a programming language that can
produce simple Flash graphics and animation.

1.2.5 Sharable and Editable

Today, JavaScript source code is widely shared over the Internet. In fact, the
complete structure behind internet websites is devoted to sharing source codes
such as JavaScript. This trend supports the notion that F2 could potential
become a widely-shared language like JavaScript. There are several reasons:

• As mentioned earlier, F2 is a free language. Combined with the fact that F2 is

compatible with all popular operating systems, F2 can potentially capture a
large number of beginner-level Flash developers.

• As a programming language, F2 incorporates into .swf movies the ease in
editing that is only natural to text-based source codes. The difficulty in
editing .fla (the editable Flash file format) files through a complex graphical
interface gives F2 a comparative advantage.

CHAPTER 2 F2 Tutorial

F^2 is a simple but powerful animation language. In general, the language and
syntax is very similar to Java, especially for variable declarations, arrays, for
loops, while loops, and even object and frame declarations. Semi-colons are used
as separators.

To begin writing F^2, it is important to know the grammatical structure of each
animation or movie. Each movie must start with the Header Statements, which
are shown in Figure 1, lines 3 to 8. These specify the general characteristics of the
movie. The sample program below outputs a movie called mymovie.swf, which
has a width and height of 100 pixels, plays at 12 frames per second, contains 100
frames total, and has a white background color (refer to the LRM for the
complete list of colors). Also, the Header variables must be declared in capital
letters.

1. import �othermovie�;
2. import �othermovie2�;
3. MOVIENAME = �mymovie�;
4. WIDTH = 100;
5. HEIGHT = 100;
6. FPS = 12;
7. NUMFRAMES = 100;
8. BGCOLOR = WHITE;
9.
10. Movie {
11.
12.
13. Frame (50) {
14.
15.
16. }
17. Frame (50) {
18.
19. }
20. }

Fig. 1 - Program Structure

After the Header we are ready to start declaring variables, creating objects, and
adding them to the frames of our movie. All this happens in the Movie body, as
declared on line 10 (the end brace is on line 17), in Figure 1. It is important to
note that all variable and object declaration must be declared before any Frame
blocks, for example within lines 11 and 12 in the sample program. Some
declarations are shown in Figure 2 below.

1. int x = 12;
2. String y = �jon�;
3. Text myText = new Text (y, 30, BLUE);
4. Circle myCirc = new Circle(10, RED);

Fig. 2 � Variable and Object Declarations

Now that we have created a circle (line 4 of Figure 2) and some text (line 3), we
are ready to place them into frames. All of this happens within the Frame block
declaration, as shown in Figure 1, line 13. The integer 12 specifies the number of
frames defined within the block. The first frame block defines the first 50 frames
in the 100 frame total movie, while the next frame block (line 17) defines the next
50 frames. Within a Frame block three actions can be performed: Place, Animate,
and Insert. Place is used to put objects on the screen, Animate is used to linearly
move objects, and Insert is used to insert imported movies. Some frame block
definitions are shown below in Figure 3.

1. Frame (50) {
2. Place (myCirc, 0, 0, 1, 25, 1);
3. Place (myText, 0, 0, 26, 50, 2);
4. }
5.
6. Frame (50) {
7. Animate(myCirc, 0, 0, 1, 85, 85, 20, 1);
8. Insert (�othermovie�, 0, 0, 21, 2);
9. }

Fig. 3.- Frame block declarations and definitions

The sample code in Figure 3 shows our myCirc (line 2) object on the screen for
frames 1-25 of the movie, and then shows our myText (line 3) object for the next
25 frames. Line 7 moves our myCirc object from the top left corner to the bottom
right corner of the movie for the next 20 frames.

The last feature we need to discuss is importing new movies. Suppose we have a
previously created movie (source code, the .f2 file), we can import the movie into
our current movie. This is shown in Figure 1, line 1 and 2, with a file called
othermovie.f2 and othermovie2.f2. Import statements must be made before the
header, and any number of them can be made. Our othermovie has been inserted
into the last 30 frames of our movie in Figure 3, line 8.

Finally, to generate a shockwave movie, save your program with the extension
.f2, and then at the command line run java F2_1Main moviename.f2. If there are no
errors, you should receive a confirmation of a successful compilation. This
concludes the tutorial. Happy programming!

CHAPTER 3

Reference Manual

3.1 Introduction

F2 is a computer language built with the intention to integrate programming
capability into the generation of shockwave flash files. The ultimate goal for F2 is
to overcome Macromedia�s lack of precision, reproducibility, and portability of
SWF files. Contrary to Macromedia Flash generator, F2 is a very powerful tool
for users who desire a faster approach to flash generation than the conventional
macromedia software. The syntax behind F2 is designed to capture an
appropriate translation from graphical design to written code. The complete
grammar of F2 integrates Java�s strictly typed structure approach to extrapolate
further a language base appropriate for flash generation.

3.2 Grammar

This section describes the context-free grammars used in F2 specification to
define the lexical and syntactical structure of a program.

3.2.1 Grammar Notation

Lexical and syntactic grammars for F2 are introduced in this specification.
The lexical grammar has as its terminal symbol the characters of the
Unicode character set. It defines a set of productions, starting from
distinguished nonterminals that describe how sequences of Unicode
characters are translated into a sequence of input elements. These input
elements, with white space and comments discarded, form tokens. The
syntactic grammar describes how sequences of tokens can form
syntactically correct programs.

Non-terminal and terminal symbols are shown in separate fonts in the
production of the lexical and syntactic grammars, and throughout this
specification whenever the text is directly referring to such symbols. Non-
terminal symbols are shown in italic type. The definition of a Non-terminal
is introduced by the name of the Non-terminal being defined followed by a
colon. On the other hand, terminal is shown in fixed width font.

Symbols are quoted to denote terminals, separating from symbols used for
the purposes of good formatting throughout the text. S? denotes that the

symbol S is optional. S* denotes that the symbol S may occur zero or more
times. S+ denotes that the symbol S will occur one or more times. (S|T)
denotes a choice between the symbol sequences S and T.

3.3 Lexical Convention

An F2 program can be stored as a stand alone movie file or it can import multiple
F2 movie files to become a composite movie file. A copy of each of these import
units is stored into the program upon the calling of the embedded Insert
function. Programs are written using the Unicode character set accepted by the
Java Virtual Machine which will be used to run the F2 compiler.

3.3.1 Line Terminators

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line
terminator, not two.

 LineTerminator:
 The ASCII LF, also known as �newline�
 The ASCII CR, also known as �return�
 The ASCII CR followed by the ASCII LF

3.3.2 Tokens

There are six classes of tokens: identifiers, keywords, constants, string
literals, operators and other separators. Blanks, horizontal tabs, newlines,
form feeds, and comments as described later are ignored, except as they
separate tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords and constants. If the input stream has been
separated into tokens up to a given characters, the next tokens is the
longest string of characters that could constitute a token.

3.3.3 Comments

There are two kinds of comments:

/* text */ A traditional comment: all the text from the ASCII
characters /* to the ASCII characters */ is ignored.

// test A end-of-line comment: all the text from the ASCII
characters // to the end of the line is ignored.

Comments do not nest and they do not occur within string or character
literals.

3.3.4 White Space

White space is defined as the ASCII space, horizontal tab, and form feed
characters, as well as line terminators.

3.3.5 Identifiers

An identifier is an unlimited-length sequence of F2 letters and F2 digits, the
first of which must be a letter. An identifier cannot have the same spelling
as a keyword, Boolean literal, or the null literal. F2 interprets underscore
(_) as a letter and it is case sensitive.

3.3.6 Literals

 Integer Literals

An F2 integer literal is a decimal numeral. A decimal numeral is either the
single ASCII character Ø, representing the integer 0, or consists of an
ASCII digit from 1 to 9, optimally followed by one or more ASCII digits
from Ø to 9, representing positive integers.

 String Literals

A string literal, also called a string constant, is a sequence of characters
surrounded by double quotes, as in ���. Adjacent string literals are
concatenated into a single string. String literals do not contain newlines or
double-quote characters; in order to represent them, escape sequences are
available.

 Newline \n Form feed \f
 Carriage return \r question mark (?) \?
 Horizontal tab \t double quote (�) \�
 Backslash (\) \\

 Boolean Literals

The Boolean type has two values, represented by the literals true and
false, from ASCII letters.

Null Literals

The null type has one value, the null preference, represented by the literal
null, which is formed from ASCII characters. A null literal is always the
null type.

3.3.7 Constant

A constant consists of a sequence of decimal digits. A constant is
unsigned and never negative. The maximum value for a constant is 232.

3.3.8 Keywords

There are three sets of keywords: First set has keywords with initial
uppercase letter. Second set has keywords with all lowercase letters. Third
set has keywords with all uppercase letters. The following identifiers are
reserved for use as the three sets of keywords, and cannot be used
otherwise:

 FPS Animate break
 HEIGHT Circle do
 MOVIENAME Ellipse else
 NUMFRAMES Frame for

WIDTH Import if
BGCOLOR Insert int

 BLACK Line return
BLUE Movie while

 BROWN Object
 GREEN Place
 GREY Random
 ORANGE Rectangle
 PURPLE String

RED
 WHITE
 YELLOW

While true and false might appear to be keywords, they are technically
Boolean literals. Similarly, while null might appear to be a keyword, it is
technically the null literal.

3.4 Meaning of Identifiers

Identifiers, or names, refer to a variety of things: functions and objects. An
object, sometimes called a variable, is a location in storage and its interpretation
depends on its type.

3.4.1 Basic Data Types

There are two fundamental types. Objects, declared as integers (int),
contain unsigned decimal digits with a maximum value of up to 232.
Objects, declared as strings (String), contain a sequence of characters.

 3.4.2 Boolean Type

The Boolean type represents a logical quantity with two possible values,
indicated by the literals true and false.

 3.4.3 Reference Types

Besides the basic data types, there are two kinds of reference types:

 Arrays of objects of a given type;
 Methods returning objects of a given type;

In general these methods of constructing objects can be applied
recursively.

 3.4.4 Objects

An Object can be of type atomic shape object or composite shape object.
These two types of shape objects are defined as follows:

Atomic Shape Objects

 There are five atomic shape objects:

 Text
 Circle
 Ellipse
 Line
 Rectangle

For detailed descriptions, refer to sections dedicated to the above atomic
shape objects.

Composite Shape Object

 There is one composite shape object:

 Object

A composite shape object, defined by the user, contains a series of atomic
shape objects and other composite shape objects previously defined by the
user.

 3.4.5 Variables

A variable is a storage location and has an associated type. A variable
always contains a value that is assignment compatible with its type.
Moreover, every variable in a program must have a value before its value
is used.

3.5 Expressions

The precedence of expression operators is the same as the order of the major
subsections of this section, the highest precedence first. Within each subsection,
the operators have the same precedence. Left- or right-associative is specified in
each subsection for the operators discussed therein.

3.5.1 Primary Expressions

Primary expressions are identifiers, constants, strings, or expressions in
parentheses.

 Primary-expression: Identifier-primary
 | constant
 | �true�
 | �false�
 | �null�
 | New-expression
 | (Assignment-expression)

An identifier is a primary expression, provided that it has been suitably
declared as discussed below. Its type is specified by its declaration.

 A constant is a primary expression, with either type int or type string.
New-expression is an initialization expression that declares the instance of
an array object.
A parenthesized assignment expression is a primary expression that
contains operators.

3.5.2 Multiplicative Operators

 The multiplicative operators *, /, % group left-to-right.

 Multiplication-expression: Multiplication-expression * Postfix-expression
 | Multiplication-expression / Postfix-expression
 | Multiplication-expression % Postfix-expression

The operands of * and / must have arithmetic type; the operands of %
must have integral type. The usual arithmetic conversions are performed
on the operands, and predict the type of the result.
The binary * operator denotes multiplication.
The binary / operator yields the quotient and the % operator the
remainder, of the division of the first operand by the second; if the second
operand is 0, the result is undefined.

3.5.3 Additive Operators

The additive operators + and � group left-to-right. If the operands have
arithmetic type, the usual arithmetic conversions are performed. There
are some additional type possibilities for each operator.

Additive-expression: Multiplicative-expression
 | Additive-expression + Multiplication-expression
 | Additive-expression � Multiplication-expression

String Concatenation Operator +

If only one operand expression is of type String, then string conversion is
performed on the other operand to produce a string at run time. The
result is a reference to a newly created String that is the concatenation of
the two operands strings. The left-hand String operand precedes the
right-hand operand in the newly created String.

Additive Operator (+ or -) for Integers

The result of the + operator is the sum of the operands. The result of the �
operator is the difference of the operands.

3.5.4 Relational Operators

The relational operators group left-to-right.

Relational-expression: Relational-expression < Additive-expression
 | Relational-expression > Additive-expression
 | Relational-expression <= Additive-expression
 | Relational-expression >= Additive-expression

The type of each of the operands must be of an integer type or a compile
time error occurs. The operators < (less), > (greater), <= (less or equal) and
>= (greater or equal) all yield 0 if the specified relation is false and 1 if it is
true. The type of the result is int.

3.5.5 Equality Operators

The equality operators are syntactically left-associative.

 Equality-expression: Relational-expression
 | Equality-expression == Relational-expression
 | Equality-expression != Relational-expression

If the operands are of integer type, a numeric equality test is performed. If
the operands are both type Boolean, then the operation is Boolean
equality. The == (equal to) and the != (not equal to) operators are
analogous to the relational operators except for their lower precedence.

3.5.6 Assignment Expressions

Assignment-expression: Primary-expression
 | Identifier = Assignment-expression

The result for the first operand must be a variable, or a compile time error
occurs. This operand must be a named variable. The type of the
assignment expression is the type of the variable. In the assignment, with
=, the value of the expression replaces that of the object referred to by the
Identifier.

3.6 Declarations

 Declaration: TypeSpecifier InitIdentifierList ;

TypeSpecifier: int
 | String

InitIdentifierList: InitIdentifier
 | InitIdentifierList , InitIdentifier

 InitIdentifer: Identifier
 | Identifier = StringExpression ;
 | Identifier = IntExpression ;

A declaration consists of a TypeSpecifier, followed by an identifier, and possibly
followed by an equal sign and a StringExpression or an IntExpression (if the user
chooses to declare and initialize.

3.6.1 Array Declarations for Integers and Strings

ArrayDeclaration: TypeSpecifier ArrayIdentifier ;

ArrayIdentifier: identifier BracketList

 | identifier EmptyBracketList InitArrayIdentifier

BracketList: [IntExpression]
| BracketList [IntExpression]

EmptyBracketList: []

 | EmptyBracketList [IntExpression]

InitArrayIdentifier: = { IntExpressionList }
 | = { StringExpressionList }

IntExpressionList: IntExpression
| IntExpressionList , IntExpression

StringExpressionList: StringExpression

| StringExpressionList , StringExpression

3.6.2 Array Declarations for AtomicObjects

AtomicObjectArrayDeclaration: AtomicObjectType AtomicObjectArrayIdentifier ;

AtomicObjectArrayIdentifier: Identifier [IntExpression]

When declaring an array of AtomicObjects, each atomic object in the array
is automatically initialized with default values specific to its atomic object
type.

3.6.3 Function Declarations and Definitions

Functions are declared and defined outside of the Movie block. They are
type-specified by an AtomicObjectType, and int, or a String. Following the
TypeSpecifier is the identifer, and following the identifier is the parameter list
surrounded by parentheses.

ParameterTypeList: ParameterList

 | ParameterList , . . .

ParameterList: ParameterDeclaration
 | ParameterList , ParameterDeclaration

ParameterDeclaration: AtomicObjectType identifier
 | String identifier
 | int identifier

AtomicObjectType: Text

 | Rectangle
 | Circle
 | Ellipse
 | Line

The function is then defined within a pair of braces. At the end of the
function definition, the function returns an atomic object, string, or integer.

3.7 Statements

Statements are executed in sequence. Statements are executed for their effect,
and do not have values. They fall into several groups.

 Statement: Selection-statement
 | Iteration-statement
 | Jump-statement

3.7.1 Selection Statements

 Selection statements choose one of several flows of control.

 Selection Statements: if (expression) Statement

 | if (expression) Statement else Statement

In both forms of the if statements, the expression is evaluated, and if it
compares unequal to 0, the first sub statement is executed. In the second
form, the second sub statement is executed if the expression is 0. The else
ambiguity is resolved by connecting an else with the last encountered
else-less if at the same block nesting level.

3.7.2 Iteration Statements

 Iteration statements specify looping.

 Iteration-statement: while (expression) Statement

 | for (expressionopt ; expressionopt ; expressionopt)
 Statement

In the while statement, the sub statement is executed repeatedly so long as
the value of the expression remains unequal to 0; the expression must be

arithmetic. With while, the test occurs before each execution of the
statement.
In the for statement, the first expression is evaluated once, and thus specifies
initialization for the loop. There is no restriction on it type. The second
expression must be arithmetic; it is evaluated before each iteration, and if
it becomes equal to 0, the for is terminated. The third expression is
evaluated after each iteration, and thus specifies a re-initialization for the
loop. There is no restriction on its type.

3.8 F^2 Source File Specifications

This section describes the format of an F^2 source file. More specifically, it
describes the import statement, header statements, Movie block, atomic object
declarations, composite object declarations, Frame block, place declaration,
animate declaration, and insert declaration.

3.8.1 Import Statement

 ImportDeclaration: import StringExpression ;

The import statement tells the compiler to prepare a data structure based
upon another program (filename is the StringExpression) for use by the
current program. This is done before any further processing of the current
program. All import statements must be placed at the very beginning of
the program before any other commands.

The import feature allows the user to reuse movies that they have already
created. However, the imported movie must be used in its entirety. When
a movie is reused, the movie will be placed relative to the coordinates
specified by the user. Also the imported movie inherits current movie�s
background color, and frames per second. Checks will ensure that the
imported movies are no larger in length and width than the current
movie, and that the number of frames in the imported movie does not
exceed the number of frames in the Frame block of the current movie.

3.8.2 Header Statements

MovieDeclaration: MOVIENAME = StringLiteral ;

FrameWidthDeclaration: WIDTH = IntExpression ;

FrameHeightDeclaration: HEIGHT = IntExpression ;

FPSDeclaration: FPS = IntExpression ;

NumFramesDeclaration: NUMFRAMES = IntExpression ;

BGColorDeclaration: BGCOLOR = ColorExpression ;

ColorExpression: BLACK
 | BLUE
 | BROWN
 | GREEN
 | GREY
 | ORANGE
 | PURPLE
 | RED
 | WHITE
 | YELLOW

The header statements are where the user defines the general setting for
the movie. They have to be declared in the shown order, none can be
omitted or set to null values, and they all must be declared before the
Movie block.

MOVIENAME defines the name that the .swf file will be saved as. This
name does not have to match the name of the source-code file. The name
must be a sequence of letters and digits. The first character must be a
letter.
FPS defines the rate at which the movie will be played in frames per
second, and must be a non-negative integer.
NUMFRAMES defines the number of frames for the entire movie, and
must be a non-negative integer.
WIDTH defines the width of the movie in pixels, and must be a non-
negative integer.
HEIGHT defines the height of the movie in pixels, and must be a non-
negative integer.
BGCOLOR defines the background color of the movie, and will stay
constant for the entire length of the movie. The color specified must be
one of the ten recognized standard colors: RED, BLUE, GREEN, WHITE,
ORANGE, YELLOW, BLACK, PURPLE, BROWN and GRAY.

3.8.3 Movie Block Definition

Movie: Movie { CompoundStatement }

CompoundStatement: DeclarationList StatementList

StatementList: Statement
 | StatementList Statement

DeclarationList: Declaration
 | DeclarationList Declaration

Declaration: AtomicObjectDeclaration
 | CompositeObjectDeclaration
 | PrimitiveTypeDeclaration

PrimitiveTypeDeclaration: String IdentifierList ;
 | int IdentifierList ;

IdentifierList: Identifier
 | IdentifierList , Identifier

The Movie block definition is similar to the �main� method declaration in
a Java program. Object and frame declarations will be made within the
braces. The import and header statements must be made outside and
before the Movie block definition, and nothing may follow the definition
either.

3.8.4 Atomic Object Declarations

AtomicObjectDeclaration: Text identifier (TextParam) ;
 | Rectangle identifier (RectangleParam) ;
 | Circle identifier (CircleParam) ;
 | Ellipse identifier (EllipseParam) ;
 | Line identifier (LineParam) ;

TextParam: StringExpression , IntExpression , ColorExpression

RectangleParam: IntExpression , IntExpression , ColorExpression

CircleParam: IntExpression , ColorExpression

EllipseParam: IntExpression , IntExpression , ColorExpression

LineParam: IntExpression , IntExpression , IntExpression ,
 IntExpression , ColorExpression

The primitive object declarations are used to create atomic (no other
previously created objects can be appended to it) objects. The five
primitive objects from which all other objects will be built are listed above,
along with their respective parameters.

The Text parameters are as follows: the text, font size, color.

The Rectangle parameters are as follows: width, height, color.
The Circle parameters are as follows: radius, color.
The Ellipse parameters are as follows: width, height, color.
The Line parameters are as follows: start x, start y, end x, end y, color.

The limit for the size of the object is the size of the movie itself, which
cannot be exceeded. The atomic object declarations must be declared
within the Movie block definition but outside of the Frame block
definitions.

3.8.5 Frame Block Definitions

FrameDefinition: Frame (IntExpression) { StatementList }

The Frame block definitions are used to dictate what will happen within
the amount of frames indicated by the integer value, which can be an
integer identifier or constant, but must be non-negative. Within the Frame
block definitions are any number of Place, Animate, and Append
declarations. It is possible to leave the body empty however. The order in
which the Frame blocks are declared is the order in which they will be
played:

Frame (100){<body1>}
Frame (50){<body2>}
Frame (300) {<body3>}

The above code means that from frames 0 to 99, body1 will be played.
From frames 100 to 149, body2 will be played. From frames 150 to 449,
body3 will be played.

Any number of frame block definitions are allowed, but the total number
of frames must not exceed the number of frames in the movie. If they do,
then an error will be given and the file will not compile properly.

3.8.6 Place Declaration

PlaceDeclaration: Place (StringLiteral , IntExpression ,
 IntExpression , IntExpression , InteExpression ,
 IntExpression) ;

The parameters are: object name, x coordinate, y coordinate, start frame,
end frame, depth.

The place declaration is used to put objects in the frames at the specified
location and depth for a set number of frames. The start and end frames

dictate how long and when the object will be shown. The string can be a
string identifier or constant, and the integers must be non-negative. The
position for placing the object must be within the size of the movie, and
the start and end frame interval must not exceed the number of frames
declared in the frame block definition in which the place declaration is
located. A depth of 0 is at the top, and the higher the depths, the lower
the object on the screen. The place declaration can only be declared within
frame block bodies.

3.8.7 Animate Declaration

AnimateDeclaration: Animate (StringLiteral , IntExpression ,
IntExpression , IntExpression , IntExpression ,
IntExpression , IntExpression , IntExpression) ;

The parameters are: object name, start x coordinate, start y, start frame,
end x coordinate, end y, end frame, depth.

The animate declaration is used to create linear motion. The user will say
the start position, the end position, and the frame interval for motion to
occur. The program will then extrapolate the line of motion and the
position of the object in each frame. This functionality makes it easy to
move things linearly, from one spot to another over as many frames as
needed. The string can be a string identifier or constant, and the integers
must be non-negative. The position for placing the object must be within
the size of the movie, and the start and end frame interval must not exceed
the number of frames declared in the Frame block definition in which the
place declaration is located. A depth of 0 is at the top, and the higher the
depths, the lower the object on the screen. The animate declaration can
only be declared within Frame block bodies.

3.8.8 Insert Declaration

InsertDeclaration: Insert (StringLiteral , IntExpression ,
IntExpression , IntExpression , IntExpression) ;

The parameters are: movie name, relative x coordinate, relative y
coordinate, start frame, depth.

The insert declaration is the functionality that allows the user to use the
movies that have been imported using the import declaration. The relative
x and y coordinates define where the imported movie should be placed in
relation to the current movie. The start frame dictates when the imported
movie should start playing. There will be a check that ensures the

imported movie length does not exceed the length defined by the Frame
block definition. . The string can be a string identifier or constant, and the
integers must be non-negative. The position for placing the object must be
within the size of the movie. A depth of 0 is at the top, and the higher the
depths, the lower the object on the screen. The insert declaration can only
be declared within Frame block bodies.

CHAPTER 4

Project Plan/Schedule

4.1 Project Responsibilities

The project is evenly divided among the team members to achieve maximum
efficiency. Nevertheless, testing and debugging of all project code are done
together by all team members. The development task of F2 is divided
accordingly:

Benjamin Chen Backend, Code Generation, Testing
Jonathan So Tree Walking, Code Generation, Testing
Shawn Tai Lexer, Parser, Tree Walking, Testing
Jen Yu Wang Lexer, Parser, Documentation, Code Generation

4.2 Prospective Project Development Schedule

The following deadlines were proposed for various key development phases.

2/18/03 Produce F2 language whitepaper, outlining rough language

features and design goals for F2.
3/15/03 Establish implementation approach, development

environment, and code platform/convention.
3/24/03 Meet with Prof. Edwards to discuss potential problems and

details of the proposed approach to F2�s development.
3/27/03 Produce Language Reference Manual.
4/05/03 Complete lexer, parser, and tree walker.
4/12/03 Complete code generation.
4/26/03 Complete compiler.
5/03/03 .swf files simulation.
5/09/03 Final testing and debugging
5/13/03 Code freeze, project feature complete.

4.3 Software Development Environment

This project is developed in UNIX using Java SDK 1.4.1. ANTLR version 2.7.2 is
the utility used to develop the F2 parser. The F2 scanner is a production of a set
of Java programs. The testing of F2 files will be done by using Macromedia Flash
Player. Makefiles are created accordingly in every source directory.

4.4 Project Log
The following log has recorded the actual dates on significant development
breakthroughs.

2/05/03 Project Initiated
2/18/03 Language Whitepaper completed
3/07/03 First draft of F2 code convention
3/14/03 Development Environment established and outlined.
3/14/03 Produced target flash file for project to achieve
3/20/03 Grammar, first draft
3/27/03 First draft of language reference manual
4/05/03 Testing Phase I initiated
4/12/03 Code lexical and syntactical grammar finalized
4/23/03 First working version of lexer and parser
03/31/03 First working version of compiler back-end
4/04/03 Starting Code generation
4/04/03 First working version of intermediate representation
5/03/03 Work on code checking in Macromedia Flash Player
05/10/03 Finalized version of scanner

Finalized version of compiler
05/03/03 Sample .swf produced under F2
05/10/03 Simulation of Macromedia Flash using F2
05/13/03 Final Paper
5/14/03 Meeting With Prof. Edwards

CHAPTER 5

Architecture Design

The structure of the F2 compiler is based upon the foundation of Macromedia
Flash software. Given that the objective behind F2 is to produce a programmable
Flash language that can generate Macromedia Flash Shockwave files, it is thus
absolutely necessary for F2 to work around the structural representation
embedded within Macromedia.

In this project, the F2 compiler is broken down into the following parts:
lexer, parser, tree walker, runtime environment, and code generator.

Front-End: Lexer, Parser, and Tree Walker

Starting with the front end, F2 has been modeled after a graphics user interface.
It has been organized accordingly to form a clear vocabulary (as shown in
Chapter 2 Tutorial) to abridge the gap between words and pictures. Grammar
features are thoroughly explained in Chapter 3.

The concept behind an F2 movie is that it is a collection of individual frames,
with each frame containing the necessary objects that hold their individual
specifications. The data structure behind the implementation of this concept is
that each Movie file contacts an array of frames, with each frame containing a
Vector to hold its objects to be shown. And each Shape object is defined as
objects with their own necessary parameters. The parsing of the F2 language is
implemented around this central theme. With the defined parser rules, parsing
is done within the extended tree walker. Inside of the tree walker, F2 create
integer or string variables and assign values as instructed by the grammar rules.
Integer evaluation is also performed locally inside of the walker before
assignment occurs. Upon hitting a Shape object declaration, the walker
instantiates the defined abstract object according to the type parsed by the
walker. And the walker will assign the parameters for this object locally. Since
F2 is a strongly type language, type checking is enforced strictly during compile
time, this measure is done to prevent runtime errors derived from incompatible
type assignment or evaluation.

At the end of the tree walker, depending on whether the key word �import� is
called or not, the tree walker will pass filled the array of frame and frame vectors
onto the next stage, Runtime Environment and Code Generation.

Runtime Environment and Code Generation:
ImportBox.java, BlackBox.java, WriteSWF.java

As mentioned before, at the end of the tree walker, an array of Vector frames has
been passed onto BlackBox.java. However, before BlackBox starts execution, the
walker will decide first whether to import a separate F2 file or not. This is
decided by the occurrence of the key word �import.� If the import key word
does exist in the original F2 file, the tree walker will then call ImportBox.java as
the Runtime environment to compile the indicated F2 import movie. The import
movie is then parsed with its frames stored in the array and objects stored in
their corresponding vectors. At the end of ImportBox, it returns the array of
Frame Vector and pass it to BlackBox.

The next stage is the BlackBox, where detailed algorithms for specific F2
functionalities are written. (Functions such as Place(), Insert(), Animate() have
been implemented inside of BlackBox. Their algorithms involve mostly flash tag
calculations.) In general, the BlackBox if necessary, just takes in an (or multiples
of, depend on how many movies are imported) array of Frame Vector and makes
the necessary calculations for the called functions. At the end of a series of
evaluation and reassignment of values, BlackBox loops through the array of
Frame Vectors from import F2 movies and incorporates it into its own generated
array of Frame Vectors. It then starts assembly code generation by looping
through the array. Once the assembly code generation is done, BlackBox calls
WriteSWF.java to translate everything into the binary representation of F2 with
the file extension .swf.

A side note to users is that F2�s assembly language is an important feature. This
one extra layer of abstraction between source code and binary bits grant the users
with more power. Given that Macromedia has already established a system of
binary tag representation for its graphics elements. F2 inherits these tags and
organize these tags into an intermediate representation, which can be easily read
by the users. The simplicity and structured format of the assembly code allows
easy debugging for later.

Assembly Language Specification

/**
 * Assembly Language for F^2
 *
 * Benjamin Chan
 * 05/05/03
 */

// File Header in every flash file
SwfFileHeader
 F // always F
 W // always W
 S // always S
 Version 6 // 1-6
 FileLength 225 // Length of file in bytes
 RECT // RECT data type (Background size)
 Nbits 15
 Xmin 0
 Xmax 11000
 Ymin 0
 Ymax 8000
 FrameRate 12 // fps
 NumFrames 13 // total number of frames

// End Tag
End
 Tag 0
 Length 0

// ShowFrame Tag
ShowFrame
 Tag 1
 Length 0 // Length of Tag in bytes
 // Either "Length" or "Long Length" (> 63 bytes)

// DefineShape Tag
DefineShape
 Tag 2
 LongLength 73 // Either "Length" or "Long Length" (> 63 bytes)
 ShapeID 1 // ID of the Shape in the Dictionary
 RECT // RECT data type (Shape Size)
 Nbits 12
 Xmin -1170
 Xmax 1170
 Ymin -1170
 Ymax 1170
 ShapeWithStyle
 FillStyleArray
 FillStyleCount 5 // Either "FillStyleCount" or "FillStyleCountExtended"
 FillStyleType 0 // 5 Different FillStyleTypes; 0 = solid fill
 RGB // RGB (if Shape1 or Shape2) or RGBA (if Shape3)
 Red 0
 Green 102
 Blue 204
 FillStyleType 16 // 16 = linear gradient fill
 Matrix // Matrix data type
 hasScale 1
 NScaleBits 12 // if hasScale == 1
 ScaleX 1170 // if hasScale == 1
 ScaleY 1170 // if hasScale == 1
 hasRotate 1

 NRotateBits 12 // if hasRotate == 1
 RotateSkew0 // if hasRotate == 1
 RotateSkew1 // if hasRotate == 1
 NTranslateBits 15
 TranslateX 9478
 TranslateY 5877
 Gradient
 NumGradients 2 // Number of GradRecords
 GradRecords
 Ratio 5
 RGBA // RGB (if Shape1 or Shape2) or RGBA (if Shape3)
 Red 0
 Green 102
 Blue 204
 Alpha 100
 GradRecords
 Ratio 8
 RGBA // RGB (if Shape1 or Shape2) or RGBA (if Shape3)
 Red 0
 Green 201
 Blue 102
 Alpha 80
 FillStyleType 18 // 18 == radial gradient fill
 Matrix // Matrix data type
 hasScale 1
 NScaleBits 12 // if hasScale == 1
 ScaleX 1170 // if hasScale == 1
 ScaleY 1170 // if hasScale == 1
 hasRotate 1
 NRotateBits 12 // if hasRotate == 1
 RotateSkew0 // if hasRotate == 1
 RotateSkew1 // if hasRotate == 1
 NTranslateBits 15
 TranslateX 9478
 TranslateY 5877
 Gradient
 NumGradients 2 // Number of GradRecords
 GradRecords
 Ratio 5
 RGBA // RGB (if Shape1 or Shape2) or RGBA (if Shape3)
 Red 0
 Green 102
 Blue 204
 Alpha 100
 GradRecords
 Ratio 8
 RGBA // RGB (if Shape1 or Shape2) or RGBA (if Shape3)
 Red 0
 Green 201
 Blue 102
 Alpha 80
 FillStyleType 64 // 64 == tilted bitmap fill
 BitmapID 2 // ID of bitmap character for fill
 Matrix // Matrix data type
 hasScale 1
 NScaleBits 12 // if hasScale == 1
 ScaleX 1170 // if hasScale == 1
 ScaleY 1170 // if hasScale == 1
 hasRotate 1
 NRotateBits 12 // if hasRotate == 1
 RotateSkew0 // if hasRotate == 1
 RotateSkew1 // if hasRotate == 1
 NTranslateBits 15
 TranslateX 9478

 TranslateY 5877
 FillStyleType 65 // 65 == tilted bitmap fill
 BitmapID 2 // ID of bitmap character for fill
 Matrix // Matrix data type
 hasScale 1
 NScaleBits 12 // if hasScale == 1
 ScaleX 1170 // if hasScale == 1
 ScaleY 1170 // if hasScale == 1
 hasRotate 1
 NRotateBits 12 // if hasRotate == 1
 RotateSkew0 // if hasRotate == 1
 RotateSkew1 // if hasRotate == 1
 NTranslateBits 15
 TranslateX 9478
 TranslateY 5877
 LineStyleArray
 LineStyleCount 2 // Either "LineStyleCount" or "LineStyleCountExtended"
 Width 20
 RGB // RGB (if Shape1 or Shape2) or RGBA (if Shape3)
 Red 0
 Green 0
 Blue 0
 NumFillBits 1
 NumLineBits 1
 ShapeRecord
 StyleChangeRecord
 TypeFlag 0 // always 0 for StyleChangeRecord
 StateNewStyles 1
 StateLineStyle 1
 StateFillStyle1 1
 StateFillStyle0 1
 StateMoveTo 1
 MoveBits 11 // if StateMoveTo == 1
 MoveDeltaX 820 // if StateMoveTo == 1
 MoveDeltaY 820 // if StateMoveTo == 1
 FillStyle0 1 // if StateFillStyle0 == 1
 FillStyle1 1 // if StateFillStyle1 == 1
 LineStyle 1 // if StateLineStyle1 == 1
 FillStyleArray // if StateNewStyles == 1
 ...
 LineStyleArray // if StateNewStyles == 1
 ...
 NumFillBits 1 // if StateNewStyles == 1
 NumLineBits 1 // if StateNewStyles == 1
 StraightEdgeRecord
 TypeFlag 1 // always 1 for StraightEdgeRecord
 StraightFlag 1 // always 1 for StraightEdgeRecord
 NumBits 11
 GeneralLineFlag 1 // GeneralLine == 1; Vert/Horz Line == 0
 DeltaX 820 // if GeneralLineFlag == 1
 DeltaY 820 // if GeneralLineFlag == 1
 VertLineFlag // if GeneralLineFlag == 0; if 0->Vert, 1->Horz
 DeltaX // if GeneralLineFlag == 0, and VertLineFlag == 0
 DeltaY // if GeneralLineFlag == 0, and VertLineFlag == 1
 CurvedEdgeRecord
 TypeFlag 1 // always 1 for CurvedEdgeRecord
 StraightFlag 0 // always 0 for CurvedEdgeRecord
 NumBits 8
 ControlDeltaX 685
 ControlDeltaY 340
 AnchorDeltaX 543
 AnchorDeltaY 0
 EndShapeRecord
 TypeFlag 0

 EndOfShape 0

// PlaceObject Tag
PlaceObject
 Tag 4
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 CharacterID 1
 Depth 1
 Matrix
 ...
 CXForm
 hasAddTerms 1
 hasMultTerms 1
 NBits 4
 RedMultTerms 10 // if hasAddTerms == 1
 GreenMultTerms 10 // if hasAddTerms == 1
 BlueMultTerms 10 // if hasAddTerms == 1
 RedAddTerms 10 // if hasMultTerms == 1
 GreenAddTerms 10 // if hasMultTerms == 1
 BlueAddTerms 10 // if hasMultTerms == 1

// RemoveObject Tag
RemoveObject
 Tag 5
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 CharacterID 1
 Depth 1

// SetBackgroundColor Tag
SetBackgroundColor
 Tag 9
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 RGB
 ...

// DefineShape2 Tag
DefineShape2
 Tag 22
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 ShapeID 1
 RECT
 ...
 ShapeWithStyle
 ...

// Protect Tag
Protect
 Tag 24
 Length 0

// PlaceObject2 Tag
PlaceObject2
 Tag 26
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 PlaceFlagHasClipActions 0 // always 0, coz tag not written
 PlaceFlagHasClipDepth 0 // always 0, coz tag not written
 PlaceFlagHasName 1
 PlaceFlagHasRatio 1
 PlaceFlagHasColorTransform 1
 PlaceFlagHasMatrix 1
 PlaceFlagHasCharacter 1
 PlaceFlagMove 1
 Depth 1
 CharacterID 1 // if PlaceFlagHasCharacter == 1

 Matrix // if PlaceFlagHasMatrix == 1
 ...
 CXForm // if PlaceFlagHasColorTransform == 1
 ...
 Ratio 5 // if PlaceFlagHasRatio == 1
 Name // if PlaceFlagHasName == 1
 ...

// RemoveObject2 Tag
RemoveObject2
 Tag 28
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 Depth 1

// DefineShape3 Tag
DefineShape3
 Tag 32
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 ShapeID 1
 RECT
 ...
 ShapeWithStyle // all RGB becomes RGBA
 ...

// FrameLabel Tag
FrameLabel
 Tag 43 // Either "Length" or "Long Length" (> 63 bytes)
 Length 10
 Name
 46 // F
 57 // W
 53 // S
 0 // end of String

// DefineMorphShape Tag
DefineMorphShape
 Tag 46
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 CharacterID 1
 RECT // Start Bounds
 ...
 RECT // End Bounds
 ...
 Offset 30
 MorphFillStyles
 FillStyleCount 4 // "FillStyleCount" or " FillStyleCountExtended"
 FillStyleType 0 // 5 Different FillStyleTypes; 0 = solid fill
 RGBA // Start Color
 Red 0
 Green 102
 Blue 204
 Alpha 100
 RGBA // End Color
 Red 0
 Green 0
 Blue 0
 Alpha 0
 FillStyleType 16 // 16 = linear gradient fill
 Matrix // Start Matrix
 ...
 Matrix // End Matrix
 ...
 MorphGradient
 NumGradients 2 // Number of MorphGradRecords

 MorphGradRecord
 StartRatio 5
 RGBA
 Red 0
 Green 102
 Blue 204
 Alpha 100
 EndRatio 5
 RGBA
 Red 0
 Green 102
 Blue 204
 Alpha 100
 MorphGradRecord
 StartRatio 8
 RGBA
 Red 0
 Green 201
 Blue 102
 Alpha 80
 EndRatio 8
 RGBA
 Red 0
 Green 201
 Blue 102
 Alpha 80
 FillStyleType 18 // 18 == radial gradient fill
 Matrix // Start Matrix
 ...
 Matrix // End Matrix
 ...
 MorphGradient
 NumGradients 2 // Number of MorphGradRecords
 MorphGradRecord
 StartRatio 5
 RGBA
 Red 0
 Green 102
 Blue 204
 Alpha 100
 EndRatio 5
 RGBA
 Red 0
 Green 102
 Blue 204
 Alpha 100
 MorphGradRecord
 StartRatio 8
 RGBA
 Red 0
 Green 201
 Blue 102
 Alpha 80
 EndRatio 8
 RGBA
 Red 0
 Green 201
 Blue 102
 Alpha 80
 FillStyleType 64 // 64 == tilted bitmap fill
 BitmapID 2 // ID of bitmap character for fill
 Matrix // StartBitmapMatrix
 ...
 Matrix // EndBitmapMatrix

 ...
 FillStyleType 65 // 65 == tilted bitmap fill
 BitmapID 2 // ID of bitmap character for fill
 Matrix // StartBitmapMatrix
 ...
 Matrix // EndBitmapMatrix
 ...
 MorphLineStyles
 LineStyleCounts 2 // Either "LineStyleCount" or "LineStyleCountExtended"
 StartWidth 20
 EndWidth 20
 RGBA // Start Color
 Red 0
 Green 201
 Blue 102
 Alpha 80
 RGBA // End Color
 Red 0
 Green 201
 Blue 102
 Alpha 80
 Shape
 NumFillBits 12
 NumLineBits 12
 ShapeRecord
 ... // in DefineShape Tag
 Shape
 NumFillBits 12
 NumLineBits 12
 ShapeRecord
 ... // in DefineShape Tag

// ExportAssets Tag
ExportAssets
 Tag 56
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 Count 2
 Tag 100
 Name
 46 // F
 57 // W
 53 // S
 0 // end of String
 Tag 101
 Name
 46 // F
 57 // W
 53 // S
 0 // end of String
// Import Assets Tag
ImportAssets
 Tag 57
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 URL
 46 // F
 57 // W
 53 // S
 0 // end of String
 Count 2
 Tag 100
 Name
 46 // F
 57 // W
 53 // S

 0 // end of String
 Tag 101
 Name
 46 // F
 57 // W
 53 // S
 0 // end of String

// EnableDebugger Tag
EnableDebugger
 Tag 58
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 Password
 46 // F
 57 // W
 53 // S
 0 // end of String

// EnableDebugger2 Tag
EnableDebugger2
 Tag 64
 Length 10 // Either "Length" or "Long Length" (> 63 bytes)
 Password
 46 // F
 57 // W
 53 // S
 0 // end of String

CHAPTER 6

Testing Plan

6.1 Objectives

No computer program can function appropriately without being tested layer
after layer. It is common to only discover errors after the developed program has
been thoroughly checked over by different testing plans. The objective of this
section of the project is to achieve just that: analyze F2 from different angles and
use several comprehensive approaches to test for errors at the various
development phases. With careful choice of unit test, regression tests, white box
and black box tests, we can guarantee a rather smooth evolution of program
development.

6.2 General Concept

The general concept behind our testing plan is to design both F2 and Shockwave
files as test programs that could help us, as the developers, to understand any
loop holes that might have occurred during the actual implementation of our
logical designs. These �helpers� can perform some general implementation
checks as well as going deeper behind the design structure of F2. They are
deployed against the F2 code to test smartly and efficiently.

6.3 Methods

To avoid prolong errors that could possibly effect the different structural parts of
F2, our group seeks to run test programs in parallel throughout each of the
development phases. These tests have been consistently modified throughout
each phase to ensure testing upon program integrations. The Macromedia Flash
Player is used as the main error checker for our sample F2 programs. The Flash
player will display our .f2 files if these files are correct and recognizable by
Macromedia Flash.

During the stage of grammar production, we decide to print out and evaluate the
values of all nodes inside the AST tree to test the logical structure behind the
grammar and the layout of our parser.

During the stage of backend and assembly development, we plan to use the
Macromedia Flash User manual and the Macromedia Flash Player as the main

testing tools. This decision is based on the nature of SWF files. Their binary digit
representation limits down available helper tools we can use.

For the code generation stage, we decide to use the developed backend
programs, the established assembly language, and the parser as the main tools to
run tests. The main testing objective at this stage is to guarantee the proper
execution of our Movie methods in F2. Thus we plan to run source code through
the parser and then perform code generation. Once this is done, we use our
WriteSWF.java program to output the .f2 file into a .swf file and check the
content with Flash Player.

6.5 Actual implementation

Grammar/Walker

To avoid compounding mistakes and error in our grammar, we choose to
perform testing parallel to programming development. Upon the completion of
each lexical rule, we build the necessary walker to proceed with many sample
implementations. To display the hierarchy within these abstract syntax trees, we
output all related tree nodes for logic checking. Only after all trials have been
proven successful do we proceed again onto the next lexical rule.

After the lexer, the parser, and the walker have been completed, we begin testing
the entire grammar by writing sample codes. We formulate different
combinations of logical statements, object declarations, array declarations, Movie
declaration calls to test against the grammar. By parsing out all the nodes and
outputting them in the destined hierarchy order, we are able to check the logical
structure and ensure the proper structure of the grammar.

Backend and Assembly Language

The initial testing runs for our backend are very tedious and labor intensive.
Given that Flash files are stored in binary digits, the only way to check whether
any parts of the assembly language has been correctly represented is to go back
to the Macromedia Flash User Manual. The manual provides the actual binary
representation of the specified tags. Once the Assembly language has been
produced, testing has gone from the manual raw code checking to a higher level
abstraction checking. Similarly with the building of backend programs such as
ReadSWF.java and WriteSWF.java, the error within these programs could only
be check by the Flash user manual. The main target in this testing phase is to
ensure the correct binary recapitulation of Macromedia Flash tags within our
intermediate assembly language and help programs from our backend.

Code Generation and Runtime Environment

We performed the testing at this stage mainly through using sample programs.
To guarantee the correct inner working of methods developed inside this stage,
we perform exactly the proposed methodology to do testing. We use different
source codes to test against the different functions inside the Runtime
Environment/Code Generation. We run sample source codes (.f2 files) through
the parser, and then run Runtime Environment/code generation that output
these .f2 files into a Shockwave file. Furthermore, we can check the correctness of
the code through the Macromedia Flash Player. Any incorrect bit in the file will
prevent the Flash Player from outputting the file. Thus it is very easy to know
whether inner working of code generation is executing accordingly. Our last
resort to check the methods are to produce copies of .swf files that are equivalent
to what we want to present syntactically. By checking through the assembly
language representation of both files (the Macromedia copy and our F2 file), we
at times can find out what went wrong.

Comprehensive Testing for F2

At the completion of our F2 program development, we start the final testing for
the entire F2 language. We begin with writing full versions of F2 programs that
involves elaborate evaluation of Movie objects, logical statements, and a
combination of methods defined in F2. We design source codes in such ways as
to challenge the comprehensiveness of F2. And unfortunately, there are several
minor design flows we cannot overcome in the given amount of time. First our
proposed Composite Objects cannot be implemented properly. Second, our Text
objects cannot be produced correctly as we planned. There are faulty cases.
Moreover, a letter or number, with a given Font, is represented by 200 bytes on
average. It is impossible to complete this Text library. Again, limited by time,
we could not devise an appropriate algorithm for rotational movements.

Other than the above mentioned areas, all other aspects of F2 have been tested
thoroughly. Results are positive. F2 executes as we have describe in the reference
manual.

CHAPTER 7

Experience of F2 Language Development

The entire journey of F2 program development has been very rewarding. In a
group environment, each of us learns how to utilize and prioritize things to
achieve maximum efficiency and our overall objective. We realize that a good
language development entails intensive structural planning and highly
organized implementation details. Detail-oriented approach is very crucial
during each phase of language development. Other factors such as
comprehensive testing plans, thorough research on related material and proper
time management are also integral factors toward a successful language
development.

Other than the technical areas, we also learn how to work as a team. Computer
language development has always required the joint force of several devoted
individuals. The atmosphere between each individual team members has to be
carefully maintained as to prevent any potential confrontation that could infringe
the progress of the project.

Finally, we would like to say thanks to everyone who has helped us along the
way. All the ideas, advices, and support we received throughout this project
have contributed to the proper completion of the language development of F2.
Thank you again.

APPENDIX A

F2 Grammar

WholeProgram: (Import-definition)
 (Header-statement)
 (Movie-block)
 (Frame-definition)+
 (EOF)
Constant: Int
 | String
Type: identifier
 | Built-In-Type
Built-In-Type: Int
 | String
 | Boolean
 | void
Identifier: ID (�.� ID)*
Field: ID (Parameter-Declaration-List) (Declarator-Brackets)
 | Variabel-declaration �;�
Variable-Declarator: ID (Declarator-Brackets) (Variable-Initializer)
Declarator-Brackets: (�[� �]�)*
Variable-Initializer: (�=� Initializer)?
Array-Initializer: �{� (�,� Initializer)* (�,�)? �}�
Initializer: Expression
 | Array-Initializer
Method-Head: ID �(� Parameter-Declaration-List �)�
Parameter-Declaration-List: (Parameter-Declaration
 (�,� Parameter-Declaration ID)*)?
Parameter-Declaration: ID Declarator-Brackets
Compound-Statement: �{� (Statement)* �}�
Statement: Compound-Statement
 | (Declaration)
 | Expression �;�
 | �if� �(� Expression �)� Statement (�else� Statement)?
 | �for� �(� For-Initializer �;�
 For-Condition �;� For-Iterator �)�
 | �while� �(� Expression �)� Statement
 | �break� (ID)? �;�
 | �return� (Expression)? �;�
 | �;�
For-Initializer: (Declaration | Expression-list)?
For-Condition: (Expression)?
For-Iterator: (Expression)?

Expression: Assignment-expression
Expression-list: Expression (� ,� Expression)*
Assignment-expression: Logic-Or-expression
 | Logic-Or-expression (� =� Assignment-expression)
Equality-expression: Relational-expression ((�!=� | �==�)
 Relational-expression)*
Relational-expression: Additive-expression
 ((�<� | �>� | �<=� | �>=�) Additive-expression)*
Additive-expression: Multiplicative-expression
 ((�+� | �-�) Multiplicative-expression)*
Multiplicative-expression: Unary-expression ((�*� | �/� | �%�) Unary-expression)*
Primary-expression: Identifier-primary
 | constant
 | �true�
 | �false�
 | �null�
 | New-expression
 | (Assignment-expression)
New-expression: �new� type NewArrayDeclarator (Array-initializer)?
NewArrayDeclarator: [(expression)?]
 | NewArrayDeclarator+
ParameterDeclaration: AtomicObjectType identifier
 | String identifier
 | int identifier
AtomicObjectType: Text
 | Rectangle
 | Circle
 | Ellipse
 | Line
ImportDeclaration: import StringExpression ;
MovieDeclaration: MOVIENAME = StringLiteral ;
FrameWidthDeclaration: WIDTH = IntExpression ;
FrameHeightDeclaration: HEIGHT = IntExpression ;
FPSDeclaration: FPS = IntExpression ;
NumFramesDeclaration: NUMFRAMES = IntExpression ;
BGColorDeclaration: BGCOLOR = ColorExpression ;
ColorExpression: BLACK
 | BLUE
 | BROWN
 | GREEN
 | GREY
 | ORANGE
 | PURPLE
 | RED
 | WHITE
 | YELLOW
Movie: Movie { Statement }
F2Declaration: AtomicObjectDeclaration

 | CompositeObjectDeclaration
 | Declaration
AtomicObjectDeclaration: Text identifier (TextParam) ;
 | Rectangle identifier (RectangleParam) ;
 | Circle identifier (CircleParam) ;
 | Ellipse identifier (EllipseParam) ;
 | Line identifier (LineParam) ;
TextParam: StringExpression , IntExpression , ColorExpression
RectangleParam: IntExpression , IntExpression , ColorExpression
CircleParam: IntExpression , ColorExpression
EllipseParam: IntExpression , IntExpression , ColorExpression
LineParam: IntExpression , IntExpression , IntExpression ,
 IntExpression , ColorExpression
AnonAtomicObjectDeclarationList:
 AnonAtomicObjectDeclaration
 | AnonAtomicObjectDeclarationList

 | AnonAtomicObjectDeclaration
AppendStatementList: AppendStatement
 AppendStatementList , AppendStatement
AppendStatement: Append (identifier , IntExpression , IntExpression) ;
FrameDefinition: Frame (IntExpression) { StatementList }
PlaceDeclaration: Place (StringLiteral , IntExpression ,
 IntExpression , IntExpression , InteExpression ,

 IntExpression) ;
AnimateDeclaration: Animate (StringLiteral , IntExpression ,

 IntExpression , IntExpression , IntExpression ,
 IntExpression , IntExpression , IntExpression) ;

InsertDeclaration: Insert (StringLiteral , IntExpression ,
 IntExpression , IntExpression , IntExpression) ;

APPENDIX B

Code Style Conventions

B.1 Introduction

F2 integrates the java code syntax along with its own distinct set of syntax to
form a new grammar appropriate for coding macromedia definitions. The
intention behind this document is to recommend to the user a uniform standard
for collaborative program development. In general, every programmer has his or
her own specific coding style, such as how he or she places curly braces, semi-
colons and cases. The objective of this document is not to force users to follow a
specific coding style preferred by the designers of F2, but rather, to present a
general coding convention that reflects clarity and ease for maintenance.

B.2 General Format

Just as recommended by every existing programming language in the world, it is
a good practice to produce code that is easy to read and sensibly laid out.
Variables should be named accordingly to reflect their purpose and commented
as users see fit. Blocks should be indented with a consistent width for good
formatting; nested blocks should be indented appropriately to reflect hierarchy
of execution. It is good convention to provide explanatory comments for all
nontrivial blocks.

B.3 Documentation Comments
By convention, every public method and field of Java class should be
documented with a Javadoc comment. For F2, it is recommended to perform
such measure to clarify the meaning and structure of a F2 program. Comments
on local methods should describe formal parameters and explain their
functionalities. The specification of F2 objects should be thoroughly covered in
comments. Moreover, given that F2 produces macromedia swf files, it is
imperative to include, at the beginning of the program, the complete synopsis of
the desired macromedia file.

Bibliography

• Macromedia Flash (SWF) File Specification Version 6
• Antler Reference Manual
• The C Programming Language by Kernighan and Ritchie
• Java Software Solutions By Lewis Loftus
• Java API by Suns Microsystems

