
COMS W4115
Programming Languages and Translators

Programming Assignment 1: Scanner, Parser, and AST

Prof. Stephen A. Edwards Assigned January 30th, 2002
Columbia University Due February 13th, 2002

Write the front-end of your Tiger compiler using
ANTLR and Java. Have it generate the AST, but do
not perform static semantic analysis (you will do this
in the next assignment). Write the scanner, parser, and
AST generator in one file called Tiger.g. Hook it up to
the supplied XML generator to test it.

For this assignment, you will be using theANTLR com-
piler tool to build part of the front-end of the Tiger compiler.
ANTLR takes a grammar-like specification that may include
fragments of Java code and generates Java source for scan-
ners, parsers, and tree walkers. The documentation forANTLR

is available in the~cs4115/antlr/doc subdirectory, off the
www.columbia.edu/˜cs4115website, and on the mainANTLR

website,www.antlr.org.
Helpful files for this assignment are in~cs4115/prog1 on

the cunix cluster.

1 Getting Started

The software you will need is installed on Columbia’sCUNIX

cluster (use “ssh -l uni cunix.columbia.edu” to log in),
although feel free to download and install it yourself elsewhere.

First, set yourCLASSPATH environment variable so you can
run ANTLR and the programs it generates:

Under bash
$ CLASSPATH=~cs4115/antlr:.
$ export CLASSPATH

Under csh
% setenv CLASSPATH ~cs4115/antlr:.

It should now be possible to runANTLR:

$ java antlr.Tool
ANTLR Parser Generator Version 2.7.1
usage: java antlr.Tool [args] file.g

2 ANTLR

ANTLR generates top-down recursive-descent scanners and
parsers. Such parsers accept a slightly more restricted class of
languages than the bottom-up parsers generated by the well-
known lex and yacc tools, but the generated code is easier to
understand because it more closely matches the input and error
recovery can be easier.

You useANTLR by writing one or more grammar files (file
suffix .g) that contain definitions for lexical analyzers, parsers,
and/or tree parsers. From such a file,ANTLR generates one
or more.java files with code for classes that implement the
parsers, etc.

To give you an idea howANTLR works, here is a small
but useful example: a calculator that evaluates expressions like
“3*4+2;”.

The following calc.g file is an ANTLR grammar that de-
scribes a lexer, parser, and tree walker for the calculator.

class CalcLexer extends Lexer;

WS : (’ ’ | ’\t’ | ’\n’ { newline(); }
| ’\r’) { $setType(Token.SKIP); }

;
LPAREN : ’(’ ;
RPAREN : ’)’ ;
STAR : ’*’ ;
PLUS : ’+’ ;
SEMI : ’;’ ;

protected
DIGIT : ’0’..’9’ ;
INT : (DIGIT)+ ;

class CalcParser extends Parser;
options { buildAST = true; }

stmt : expr SEMI! ;
expr : mexpr (PLUS^ mexpr)* ;
mexpr : atom (STAR^ atom)* ;
atom : INT

| LPAREN! expr RPAREN!
;

class CalcTreeWalker extends TreeParser;

expr returns [float r] { float a,b; r=0; }
: #(PLUS a=expr b=expr) {r = a+b;}
| #(STAR a=expr b=expr) {r = a*b;}
| i:INT

{ r = (float)Integer.parseInt(i.getText()); }
;

1

From this,ANTLR generates a scanner, parser, and tree walker
than can be invoked using the following (Calc.java).

import antlr.CommonAST;

class Calc {
public static void main(String[] args) {

try {
CalcLexer l = new CalcLexer(System.in);
CalcParser p = new CalcParser(l);
p.stmt();
CommonAST a = (CommonAST) p.getAST();
CalcTreeWalker walker =
new CalcTreeWalker();

float r = walker.expr(a);
System.out.println(r);

} catch (Exception e) {
System.err.println("exception: " + e);

}
}

}

These two files (in the directory~cs4115/calc) can be com-
piled and run as followed:

$ java antlr.Tool calc.g
ANTLR Parser Generator Version 2.7.1
$ javac Calc.java
$ java Calc
10*(2+3*2);
80.0

Let’s look at this example in some detail.
The definition for the lexer comes first. Each starts with a

line of the form “classClassnameextends Lexer;” and contains
rules that define tokens. A rule starts with the name of the token
(which must start with an uppercase latter) followed by a colon,
an expression defining what characters constitute the token, and
finally a semicolon to terminate the rule.

Rules, e.g., for LPAREN can be quite simple. An LPAREN
is simply the single open-paren character. The rule for WS
(“whitespace”) is more complicated. The rule is a choice among
different possibilities separated by vertical bars (|). The code
enclosed in braces is an action: stylized Java code that is ex-
ecuted when the rule is matched. The action after the newline
character (’\n’) simply calls the newline() method of the lexer,
which updates the line count used to report error messages. The
action after the parenthesis-contained choices sets the type of
the returned token, in this case, SKIP, which indicates the token
is to be discarded and not passed to the parser.

The rule for INT says INT is one or more DIGITs (this is what
is meant by the()+ notation). The rule for DIGIT is protected,
meaning it can only be used within another rule; the parser will
never see a token of type DIGIT. The notation’0’..’9’ in the
DIGIT rule means a digit is a character between and including
0 and 9.

In operation the lexer looks at the next few characters in the
input stream and attempts to match them to one of the non-
protected rules. One it has, the lexer returns the matched token

and will start looking beyond the end of the last token the next
time it is invoked.

The parser, which appears second in this example, starts with
a class definition and an options block. The “buildAST=true”
option setting causes the parser to build an abstract syntax tree
(AST) when it is running. In this example, once built, this tree is
passed to the CalcTreeWalker class, which traverses the tree to
compute the result.

Like the lexer, parser rules start with the name of the keyword
being defined (which must begin with a lowercase letter in the
parser) followed by a colon and the rule.

AST construction in the parser is controlled by single-
character suffixes after the tokens in the rules. The two inter-
esting ones are!, which prevents the parser from generating
a node for the token (used, for example, to supress puctuation
such as semicolons and parenthesis), and^, which means the to-
ken should become a root of a subtree. In general, you will want
to mark every operator token with â; here, these are PLUS and
STAR.

The rule forexpr says anexpr is anmexpr followed by zero
or more sequences of the form “+mexpr”. This is exactly how
the parser will parse such an expression: it will look first for an
mexper, then, if it can, it will try try to match a “+” followed by
anothermexpr, and it will continue to do this as long as it can.
Writing it in this style means the “+” operator is treated as being
left-associative, that is, a sequence such as “1+2+3” is treated as
meaning “(1+2)+3” not “1+(2+3)”.

The precedence of+ relative to* is defined here by break-
ing the rules intoexpr, mexpr, andatom. Intuitively, since* is
meant to bind more tightly, meaning “1+2*3” should be parsed
as “1+(2*3)”. This is accomplished by writing the rules as they
are: this makes the parser try to parse the higher-precendence
* first (anmexpr) before trying to parse the lower-precedence
+. (Implementing arithmetic expressions is definitely more awk-
ward with ANTLR than with other parser generators that allow
precedence and associativity to be defined explicitly.)

The third part of this example is a tree walker. While not nec-
essary for this first assignment, we will use its abilities later.
A tree walker traverses anAST built by the parser according to
given rules. This particular tree walker visits theAST nodes in a
depth-first order, calculating the expressions it represents along
the way.

The rules in a tree walker look much like those for lexers
and parsers. A few variants are present: “returns [float r]” means
that matching anexpr produces a float value (this is exactly the
return value of the recursiveexpr match method generated by
ANTLR for this example), and an initial action declares two local
variables and initializes the result.

In a tree walker definition, the notation#() means at-
tempt to match a subtree. The first symbol in the parentheses
is the root of the tree and the others are the children. Thus,
#(PLUS expr expr) attempts to match a subtree rooted at a
PLUS node with two children that matchexprs. Thea=expr
notation means assign the result of matchingexpr (a float) to
the local Java variablea.

2

class TigerASTGram extends TreeParser;
options {

exportVocab = Tiger;
}

lvalue
: ID
| #(FIELD lvalue ID) // lvalue.field
| #(SUBSCRIPT lvalue expr) // lvalue[expr]
;

expr
: "nil"
| lvalue
| STRING
| NUMBER
| #(NEG expr) // - expr
| #(BINOP expr expr) // e.g., expr + expr
| #(ASSIGN lvalue expr) // lvalue := expr
| #(CALL ID (expr)*) // foo(expr, expr)
| #(SEQ (expr)*) // expr ; expr
| #(RECORD ID // type { a=b, c=d }

(#(FIELD ID expr))*)
| #(NEWARRAY ID expr expr) // type [ex] of ex
| #("if" expr expr (expr)?)
| #("while" expr expr)
| #("for" ID expr expr expr)
| "break"
| #("let" #(DECLS (#(DECLS (decl)+))*) expr)
;

decl
: #("type" ID type)
| #("var" ID (ID | "nil") expr)
| #("function" ID fields (ID | "nil") expr)
;

type
: ID
| fields // { a:b, c:d }
| #("array" ID) // array of type
;

fields : #(FIELDS (#(FIELD ID ID))*) ;

Figure 1:The fileTigerASTGram.g: a tree parser defining the
AST for Tiger.

3 AST

Figure1 showsTigerASTGram.g: ANTLR rules for a tree parser
defining theAST you need to generate for Tiger. The important
thing about this syntax is, for example,#(BINOP expr expr)
represents a subtree rooted at a BINOP node with two children
that are both exprs.

All binary operators (e.g.,+, &) are represented with the sin-
gle token type BINOP. The text of this token should contain the

actual operator (e.g.,&, >=). The text of the STRING and NUM-
BER tokens similarly should contain their actual values.

The var and function subtrees each have the same number of
children regardless of whether a type is defined. A variable dec-
laration with an undefined type or a procedure (function without
a return type) each have the"nil" token instead of a type. In
Java code, this is represented asLITERAL_nil.

A list of declarations is represented as a list of lists because
Tiger treats adjacent function and type declarations as poten-
tially mutually recursive. Therefore, each sequence of function
or type declarations should end up in its own DECLS list so that
all the functions or types defined in a single DECLS subtree are
mutually visible.

4 Hints for writing the Tiger Grammar

• String constants may contain escape sequences such as\n.
It’s best to translate these into the characters they actually
represent during lexical analysis.ANTLR’s lexical analzers
can change the text of a token using$setText() in an ac-
tion. See theANTLR documentation for more information.

• Use the technique of multiple rules for expressions to im-
plement Tiger’s different precedence levels.

• ANTLR parsers and lexers can be told to use differ-
ent amounts of lookahead: how many characters/tokens
to look forward before making a decision about
what rule to match. For example, the lexer rule
COMPARISON : ’<’ | "<=" ; is ambiguous with a sin-
gle character of lookahead (both rules appear to match
when the next character is<). I foundk=2; was necessary
in the options section for both the Tiger lexer and parser.

• Sometimes, more elaborate lookahead is necessary to avoid
ambiguities. You will probably findANTLR considers
Tiger’s “type [expr] of expr” construct ambiguous since it
begins the same way as one of the lvalue rules. The solution
to this is to have theANTLR-generated parser try a more
complicated experiment before matching a rule, something
done with the=> operator.

In my parser, one of the alternatives forexpr looks like

(ID "[" expr "]" "of") =>
ID "[" expr "]" "of" expr

This tells the parser to try to parse a prefix of an ID, a
bracket, and expression, a bracket, and the token “of” be-
fore attempting to match the rest of the rule. Such far-
sighted lookahead removes the ambiguity.

• Rules that choose between trying to match something and
continuing without matching (e.g., the()?, ()*, and()+
constructs) can be made either “greedy” or “non-greedy.”
A greedy rule tries to match its own tokens before giving
up and trying to match its successors; a non-greedy rule
tests these in the opposite order.

“Who owns the else?” is a common source of ambiguity
in many grammars, Tiger’s included. To illustrate the prob-
lem, consider

3

if A then if B then C else D

Does the “else D” belong to “if A” or “if B”? Most lan-
guages choose the nearest “if”, i.e., “if B” in this case.
ANTLR’s greediness control allows this to be specified ex-
plicitly. The rule

"if" expr "then" stmt ("else" stmt)?

is ambiguous because the parser does not know whether to
first try to match the “else” or trying to match what may fol-
low. The solution is to make the rule for the “else” greedy:

"if" expr "then" stmt
(options {greedy=true;} : "else" stmt)?

Greediness is also useful for scanning comments and
grouping sequences of declarations.

• Comments are usually the trickiest thing in a scan-
ner. Use {greedy=false;} in the rule for com-
ments (see the discussion in theANTLR documenta-
tion) and make sure you make your comments nest, i.e.,
/*/**/ this is ignored */.

• Make sure to setbuildAST = true; in the options block
for your parser to enable theAST-building machinery.

• Make your lexer tokens all uppercase (e.g., “PERIOD”) and
parser rules all lowercase (e.g., “expr”). Do this for read-
ability (ANTLR only constrains the case of the first letter).

• Use $setType(Token.SKIP) to ignore whitespace and
comments.

• There’s a special EOF token that signals end-of-file. It ap-
pears to be necessary to have the outermost parser rule be

file : expr EOF! ;

• If you use the~ operator in the lexer (I did not have to)
to invert a set of characters, you will probably want to use
thecharVocabulary option. See the options section of the
ANTLR documentation for details.

• ANTLR’s rule are written in extended Backus-Naur form
(EBNF). Some of the most useful constructs are()? (zero
or one instances),()* (zero or more instances), and()+
(one or more instances). I used all three in my grammar.

• When building theAST, the two useful token suffixes are!,
which prevents anAST node from being built for the token,
and^, which makes the node a root of a subtree.

• ANTLR does most of the work of building anAST for you,
but there are some cases where you need to help. The most
common is when you want a node representing a list of zero
or more instances of something. This is done by adding an
action that augments the subtree returned by a rule. Con-
sider building anAST for a comma-separated list of zero or
more elements. The rule

list : element (","! element)*
{ #list = #([LIST], list); }

;

often does what you want. The bare rule generates a simple
sequence of elements (the ! following the comma means
no node is generated for the comma), but often you want
this sequence to be a rooted tree. The action fixes this: it
replaces the just-built sequence with a subtree rooted at a
node called “LIST.”

• Another trick I found useful when parsing arithmetic ex-
pressions gives you the ability to change the type of a to-
ken. I used this to change arbitrary operators to a token of
type BINOP.

expr : expr1
("+"^ expr1 { #expr.setType(BINOP); })*

• The syntax of most languages is a collection of num-
bers and identifiers (names) structured with punctuation
(e.g.,+) and keywords (e.g., “if”). Usually, the keywords
are syntactically similar to identifers, which leads to a
quandary: when is an identifier actually a keyword?

There are two standard approaches. The first separates key-
words from identifiers while the token is being assembled.
E.g., if the first character is “i” and the next character is
“f”, return the “if” token and otherwise return an identi-
fier. The second approach, whichANTLR employs, parses
everything as an identifer and later checks to see if it was
actually a keyword.

After an ANTLR-generated scanner matches any token, it
checks to see whether the text in that token appears in its
literal (keyword) table and returns the keyword instead of
the token if it does. Each double-quoted string in the parser
grammar is placed in the scanner’s literal table. Thus it is
possible to write rules such as

expr : "while" expr "do" stmt ;

Here, “while” and “do” end up in the scanner’s literal ta-
ble. The rule will work like you expect provided the strings
“while” and “do” are parsed as tokens (e.g., as identifiers).

Using this can cause subtle problems: in fact, you need
to turn off literal comparison for the double-quoted string
rules. See theANTLR documentation for how to do this.

• The grammar in the Tiger language reference manual is
ambiguous, however it can be made unambiguous through
careful rewriting, paying attention to such things as prece-
dence and associativity. Doing this is one of the main points
of the assignment. Your final grammar should be unam-
biguous, i.e., not produce anyANTLR warnings.

• I’ve supplied TigerASTGram.g (Figure 1) in
~cs4115/prog1. Use it to verify the content and
structure of the AST you generate.

4

• Use the following template for yourTiger.g file:

class TigerParser extends Parser;
option {

importVocab = Tiger;
buildAST = true;
/* other options */

}
/* rules */

class TigerLexer extends Lexer;
/* rules */

TheTig2xml class expects these names for the parser and
scanner classes.

The importVocab option makesANTLR use the token
types generated byANTLR from theTigerASTGram.g file.
Make sure to runANTLR on this file before running it on
yourTiger.g.

• I’ve provided ~cs4115/prog1/Tig2xml.java to assist
with testing your scanner and parser. It calls your scan-
ner and parser to read a.tig source file, writes the
output in XML (Internet Explorer can display this in a
convenient tree form), and then runs the tree walker in
TigerASTGram.g on the generated AST. It will complain
(although not too helpfully, unfortunately) if the AST does
not comply with the specification. Make sure your scanner
and parser works correctly with this test fixture.

• Keep it short: MyTiger.g file for the scanner and parser
was only 213 lines, although it has no error handling.

5 Deliverables

Submit the following:

• Your Tiger.g file.

• A README file describing your scanner, parser, and test-
cases. In particular, I want to hear how you dealt with

– Testing your front-end

– Nested Comments

– Syntax Errors

– Parsing sequences of like declarations (e.g., func-
tions, vars, etc.) into their own DECLS subtrees.

– Distinguishing betweenarraytype [10] of 0 and
array[3].

– The dangling else problem.

– Operator precedence and BINOP subtrees

– Strings containing keywords, e.g.,"if"

• A Makefile with at least two rules

– “make” by itself should compile your source files so
that “java Tig2xml” runs in this directory.

– “make test” should run tests on your front end.

• A subdirectory called “tests” containing test programs.

• A file calledMEMBERS that contains a space-separated list
of the uni IDs of each of the members in your group, e.g.,

se2007 mkf1998 dw1969

• The files from the~cs4115/prog1 directory.

To submit your assignment, create a subdirectory with just
these files (e.g., don’t include any.class files or anything else)
and run~cs4115/bin/submit_code, which will submit ev-
erything in the current directory.

To test your submission, make sure “make” and “make test”
both work in the directory starting from just those files. This is
how we will grade your assignment; make sure your program
compiles without any warnings.

Only one member of the group should submit: all the mem-
bers listed in the MEMBERS file will be credited.

After a successful submission, you will receive a confirma-
tion email from the class account with a list of files received. In
case you did not receive the confirmation, try again and contact
the TA staff. You can submit multiple times, but the last submis-
sion is what counts. Each submission will be time stamped. The
assignment is due an hour before before the beginning of class
on the due date.

5

