
COMS W4115
Programming Languages and Translators

Programming Assignment 3: Tiger Interpreter

Prof. Stephen A. Edwards Assigned March 25th, 2002
Columbia University Due 11:59 PM on April 8th, 2002

For this assignment, you will be adding a pass
that translates semantically correct Tiger code into a
pseudo assembly code that can be interpreted using
supplied classes and easily translated into MIPS as-
sembly code, the task for the fourth assignment. The
goal of this assignment is to produce an interpreter for
the complete Tiger language.

Compilation is a process of refinement: transforming a stream
of characters into first tokens, then an abstract syntax tree, then
into pseudo-assembly code, and finally into true assembly code
for a real processor.

I have written a collection of classes (in prog3/Interp) that
implements a simple intermediate language designed for imple-
menting Tiger. These classes describe assembly language in-
structions, a stack, classes for representing objects in memory
such as records, and methods that execute these instructions.

Your goal in this assignment is to translate the AST you gen-
erated in assignment 1 and checked in assignment 2 into a se-
quence of instructions in this intermediate code. Feel free to use,
modify, or ignore any of the code I give you; you will be graded
on whether the the test programs we run through your interpreter
produce the correct result.

1 The Intermediate Code

I designed this intermediate code to be simple, contain instruc-
tions that work nicely for implementing the Tiger language, and
have instructions that can be easily translated into actual assem-
bly code. This intermediate code is similar to what is found in
many compilers, a “three-address” code, so named because the
arithmetic operators take three addresses: two sources and one
destination.

Figure 1 shows the inheritance trees of the supplied classes.
The two on the left (Rooted at Statement and Operand) describe
the statements in the intermediate code and their operands (ar-
guments) listed in Figure 2. Each instruction has its own class
except for the binary operators (add, sub, etc.), which are imple-
mented by the Binop class.

Every statement has a “next” field that links them together in
a sequence. Calling Statement.append() on a statement appends
a statement or a sequence to the sequence starting at that state-
ment. It returns the appended statement, so statement sequences
can be assembled easily as shown in the example in Figure 4.

The constructor for each class derived from Statement takes

mov dest, src

neg dest, src

add dest, src1, src2

sub dest, src1, src2

mul dest, src1, src2

div dest, src1, src2

equ dest, src1, src2

neq dest, src1, src2

lt dest, src1, src2

leq dest, src1, src2

gt dest, src1, src2

geq dest, src1, src2

jmp target

jsr target, depth

rts

bnz target, src

bz target, src

Label:

sys index

psh offset

rec dest, size

arr dest, count, src

Figure 2: Pseudo-instructions for the simple assembly language.
The first group manipulates data, the second group handles
branching and subroutines, and the third group contains mis-
cellaneous instructions.

Notation Addressing Mode
10 Integer constant
"hello" String constant
nil nil constant
Local1 Label
fp(5) Frame pointer relative
3*fp(4) Static link relative
op[op] Block relative

Figure 3: Addressing Modes

1

Statement

Arr
Binop
Bnz
Bz
Jmp
Jsr
Label
Mov
Neg
Psh
Rec
Rts
Sys

Operand

IntConstant
StringConstant
NilConstant
LabelOperand
FrameRel StackLinks
StackBlock

Environment

Activation

TigerObj
INT
STRING
Reference

Block
NIL

InterpException

BadGetException
BadSetException
NilAccessException
TypeErrorException
UnknownOpcodeException

Figure 1: Supplied classes.

zero or more arguments that correspond to the instruction’s
operands. Sometimes these are simply constants (e.g., the ar-
gument of the psh instruction), but most of the time they are an
Operand-derived object.

1.1 Operands

The intermediate code supports six different types of operands
(addressing modes), listed in Figure 3. Integer and string con-
stants are self-explanatory: they simply produce their value. La-
bel operands are used in targets for control-flow instructions
such as jmp.

The intermediate code expects all data to be stored on the
stack (not the most efficient, but conceptually easy), and pro-
vides three ways to get at data on the stack. The simplest is frame
pointer relative (FrameRel). Something like fp(n) refers to the
nth value in the current activation record, which you probably
want to use for temporaries.

Negative offsets (e.g., fp(−1)) access the activation record of
the calling routine to access function call arguments and a return
value. fp(−1) refers to the topmost element of the caller’s stack,
fp(−2) refers to the second-to-topmost element, and so forth.
For functions that return a value, the suggested calling conven-
tion is to store the result at fp(−1), put the first argument at
fp(−2), the second at fp(−3), and so forth. For functions that do
not return a value, put the first argument at fp(−1), the second
at fp(−2), etc.

Static link relative (StackLinks) such as k*fp(n) follows k
static links before referring to the nth value. This allows direct
access to variables in the local or any parent scopes.

Block relative (BlockRel) consists of two operands: a base
operand that refers to a block (a record or array in a variable
on the stack), and an offset that refers to an integer (either an
integer constant for accessing a field of a record or an integer
value for subscripting an array). The syntax for this mode is
k*fp(n)[j] for accessing field j of the nth variable in the kth par-
ent scope or k*fp(n)[j*fp(m)] for accessing the element indexed
by j*fp(m)th of the array at k*fp(n).

1.2 Data-manipulation Instructions

The binary operator instructions (add, sub, ..., geq) have three
arguments: a destination and two sources. Each reads the val-

ues of its two operands, performs the calculation, and stores the
result in the destination. The mov instruction simply copies its
single source to its destination. The neg instruction is like mov,
but expects an integer source and negates its value before mov-
ing it to its destination.

1.3 Control-flow Instructions

The jmp (jump) instruction simply sends control to a label
instruction. The bnz (branch non-zero) instruction checks the
value of its source operand and sends control to a label if the
value is non-zero. The bz (branch on zero) branches only if the
source value is zero.

The jsr (jump to subroutine) does three things: it creates a
new activation record, sets the return address to the next instruc-
tion, and follows the given constant number of static links to cre-
ate the static link for the new activation record. The rts (return
from subroutine) reverses this process, discarding the activation
record and sends control to the return address stored in it.

The label instruction does nothing; it is simply a target for the
control-flow instructions.

1.4 Miscellaneous Instructions

The sys (system call) function calls one of the built-in functions,
such as print, given by its constant index. The psh (push) instruc-
tion adds or removes a given (constant) number objects from the
current activation record, adjusting the size of the stack.

The rec (record) instruction creates a new Block of the given
(constant) size and stores it at the destination. The arr (array)
instruction creates a new Block of the given (variable) size, fills
it with copies of the object given by the src, and stores it at the
destination.

2 The Run-Time Environment

The run-time environment consists of a stack of activation
records that contain stacks of TigerObj objects such as integers,
strings, and references to memory blocks that also store arrays
of TigerObjs to implement records or arrays.

The INT and STRING classes are little more than wrappers
for Java int and String classes. One difference: the INT class
is the only one with copy semantics; STRINGS and all others,

2

Label l = new Label("print");

Statement printFunc = l;

printFunc.append(new Sys(Sys.PRINT))

.append(new Rts());

Statement s = new Psh(1);

s.append(new Mov(new FrameRel(0),

new StringConstant("Hello world\n")))

.append(new Mov(new FrameRel(0),

new StringConstant("This works\n")))

.append(new Jsr(new LabelOperand(l), 0));

System.out.println("#### The Program:");

printFunc.printAll();

System.out.println();

s.printAll();

System.out.println("#### The Output:");

s.executeAll(false);

Figure 4: A code fragment that creates the “hello world” pro-
gram, prints it, and runs it.”

when copied, just make aliases in accordance to the Tiger se-
mantics.

The rec and arr statements create new blocks, whose size re-
mains fixed once created.

The Activation class represents a stacked activation record.
It consists of a dynamic link (points to the activation record
of its caller), a static link (points to the activation record of
its lexically-scoped parent, set up by the jsr instruction), a re-
turn address (points to the statement just after the jsr statement
that created the activation record), and a variable-sized stack of
TigerObj objects.

The psh instruction grows and shrinks the size of the top-
most activation record, which corresponds to moving the stack
pointer. Use this to allocate local variables and temporaries.

3 Putting It All Together

Figure 4 shows a fragment of code that creates the “hello world”
program to illustrate how these classes are intended to be used.
The Statement.printAll method prints out a sequence of in-
structions starting at the given statement. Similarly, the State-
ment.executeAll method executes a sequence of instructions,
and takes a single argument that indicates whether each instruc-
tion should be printed as it is executed for debugging purposes.

I’ve supplied TigerTranslate.g as a starting point for your
translator. Like TigerSemant.g from assignment 2, this is a
partially-working version of the translator that is missing some
important functionality. You need to complete the code for han-
dling control-flow (if, while, for, and break statements), function
declarations and calls, and constructors for records and arrays.

The TI.java file is a simple front-end for the interpreter. You
will want to modify it to enable and disable printing.

The RecordInfo class I supplied is designed to manage infor-
mation about variables and their location in the activation record
for a function. It supplies two main features: a mechanism for
allocating and deallocating data on the stack in an activation
record, and a symbol table mechanism for tracking where each
variable is stored on the stack and the label for each function

definition.
The stack management mechanism provides the ability to al-

locate and free stack space. The newTmp method allocates space
for a new field (variable, temporary, etc.) on the stack and returns
an operand that refers to it. This is used, for example, to create
space to store the value of the left-hand-side of a binop as its be-
ing calculated. The mark method remembers how much space
has been allocated and the release method discards the space
allocated since the last free.

The rule for BINOP illustrates how these work together:

#(BINOP

expr[d,r]

{ r.mark(); Operand tmp = r.newTmp(); }

expr[tmp, r]

{

// FIXME: Change this to use the right operator

r.append(new Binop(Binop.ADD, d, d, tmp));

r.release();

}

)

The newTmp call allocates space for where the second ex-
pression will store its result. The append operation adds a Binop
(add in this incompete example) that adds the result of the first
expression to the second expression and stores it in d, the desti-
nation operand. Finally, the release method frees the stack space
allocated by the newTmp call.

The symbol table mechanism in RecordInfo maintains a stack
of scopes (I took the code directly from the second assignment)
and provides a way to locate a variable in the stack.

The enterScope and leaveScope methods operate just as they
did for static semantic analysis: enterScope begins a fresh scope
in the function and leaveScope forgets all the functions and vari-
ables that have been defined since the last enterScope.

The newVar method takes the name of a variable and binds it
to a newly-allocated position on the stack in the topmost scope
using newTmp. The findVar method returns an operand that can
access a variable given its name. In addition to the current ac-
tivation record, FindVar also looks through all lexically-scoped
parents to also find variables there. The returned operand cor-
rectly follows the right number of static links.

The jsr instruction (Jump-to-subroutine) takes a constant pa-
rameter for the number of static links to follow to create the
next static link. You will have to write the code that calculates
this number (it depends on whether the called function is in the
current scope or an outer one).

For the skeleton Tiger interpreter (TI.java), I inserted a psh
instruction at the beginning that allocates as much space as the
stack will ever use (RecordInfo.size() gives this information),
but you might want to use a less brute-force solution. There’s
a tradeoff between calling psh frequently (i.e., every time stack
space is allocated or released) versus calling it exactly once at
the beginning of a function.

Function arguments are placed at the end of an activation
record so that the caller can access them using operands like
fp(-1), fp(-2), etc.

3

The sys instruction invokes standard library functions (I’ve
written the print and printi functions for you). This instruction
behaves like a normal called function in that it expects to find its
arguments at fp(-1), fp(-2), etc. For each standard library func-
tion, write a stub function that consists of a sys instruction fol-
lowed by an rts, and translate a call to a library function into a jsr
to one of these stubs. For example, have your interpreter create
code like

Printi:

sys 1

rts

% Print a 1

mov fp(-1), 1

jsr Printi, 0

3.1 Things You Will Have To Solve

Although instructions are provided for calling and returning
from functions (i.e., jsr and rts), you will need to make sure these
instructions are used correctly. The challenges here are figuring
out how to pass function parameters (make sure a function can
use fp(-2) to get the first argument) and calculating the number
of static links to follow to get the static link for the new stack
(an operand of the jsr instruction).

Record variable creation and access has not been imple-
mented. You will need to use some of the code you created in
the second assignment to track the types so you will know the
offset into a record for the lvalue rule.

Control-flow instructions (if-then-else, if, while, for, and
break) have to be implemented. There are conditional and un-
conditional branching instructions in the intermediate code for
this.

The lazy logical operators need to be translated into condi-
tional branches. The rule for BINOP will have to be changed to
do this.

You need to implement the remaining system functions and
make sure they can be called.

4 Deliverables

Feel free to use, modify, or ignore any of the files I give you.
Ultimately, you will only be graded on whether the simple test
programs on which we run your interpreter produce the correct
results. Make sure you implement the print and printi standard
library functions.

As before, use ~cs4115/bin/submit_code to submit

• Your customized TigerTranslate.g file.

• All other .java files (and .class files for the parser) you use
or create, including we gave you.

• A README file describing your interpreter. I want to hear
how you dealt with

– Calculating the number of static links to follow at a
jsr.

– Where you put the arguments for a jsr.

• A subdirectory called “tests” containing test programs.

• A file called MEMBERS that contains a space-separated list
of the uni IDs of each of the members in your group.

Make sure we can build your semantic analyzer by running
ANTLR on TigerTranslate.g and then javac on TI.java.
We do not want a Makefile.

4

