FUNCTIONAL PROGRAMMING (1) PROF. SIMON PARSONS

- Imperative programming is concerned with "how".
- Functional or applicative programming is, by contrast, concerned with "what".
- It is based on the mathematics of the lambda calculus (Church as opposed to Turing).
- "Programming without variables"
- It is inherently concise, elegant, and difficult to create subtle bugs in.
- The main (good) property of functional programming is referential transparency.
- Every expression denotes a single value
- This value cannot be changed by evaluating an expression or by sharing it between different parts of the program.
- There can be no reference to global data.
- (Indeed there is no such thing as global data.)
- There are no side-effects, unlike in referentially opaque languages.

Unctional programming Lecture 1

- Okay, so the answer is 5 followed by 4 .
- This is odd since if these were mathematical functions,

$$
f(1)+f(2)=f(2)+f(1)
$$

for any f.

- But this is because mathematical functions are functions only of their inputs.
- They have no memory.
- We can always tell what the value of a mathematical function will be just from its inputs.

[^0]- At the heart of the "problem" is fact that the global data flag controls the value of f.
- In particular the assignment:
flag := not flag
is the thing that gives this behaviour.
- If we eliminate assignment, we eliminate this kind of behaviour.
- Variables are no longer placeholders for values that change.
- (They are much less variable than variables in imperative programs).

Simple functional programming in HOPE

- We start with a function that squares numbers.
- In the rather odd syntax of HOPE this is:
dec square: num -> num;
--- square (x) <= x * x;
- Since we aren't really interested in HOPE, we won't explain the syntax in any great detail.
- Note though that first line includes a type definition.
- HOPE is strongly typed
- Other functional languages aren't typed (LISP for example)
- We call the function by:
square (3)
- Which evaluates to 3 * 3 by definition, and then to 9 by the definition of *.
- Note only that, it will always evaluate to 9 .

- More complex functions:

dec max : num \# num -> num;
--- max (m, n) <= if $m>n$ then m else n;

- and:
dec max3 : num \# num \# num -> num
$---\max 3(\mathrm{a}, \mathrm{b}, \mathrm{c})<=\max (\mathrm{a}, \max (\mathrm{b}, \mathrm{c}))$;
- The type definitions indicate that the functions take two and three arguments respectively.
- Saying that these functions take two and three arguments is slightly misleading.
- Instead they both have one argument- they are both tuples.
- One is a two-tuple and one is a three-tuple.
- This has one neat advantage-you can get functions to return a tuple, and thus several values.
dec IntDiv : num \# num -> num \# num;
--- $\operatorname{IntDiv}(m, n)<=(m \operatorname{div} n, m \bmod n)$;
- And we can the compose max (IntDiv (11, 4)), which will give 3.
\qquad
- Here is a classic recursive function, with a twist
- We can define functions to be infix
- Here is the power function as an infix function:
infix ^ : 7;
dec ^ : num \# num -> num;
--- x ~ $y<=$ if $y=0$ then 1

$$
\text { else } x \text { * } x \text { (} y-1) \text {; }
$$

- Again, HOPE gives us a very elegant way of defining the function.

Octional programming Lecture \qquad

Qualified expressions

- Because we don't have variables, sometime it seems we have to do unecessary work when evaluating functions:
$\operatorname{dec} f:$ num -> num;
$--\mathrm{f}(\mathrm{x})<=\mathrm{g}($ square $(\max (\mathrm{x}, 4)))+$
(if $\mathrm{x}<=1$ then 1
else g(square (max (x, 4))));
- Here we have to evaluate $g($ square $(\max (x, 4)))$ twice in some situations.
With variables, of course, we would have to do this just once.
ctional programming Lecture 1
- We also have:
<expression2> where <name> == <expression1>
- So we could also write.
dec f : num -> num
--- $f(x)<=a+(i f x=<1$ then 1 else a))
where $a==g($ square $(\max (x, 4)))$
- Note that $==$ associates a name with an expression, it does not do assignment.
- Consider:
dec $f:$ num $->$ num
--- $f(x)<=$ let $a==g($ square $(\max (x, 4)))$
in $a+(i f x=<1$ then 1 else $a)$
- The let construct allows us to extend the set of parameters of a function.
- In general:
let <name> == <expression1> in <expression2>
- The first expression defines <name> and the second uses it.
---f1 $(\mathrm{a}, \mathrm{b})<=\mathrm{a}+(i f \mathrm{~b}=<1$ then 1 else $a)$
- Efficiency here relies on efficient evaluation in the language
- Another way is to use qualified expressions.
- Another function:
dec analyse : real -> char \# trueval \# num; ---analyse(r) <= (if r < 0 then '-' else '+', $(r>=-1.0)$ and $(r=<1.0)$, round(r));
- Applying
analyse (-1.04)
- will give ('-', false, -1)
- Note the overloading of >
inctional programming Lecture 1
- To see this:
let $x==$ E1 in
if (let $x==$ E2 in E3)
then x
else $1+x$
- The first let associates E1 with x .
- The second let doesn't change this.
- Instead it renames E2 as x within E3.
- Outside E 3 x has its original meaning.
- So far we have used qualified expressions to save on evaluation. Functional programming Lecture 1 \qquad
- We also use them to clarify functions.
- A third use is to decompose tuples.
dec quot : num \# num -> num;
--- quot (q, r) <= q;
dec rem : num \# num -> num;
--- $\operatorname{rem}(q, r)<=r ;$
let pair $==\operatorname{IntDiv}(x, y)$ in quot(pair) *

$$
y+r e m(p a i r)
$$

$\operatorname{let}(\mathrm{q}, \mathrm{r})==\operatorname{IntDiv}(\mathrm{x}, \mathrm{y})$ in $\mathrm{q}^{*} \mathrm{y}+\mathrm{r}$

- This latter expression pattern matches (q, r) with the result of calling IntDiv.

Functional programming Lecture 1

User defined data

- As in most languages, we can't do much interesting stuff in HOPE without defining data.
- This is way simpler in HOPE than in other languages.
- Consider handling lists.
- In C, we have to use structs, and pointers and worry about memory.
- Even in Java we have to use the right constructors.
- In HOPE we just deal with the recursive definition of a list.
unctional programming Lecture 1
- The similarity of the definitions is intentional.
- All list definitions look like this.
- In fact, we can make a general definition:
typevar any
data list (any) == AnyNil
++ AnyCons (any \# list (any))
- This is a polymorphic definition.
- We parameterize the list by the kinds of objects contained in it.
dec join : list(alpha) \# list(alpha)
-> list(alpha);
Lists are so common that they are built into HOPE
infix :: : 7
data list(alpha) == nil ++ alpha :: list(alpha)
- We can also write lists as, for example [1, 2, 3].
- Strings are lists of characters.
- With this information it is easy to write functions to handle lists

AnyNil

- The last two are a list of lists, and a list of unspecificed type.

Higher order functions

- Consider
dec IncList : list(num) -> list(num)
--- IncList(nil) <= nil;
--- IncList(x::1) <=
($\mathrm{x}+1$)::IncList(1);
dec MakeStrings : list(char)
-> list(list (char));
--- MakeStrings(nil) <= nil;
--- MakeStrings(c::l) <=
[c]::MakeStrings(1);
- While doing different things, these two functions have the same basic form.

Functional programming Lecture 1 \qquad 28

- Both operate on a list and apply a function to every member of the list.
- The two functions are.
dec Inc : num -> num
--- $\operatorname{Inc}(\mathrm{n})<=\mathrm{n}+1$
dec Listify : char -> list(char)
--- Listify(c) <= [c]
- We can capture this by defining a higher order function

This takes a function and a list as arguments and applies th

 function to every member of the list.dec map : (alpha $->$ beta) \# list(alpha) -> list (beta);
--- map(f, nil) <= nil;
--- $\operatorname{map}(f, x:: l)<=f(x):: \operatorname{map}(f, l)$;

- We can then write down the equivalent of our two earlier functions.
map (Inc, L)
map(Listify, L
unctional programming Lecture 1
- Note that we have problems defining a recursive lambda because there is no name to use in the recursion
- In general, we can replace any function with a lambda expression.
- We replace:

$$
\text { --- } f(x)<=E
$$

- with
lambda x => E
- Thus the function IncList is the same as
map (lambda x => x + 1, L)
- Instead we have to use a let or where.
- For example:
let $f==$ lambda $x=>$ if $x=0$ then 0 else $x+f(x-1)$
- (which computes the sum of the first 3 numbers.)
- Such constructs are called recursive let and recursive wherei
- Some functional languages make these separate constructs (eg letrec).
- In HOPE lambda expressions can also contain a number of parts.
--- IsEmpty(nil) <= true;
--- IsEmpty(_::_) <= false

- becomes

lambda nil => true | _::_ => false

[^0]: Functional programming Lecture

