CEC Intermediate Representation
A

Stephen A. Edwards
Columbia University
sedwards@cs.columbia.edu

Abstract

This package provides a lightweight mechanism for making C++ ob-
jects persistent. Each persistent object must derive from the IR::Node
class and implement simple read and write member functions that fill in
and write its fields to XML input and output streams.

The XML reading facility is built on top of James Clark’s standard ex-
pat XML parser, and first builds an in-memory tree of the XML document
before traversing it to build a tree of IR: :Node-derived objects.

Self-referential (cyclic) data structures are supported by writing each
object at most once and including references in the XML file where nec-
essary.

Contents

IR Noded

[L1_TheNodeClasd
L2 An example user-defined Nadd
(L3 The Class clasd

=~ o W

2 June 3, 2006

E Eii'gFP]]anq 18
U1 TheFrrorclasd o 18

g

June 3, 2006 IR.nw 3

1 IR Nodes
1.1 The Node Class

All nodes in the IR are derived from IR::Node. Each such class has a single
static member called _ that holds its name, which the className method re-
turns. The XML writing methods use this method to obtain the element name
for each object.

The XMLostrean class uses the write method to send the contents of the ob-
ject’s fields to the XML output stream. Similarly, XMListream fills the object’s
fields with data from an XML input stream.

(Node class Ba)=
class Node {
friend class XMLostream;
friend class XMListream;
protected:
virtual void read(XMListream &) {}
virtual void write(XMLostream &) const {}
public:
static IR::Class _;
virtual const std::string className() const { return _; }
virtual “Node() {}
};

Each class in the IR must register itself with the Class class to ensure it can
be written and read. This is done with a macro:

(Node class info BR)=
IRCLASS (Node) ;

The definitions for the _ field and className are standard and tedious to
type, so other files may use the TRCLASSDEFS macro:

(IRCLASSDEFS macro Bd)=
define IRCLASSDEFS \
public: \
static IR::Class _; \
virtual const std::string className() const { return _; }

4 IR.nw

1.2 An example user-defined Node

class MyNode : public Node {
TRCLASSDEFS; // Class name machinery: sets public:
Node *f1;
string f£2;
vector<MyNodex> £3;

protected:
void read(XMListream &r) {
Node: :read(x); // Read fields of parent class

r >> f1 > £2 >> £3; // Read our fields
}
void write(XMLostream &w) const {
Node::write(w); // Write parent class
w << f1 << f2 << £3; // Write our fields
}
};

/* In a .cpp file */
IRCLASS (MyNode) ;

1.3 The Class class

June 3, 2006

While writing XML, the system needs to know the name of the class of each
object, and during reading, needs a way to create an IR object given only its

name. The Class class performs this feature.

The class has a static map called classmap that keeps a pointer to a zero-
argument function that creates a new IR node object for each class name. The
newNodeByName method uses this to create a new Node object (usually, some-

thing derived from Node).

The other part of the class is a static string that holds the name of the
class. The Node: :className method implicitly uses the cast-to-const-string

operator to retrieve the name of the class.

(Class classBh=

// Information for the classes in the IR: a string naming each,

// and a map giving the constructor for each class
class Class {
typedef Node *(*createfunc) ();

typedef std::map<std::string, createfunc> createfuncmap;

static createfuncmap *classmap;
public:
Class(std::string, createfunc);
static Node *newNodeByName(const std::string);

private:

June 3, 2006 IR.ow 5

const std::string _className;
public:
operator const std::string () { return _className; }

};

As mentioned above, each Node has a static Class member that holds its
name. The constructor for this takes both a string naming the class and the
address of a no-argument function (Class::createfunc) for constructing it.
The IRCLASS macro does this automatically using the constructor template,
which generates such a function automatically.

B (IRCLASS macroBa)=
define IRCLASS(s) IR::Class s::_ = IR::Class(#s, IR::constructor<s>)

515 (constructor template BR)=
template<class T> Node* constructor() { return new T(); }

The constructor for Class saves the name of the class and enters it into the
map along with the constructor function.

A pointer is used for classmap to insure the correct order of initialization.
The map must be constructed before the Class constructor enters anything
into it, but C++ does not provide any such guarantees. Instead, the pointer to
classmap is initialized to 0 (such constant data is typically initialized before the
program starts in the data section) and the constructor (somewhat wastefully)
checks the pointer each time a new class is registered.

5% (Class constructor Bd)=
Class::createfuncmap *Class::classmap = O;

Class::Class(const std::string s, Class::createfunc f) : _className(s)
{

if (!classmap) classmap = new createfuncmap();

(*classmap) [s] = £;
}

The newNodeByName method uses the classmap map to construct an object
whose class name is the given string. For this to work, the class must derived
from Node and the type registered by a call to the CLASS constructor (i.e., by
using IRCLASS).

] (Class::newNodeByName Bd)=
Node * Class::newNodeByName(const std::string s)
{
assert(classmap) ;
createfuncmap: :iterator i = classmap->find(s);
if (i !'= classmap->end()) {

createfunc cf = (*i).second;
return (xcf)();

} else {
throw Error ("Unknown class " + s);

6 IR.nw June 3, 2006

2 Writing XML

Writing XML is fairly easy. The class encapsulates an ostream and provides
<< operators that behave like those for standard streams. So a Node’s write
method can be defined as shown in Section

This class is meant to be used as follows:

Node *root;
/* Build a (possibly cyclic) graph of Nodes under root ... */

XMLostream w(std::cout);
w & root;

Writing a Node object starts a depth-first search of all its fields. To avoid
writing duplicate copies of the same object, the ID map maintains a positive
integer identifier for each written object. When the DFS encounters an object
it has already written, a reference to that object’s ID is written, rather than the
information in the node itself.

(XMLostream class B)=
class XMLostream {
typedef std::map<const Node *, unsigned int> idmap;
idmap ID;

unsigned int nextID;
std: :ostream &o;

public:
XMLostream(std: :ostream &oo) : nextID(0), o(oo) {}
XMLostream& operator <<(const Node&);
XMLostream& operator <<(const Node *);
XMLostream& operator <<(const std::string);
XMLostream& operator <<(int);
XMLostream& operator <<(bool);
(XMULostream vector output Bd)
(XMULostream map output B

June 3, 2006 IR.nw 7

The following operator, which writes a single Node-derived object, is fairly
simple: it just identifies the type of the object and writes its contents. These
objects are mean to be fields of other objects, and it is assumed that nothing
ever points directly to them.

(XMLostream Node output [)=
XMLostream& XMLostream::operator <<(const Node &n)
{
0 << "<" << n.className() << ’>’ << std::endl;
n.write(*this); // usually a recursive call
0 << "</" << n.className() << ">" << std::endl;
return *this;

}

The following operator, which writes a Node object referred to by a pointer,
does most of the heavy lifting. Null pointers are written as a single XML element
called NULL. If this XMLostream has already written the given object, an XML
element called Ref is written whose id attribute is the integer identifier of the
object.

Otherwise, the operator writes the given object by writing an element named
by the object’s type (obtained by calling Node: : className). To write the fields
of the object, it calls the write method on the given Node. This virtual method
is expected to use the & operator to write the objects in its fields to this stream

(see Section [[2).

(XMLostream Node pointer output [H)=
XMLostream& XMLostream::operator <<(const Node *n)
{
if (n == NULL) {
0 << "<NULL/>" << std::endl;
} else {
idmap::iterator i = ID.find(n);
if (1 !'= ID.end()) {
// Already written this Node: leave a placeholder
0 << "<Ref id=\"" << (*i).second << "\"/>" << std::endl;
} else {
0 << "<" << n->className() << " id=\"" << nextID << "\">" << std::endl;
ID[n] = nextID;
nextID++;
n->write(*this); // usually a recursive call
o << "</" << n->className() << ">" << std::endl;
}
}
return *this;

}

8§ IR.ow June 3, 2006

Strings are written by simply sending their output to the output stream.
Empty strings are written as an EmptyString element because the reader oth-
erwise discards empty strings.

(XMLostream string output Ba)=
XMLostream& XMLostream::operator <<(const std::string s)

{

0 << "<S>";

for (std::string::const_iterator i = s.begin() ; i != s.end() ; i++)
switch (*i) {
case ’&’: o << "&"; break;
case ’<’: o << "<"; break;
case ’>’: o << ">"; break;
case ’\’’: o << "'"; break;
case ’\"’: o << """; break;
default: o << *i; break;
};

o << "</S>\n";
return *this;

}
Integers are written as text in an Int element.

(XMLostream int output BR)=
XMLostream& XMLostream::operator <<(int i)
{
0 << "<Int>" << i << "</Int>\n";
return *this;

}
A Boolean is written as either a BoolTrue or BoolFalse element.

(XMULostream bool output Bd)=
XMLostream& XMLostream::operator <<(bool b)
{
if (b) o << "<BoolTrue/>";
else o << "<BoolFalse/>";
return *this;

}

The contents of a vector is written by writing each of the objects it contains
followed by a single EOV (End-of-vector) XML element.

(XMLostream vector output Bd)=
template <class T> XMLostream& operator <<(const std::vector<T*> &v) {
typename std::vector<T*>::const_iterator i;
for (i = v.begin() ; i != v.end() ; i++) (¥this) << *i;
o << "<EQV/>" << std::endl;
return *this;

June 3, 2006 IR.ov 9

The contents of a map is written out a sequence of keys and values followed
by an EOM (End-of-map) XML element.

(XMULostream map output @)=

template <class K, class V>

XMLostream& operator <<(const std::map<K, V> &m) {
typename std::map<K, V>::const_iterator i;
for (i = m.begin() ; i != m.end() ; i++)

(*this) << (*i).first << (*i).second;

0 << "<EOM/>" << std::endl;
return *this;

}

10 IR.ow June 3, 2006

3 Reading XML

Reading XML is fairly complex. This system uses the expat XML parserﬂ to
first build an internal tree representing the contents of the XML file, then walks
this tree, creating Node-derived objects based on the name of each element,
then using each Node’s read method to “fill in” each object’s fields.

This two-phase process is awkward, but the (fairly standard) “event-driven”
interface of the expat parser almost demands it. Basically, you give expat a
pointer to a function that it calls each time it encounters an element. While
the structure of XML guarantees elements are enountered in a top-down order,
erpat insists that you return from this function before it will parse further, so
it is difficult to implement a traditional top-down parser.

The public interface to the class consists of a constructor that takes a stan-
dard istream and overloadings of the >> operator that parses an XML element
into a variable passed by reference. The class is meant be used as follows:

Node *root;

XMListream r(std::cin);
r >> root;

(XMListream class)=
class XMListream {
std::stack<XMLNode*> parents;
XMLNode *lastsibling;
XMLNode *current;
XMLNode *root;

static void startElement(void *, const char *, const char *x);
static void endElement(void *, const char *);

static void charData(void *, const XML_Char *, int);

void attachSibling(XMLNode *);

// Map that tracks Nodes with IDs
typedef std::map<const std::string, Node *> nodemap;
nodemap nodeofid;

Node *getNextNode();

public:
XMListream(std::istream &);
“XMListream() { delete root; }

(XMListream Node ptr input [BH)
(XMListream Node input [[Bal)

XMListream& operator >>(std::string&);
XMListream& operator >>(int &);

Thttp://expat.sourceforge.net/

June 3, 2006 IR.nw 11

XMListream& operator >>(bool &);
(XMListream wvector input [[TD)
(XMListream map input [[ZJ)

};

3.1 The XMLNode class

The XMLNode class holds the parsed XML tree that the & operators later read.
Each node has a name, a body containing its character data, which is often
ignored, a map holding the node’s attributes, and pointers to its first child and
next sibling.

(XMLNode class [Ta) =

struct XMLNode {
std::string name;
std::string body;

typedef std::map<const std::string, const std::string> attrmap;
attrmap attrs;

XMLNode *first;
XMLNode *next;

XMLNode() : first(0), next(0) {}
“XMLNode() { delete first; delete next; }

void print();
};

The print method pretty-prints the tree for debugging.

(XMLNode::print IR =
void XMLNode::print() {

std::cout << ’<’ << name;

for (attrmap::iterator j = attrs.begin() ; j != attrs.end() ; j++)
std::cout << 7 7 << (¥j).first << "=\"" << (*j).second << ’\"?;

std::cout << ’>’;

std::cout << body;

if (first) first->print();

std::cout << "</" << name << ">" << std::endl;

if (next) next->print();

12 IR.ow June 3, 2006

3.2 Parsing XML with expat

The ezpat parser is invoked in the constructor of XMListream to construct a
tree of XMLNode objects. The functions whose names start with XML_ are all
part of expat. The constructor creates a parser, tell it to call the static meth-
ods startElement, endElement, and charData with a pointer to itself, then
repeatedly fills buffer with characters from the input stream and parses it.

(XMListream constructor 2=
XMListream: :XMListream(std: :istream &i)
{
root = lastsibling = NULL;
XML_Parser p = XML_ParserCreate(NULL);
if (!p) throw Error("Couldn’t create parser");

XML_SetElementHandler(p, startElement, endElement);
XML_SetCharacterDataHandler(p, charData);
XML_SetUserData(p, (void *) this);

do {
static const size_t SIZE = 8192;
char buffer[SIZE];

i.read(buffer, SIZE);

if (i.bad()) throw Error("Read error");

if (!XML_Parse(p, buffer, i.gcount(), i.eof())) {
std::ostringstream ost;
ost << "XML parsing error at line " << XML_GetCurrentLineNumber (p)

<< ?:? << XML_ErrorString(XML_GetErrorCode(p));

throw Error(ost.str());

}

} while ('i.eof());

XML_ParserFree(p) ;
if (!parents.empty()) throw Error("Non-empty stack.");

// root->print(); // For debugging
current = root;

June 3, 2006 IR.nw 13

The static methods startElement, endElement, and charData are called by
the ezpat parser when it encounters the start or end of an XML element (e.g.,
<MyNode> and </MyNode) or character data appearing between such markers.

During this process, the three methods maintain the stack of XMLNode objects
that define the path through the tree to the element currently-being parsed. The
top of the parents stack is the XMLNode whose body is currently being parsed,
and the pointer lastsibling points to its most-recent-added child, which starts
out NULL right after a new element is encountered.

The attachSibling method attaches the given node at the bottom of the
current tree of XMLNodes, defined by the parents stack. Just after a new node
is created, lastsibling is NULL and the method attaches the node as the first
child at the top of the stack. After that, it simply sets the next pointer of the
most-recently-added child.

(IR (XMListream attachSibling)=
void XMListream::attachSibling(XMLNode *n)
{
if (root == NULL) root = n;
if (!lastsibling) {
if (!parents.empty()) parents.top()->first = n;
} else
lastsibling->next = n;
lastsibling = n;

}

The startElement method creates a new XMLNode, calls attachSibling to
attach it to the tree, then pushes it onto the parent stack and clears the last
sibling pointer so attachSibling will next attach its first child.

= (XMListream startElement [ZE)=
void XMListream::startElement(void *rr, const char *name, const char **attrs)
{
XMListream *r = static_cast<XMListream*>(rr);
XMLNode *newNode = new XMLNode();
newNode->name = name;
while (*attrs) {
newNode->attrs.insert(std::make_pair(*attrs,*(attrs+1)));
attrs += 2;

}
r->attachSibling(newNode) ;

r->parents.push(r->lastsibling) ;
r->lastsibling = NULL;

14 IR.nw June 3, 2006

The endElement method restores the lastsibling pointer that was last
pushed onto the parents stack by startElement.

(XMListream endElement [a)=
void XMListream::endElement (void *rr, const char *)
{
XMListream *r = static_cast<XMListream*>(rr);
// discard the topmost sibling; we’ll go back to where we were.
r->lastsibling = r->parents.top();
r->parents.pop() ;

}

The charData method takes the non-null-terminated character string passed
from expat (hence the len argument) and appends it to the body of the most-
recently-created XMLNode, if there is one. Appending is necessary because Fzpat
may call this multiple times within the same block of text if it contains entities
such as &1t ;.

(XMListream charData [ER)=
void XMListream::charData(void *rr, const XML_Char *ss, int len)
{
XMListream *r = static_cast<XMListream#*>(rr);
std::string s(ss, len);
if (!(r->parents.empty()))
r->parents.top()->body += s;

June 3, 2006 IR.nw 15

3.3 Parsing XMLNode trees

Once the XMListream constructor runs and builds an XMLNode tree from the
XML file, the getNextNode method steps through the tree in a depth-first order
under the control of the IR Node’s read methods. During this process, the
current pointer points to the node in the XMLNode tree currently being read,
and the parents stack is used to track the current path from the root.
(XMListream getNextNode [E)=

Node *XMListream::getNextNode ()

{

if (!current) throw Error("Expecting an element, found nothing");
Node *n;

XMLNode: :attrmap: :iterator idit = current->attrs.find("id");

if (current->name == "NULL") { // NULL pointer
n = NULL;

} else if (current->name == "Ref") { // Reference to existing object
if (idit == current->attrs.end())

throw Error("Ref node without id attribute");

nodemap: :iterator ni = nodeofid.find((*idit).second);
if (ni == nodeofid.end())

throw Error("Ref to undefined node id " + (*idit).second);
n = (*ni).second;

} else { // Normal object

std::string name = current->name;
n = Class: :newNodeByName (name) ;
if (idit '= current->attrs.end()) nodeofid[(*idit).second] = n;
parents.push(current) ;
current = current->first;
n->read (*this) ; // Fill in the node’s fields from this stream
if (current != NULL) throw Error("excess elements under " + name);
current = parents.top();
parents.pop();

}

current = current->next;

return n;

}

16 IR.nw June 3, 2006

[Eal (XMListream Node input [Ba)=
template <class N> XMListream& operator >>(N &n) {

if (current->name != std::string(N::_)) // Check name of this class
throw Error("Unexpected element " + current->name);

parents.push(current) ;

current = current->first;

n.read(*this); // Fill in the object’s fields

if (current != NULL)
throw Error("excess elements for " + std::string(N::_));

current = parents.top();

parents.pop();

current = current->next;

return *this;

}

The pointer version of the & operator reads a Node using getNextNode and
uses dynamic_cast to cast it to the type of the referenced object, provided we
didn’t find a NULL pointer.

10615} (XMListream Node ptr input [EH)=
template <class T> XMListream& operator >>(Tx &f) {
Node *n = getNextNode();
f = (n !'= NULL) ? dynamic_cast<T*>(n) : NULL;
if (!'f && n) throw Error("Unexpected element " + n->className());
return *this;

}

The string version of the >> operator looks for either an EmptyString ele-
ment or an XMLNode of type Text.

64 (XMListream string input [Bd)=

XMListream& XMListream::operator >>(std::string &s)

{
if (!current) throw Error ("Expecting text before end of element");
if (current->name != "S")

throw Error ("Expecting text, found " + current->name);

s = current->body;
current = current->next;
return *this;

}
T6d] (XMListream int input [Gd)=
XMListream& XMListream::operator >>(int &i)
{
if (!current) throw Error("Expecting an Int");
if (current->name == "Int") {
std::istringstream iss(current->body);
iss >> i;
} else

throw Error("Expecting Int, found " + current->name);
current = current->next;
return *this;

June 3, 2006 IR.nw 17

(XMListream bool input [Za)=
XMListream& XMListream::operator >>(bool &i)

{
if (!current) throw Error("Expecting BoolTrue or BoolFalse");
if (current->name == "BoolTrue") i = true;
else if (current->name == "BoolFalse") i = false;
else throw Error("Expecting BoolTrue or BoolFalse");
current = current->next;
return *this;
}

The vector version of the >> operator reads objects using the >> operator
until it encounters an EOV element, which it discards.

(XMListream vector input [[IH)=
template <class T> XMListream& operator >>(std::vector<T> &v) {
while (current && current->name != "EQOV") {
T value;
(*this) >> value;
v.push_back(value) ;
}
if (!current) throw Error("vector ended without EQOV");
current = current->next; // Skip the EOV Element
return *this;

}

The map version of the >> operator reads using getNextNode until it en-
counters an EOM element, which it discards.

(XMListream map input [Zd)=
template <class K, class V> XMListream& operator >>(std::map<K, V> &m)
while (current && current->name != "EOM") {
K key;
V value;
(*this) >> key >> value;
m.insert(typename std::map<K,V>::value_type(key, value));
}
if (!current) throw Error("map ended without EOM");
current = current->next; // Skip the EOM Element
return *this;

18 IR.ow June 3, 2006

4 Miscellany
4.1 The Error class

Error is a simple class holding a string thrown as an exception for parsing
errors.

(Error class [Ba)=
struct Error {
std::string s;
Error(std::string ss) : s(ss) {}
};

4.2 IR.hpp and IR.cpp
All these classes are defined in the IR namespace.

(IR.hpp IBO)=
#ifndef _IR_HPP
define _IR_HPP

include <expat.h>
include <string>
include <map>
include <stack>
include <vector>
include <iostream>

H O H H H

(IRCLASSDEFS macro Bd)
(IRCLASS macro Bal)

namespace IR {
class Node;
class XMListream;
class XMLostream;

(Error class [Ea)

(Class class B

(Node class Bal)
(XMLostream class B)
(XMLNode class [[Ta)
(XMListream class)
(constructor template BH)
}

#endif

June 3, 2006 IR.nw

15¢) (IR.cpp M=

#include

#include
#include
#include
#include

"TR. hPP n

<expat.h>
<iostream>
<sstream>
<cassert>

namespace IR {

(Node class info BL)

XMLostream Node pointer output (D)
XMLostream Node output [Z2)

XMLostream int output BH)

(
(
(XMLostream string output Bal)
(
(

XMLostream bool output Bd)

(XMLNode::print [1D)

XMListream constructor [[2)
XMListream string input [[Gd)
XMListream int input [Bd)
XMListream bool input [CZal)

XMListream attachSibling [3al)
XMListream startElement [3H)
XMListream endElement [[Zal)

(
(
§
(XMListream getNextNode [[H)
(
(
(
(

XMListream charData [[ZH)

(Class constructor Bd)
(Class::newNodeByName Ed)

19

	IR Nodes
	The Node Class
	An example user-defined Node
	The Class class

	Writing XML
	Reading XML
	The XMLNode class
	Parsing XML with expat
	Parsing XMLNode trees

	Miscellany
	The Error class
	IR.hpp and IR.cpp

