
91

C h a p t e r 4

A Gameful Approach
to Teaching Software
Design and Software
Testing*

Swapneel Sheth, Jonathan Bell, and Gail Kaiser

* This chapter is based on an earlier work “Secret Ninja testing with HALO software engineering,”
in Proceedings of the 4th International Workshop on Social Software Engineering, 2011. Copyright
ACM, 2011. http://doi.acm.org/10.1145/2024645.2024657; A competitive-collaborative approach for
introducing software engineering in a CS2 class, in 26th IEEE Conference on Software Engineering
Education and Training, 2013. Copyright IEEE, 2013. http://dx.doi.org/10.1109/CSEET.2013.6595235.

AQ 1

ContentS
4.1 Introduction 92
4.2 Background and Motivation 93

4.2.1 Student Software Testing 93
4.2.2 HALO Software Engineering 94
4.2.3 Software Design 95

4.3 Gameful Testing using HALO 95
4.3.1 HALO Plug-in for Eclipse 95
4.3.2 COMS 1007—Object-Oriented Programming and

Design with Java 96
4.3.3 A Case Study with HALO 97

4.3.3.1 An Assignment on Java Networking: Getting
and Analyzing Data from the Internet—The
CIA World Factbook 97

K22498_C004.indd 91 01/21/15 10:02 AM

92 ◾ Computer Games and Software engineering

4.1 IntroduCtIon
Introductory computer science courses traditionally focus on exposing
students to basic programming and computer science theory, leaving little
or no time to teach students about software testing [1,2,3]. A great deal of
students’ mental model when they start learning programming is that “if
it compiles and runs without crashing, it must work fine.” Thus, exposure
to testing, even at a very basic level, can be very beneficial to the students
[4,5]. In the short term, they will do better on their assignments as testing
before submission might help them discover bugs in their implementa-
tion that they had not realized. In the long term, they will appreciate the
importance of testing as part of the software development life cycle.

However, testing can be tedious and boring, especially for students who
just want their programs to work. Although there have been a number
of approaches to bring testing to students early in the curriculum [3,4,5],
there have been significant setbacks due to low student engagement and
interest in testing [1]. Past efforts to teach students the introductory testing
practices have focused on formal testing practices, including approaches
using test-driven development [1,4].

Kiniry and Zimmerman [6] propose a different approach to teaching
another topic that students are often uninterested in—formal methods for
verification. Their approach, which they call secret ninja formal methods,
aims to teach students formal methods without their realizing it (in a
sneaky way). We combine this secret ninja methodology with a social envi-
ronment and apply it to testing in order to expose students to testing while
avoiding any negative preconceptions about it.

4.3.3.2 HALO Quests 98
4.3.3.3 Student-Created HALO Quests 99

4.4 Better Software Design via a Battleship Tournament 101
4.5 Feedback and Retrospectives 105

4.5.1 Student Feedback 105
4.5.2 Thoughts on CS Education a Year Later 107

4.5.2.1 Reflections on HALO 107
4.5.2.2 Reflections on Tournaments 108

4.6 Related Work 108
4.7 Conclusion 110
Acknowledgments 110
References 111

K22498_C004.indd 92 01/21/15 10:02 AM

A Gameful Approach ◾ 93

We propose a social approach to expose students to software testing
using our game-like environment highly addictive, socially optimized
(HALO) software engineering [7]. HALO uses massively multiplayer
online role-playing game (MMORPG) motifs to create an engaging and
collaborative development environment. It can make the software develop-
ment process and, in particular, the testing process more fun and social by
using themes from popular computer games such as World of Warcraft [8].
By hiding testing behind a short story and a series of quests, HALO shields
students from discovering that they are learning testing practices. We feel
that the engaging and social nature of HALO will make it easier to expose
students to software testing at an early stage. We believe that this approach
can encourage a solid foundation of testing habits, leading to future will-
ingness to test in both coursework and industry.

In addition to testing, we also want to inculcate good software design
principles in early CS classes. We used a competitive tournament for this
purpose—participation in the tournament for the students would be con-
tingent upon their following good software design principles for their
assignment. We describe our experiences on using these approaches in a
CS2 class taught by the first author at Columbia University.

4.2 BACKGround And MotIvAtIon
4.2.1 Student Software testing

We have anecdotally observed many occasions in which students do not
 sufficiently test their assignments prior to submission and conducted a brief
study to support our observations. We looked at a sampling of student perfor-
mance in the second-level computer science course at Columbia University,
COMS 1007: Object Oriented Programming and Design in Java during the
summer of 2008. This course focuses on honing design and problem-solving
skills, building upon students’ existing base of Java programming knowledge.
The assignments are not typically intended to be difficult to get to “work”—the
intention is to encourage students to use proper coding practices.

With its design-oriented nature, we believe that this course presents an
ideal opportunity to demonstrate students’ testing habits. Our assumption
is that in this class, students who were missing (or had incorrect) function-
ality did so by accident (and did not test for it) rather than due to technical
inability to implement the assignment. We reviewed the aggregate per-
formance of the class (15 students) across four assignments to gauge the
opportunities for better testing.

AQ 3

AQ 2

K22498_C004.indd 93 01/21/15 10:02 AM

94 ◾ Computer Games and Software engineering

We found that 33% of the students had at least one “major” functional-
ity flaw (defined as omitting a major requirement from the assignment)
and over 85% of all students had multiple “minor” functionality flaws
(defined as omitting individual parts of requirements from assignments)
in at least one assignment. We believe that this data shows that students
were not testing appropriately and suggests that student performance
could increase from a greater focus on testing. Similar student testing hab-
its have also been observed at other institutions [9].

4.2.2 HALo Software engineering

HALO software engineering represents a new and social approach to
software engineering. Using various engaging and addictive properties
of collaborative computer games such as World of Warcraft [7], HALO’s
goal is to make all aspects of software engineering more fun, increasing
developer productivity and satisfaction. It represents software engineering
tasks as quests and uses a storyline to bind multiple quests together—users
must complete quests in order to advance the plot. Quests can be either
individual, requiring a developer to work alone, or group, requiring a
developer to form a team and work collaboratively toward their objective.

This approach follows a growing trend to “gamify” everyday life (i.e.,
bring gamelike qualities to it) and has been popularized by alternate real-
ity game proponents such as Jane McGonigal [10]. These engaging quali-
ties can be found in even the simplest games, from chess to Tetris, and
result in deep levels of player immersion [10]. Gamification has also been
studied in education, where teachers use the engaging properties of games
to help students focus [11].

We leverage the inherently competitive–collaborative nature of soft-
ware engineering in HALO by providing developers with social rewards.
These social rewards harness operant conditioning—a model that rewards
players for good behavior and encourages repeat behavior. Operant con-
ditioning is a technique commonly harnessed in games to retain play-
ers [12,13]. Multiuser games typically use peer recognition as the highest
reward for successful players [13].

Simple social rewards in HALO can include titles—prefixes or suffixes
for players’ names—and levels, both of which showcase players’ successes in
the game world. For instance, a developer who successfully closes over 500
bugs may receive the suffix the Bugslayer. For completing quests, players also
receive experience points that accumulate, causing them to level up in recog-
nition of their ongoing work. HALO is also designed to create an immersive

K22498_C004.indd 94 01/21/15 10:02 AM

A Gameful Approach ◾ 95

environment that helps developers to achieve a flow state, a technique that
has been found to lead to increased engagement and addiction [14]. Although
typically viewed as negative behavior, controlled addiction can be beneficial,
when the behavior is productive, as in the case of software testing addic-
tion. These methods try to motivate players similar to what is suggested in
Reference [15].

4.2.3 Software design

In our experience, students in early CS classes do not understand or appre-
ciate software design. We believe that this is largely because all the early
programming they have done focuses on “getting it working.” Further,
typical early CS assignments are a few hundred lines of Java code. Finally,
most introductory CS courses at Columbia University (and other universi-
ties [16]) typically have only individual assignments and allow no collabo-
ration on the assignments. When programs become larger and when you
have to work in large teams, software design becomes a lot more critical.

Our goal was to inculcate good software design principles via a com-
petitive tournament where participation would be contingent based on the
students’ code adhering to good design principles.

4.3 GAMefuL teStInG uSInG HALo
As we have found that students do not test as thoroughly as they ought to,
we use HALO to make software testing more enjoyable and fun. For exam-
ple, students are given a number of “quests” that they need to complete.
These quests are used to disguise standard software testing techniques such
as white and black box testing, unit testing, and boundary value analysis.
Upon completing these quests, the students get social rewards in the form
of achievements, titles, and experience points. They can see how they are
doing compared to other students in the class. Although the students think
that they are competing just for points and achievements, the primary ben-
efit of such a system is that the students’ code gets tested a lot better than it
normally would have. Our current prototype implementation of HALO is
a plug-in for Eclipse and a screenshot is shown in Figure 4.1.

4.3.1 HALo Plug-in for eclipse

We used HALO in a class taught at Columbia University: COMS 1007
Object-Oriented Programming and Design with Java. The rest of this sec-
tion describes some background about the class, how HALO was used,
and the results of our case study.

K22498_C004.indd 95 01/21/15 10:02 AM

96 ◾ Computer Games and Software engineering

4.3.2 CoMS 1007—object-oriented
Programming and design with Java

COMS 1007—Object-Oriented Programming and Design with Java was the
second course in the track for CS majors and minors at Columbia University.
The class was also required for majors in several other engineering disci-
plines, including electrical engineering and industrial engineering, and was
used by other students to satisfy their general science or computer science
requirement. The first author taught this course in spring (January–May)
2012.* The course goals were as follows: A rigorous treatment of object-
oriented concepts using Java as an example language and Development of
sound programming and design skills, problem solving and modeling of real
world problems from science, engineering, and economics using the object-
oriented paradigm [17]. The prerequisite for the course was familiarity with
programming and Java (demonstrated through a successful completion of

* The introductory sequence of courses has undergone a change and COMS 1007 has become an
honors version of the CS1 course since fall 2012.

fIGure 4.1 The HALO eclipse plug-in: The bottom part shows the dashboard,
which keeps track of the achievements, experience points, and leaderboards; The
top right part shows the quest list and progress.

AQ 4

K22498_C004.indd 96 01/21/15 10:02 AM

A Gameful Approach ◾ 97

the CS1 course at Columbia or another university, or passing marks on the
AP Computer Science Exam).

In spring 2012, the class enrolment was 129, which consisted largely
of freshmen and sophomores (first- and second-year undergraduates,
respectively). The list of topics covered was object-oriented design, design
patterns, interfaces, graphics programming, inheritance and abstract
classes, networking, and multithreading and synchronization. There were
roughly five biweekly assignments, which contained both theory and pro-
gramming, one midterm exam, and one final exam.

As explained above, HALO uses gamelike elements and motifs from
popular games such as World of Warcraft [8] to make the whole software
engineering process and, in particular, the software testing process more
engaging and social. HALO is not a game; it leverages game mechanics
and applies them to the software development process. We now describe
how we used HALO in our class.

4.3.3 A Case Study with HALo

In this class, we used HALO for three assignments. In the first two cases,
HALO was not a required part of the assignment; students could option-
ally use it if they wanted to. For the last case, students could earn extra
credit (10 points for the assignment, accounting for 0.8% of the overall
course grade) by completing the HALO quests.

The final course assignment allowed students to design their own projects,
making it difficult for us to predefine HALO quests, because each project was
different. Instead, students were offered extra credit in exchange for creating
HALO quests for their projects, thus emphasizing the learning by example
pedagogy. Out of the 124 students who submitted Assignment 5, 77 students
(62.1%) attempted the extra credit, and 71 out of these 77 students (92.21%)
got a perfect score for the HALO quests that they had created.

4.3.3.1 An Assignment on Java Networking: Getting and Analyzing
Data from the Internet—The CIA World Factbook

We now describe an assignment that was given to the class and the HALO
quests that were created for it. The rest of the assignments and the quests
are described in our technical report [18].

The Central Intelligence Agency (CIA) has an excellent collection of
detailed information about each country in the world, called the CIA
World Factbook. For this assignment, students had to write a program in
Java to analyze data from the CIA World Factbook website, interacting

K22498_C004.indd 97 01/21/15 10:02 AM

98 ◾ Computer Games and Software engineering

directly with the website. The student programs had to interactively
answer questions such as the following:

 1. List countries in South America that are prone to earthquakes.

 2. Find the country with the lowest elevation point in Europe.

 3. List all countries in the southeastern hemisphere.

 4. List all countries in Asia with more than 10 political parties.

 5. Find all countries that have the color blue in their flag.

 6. Find the top five countries with the highest electricity consumption
per capita (electricity consumption as a percentage of population).

 7. Find countries that are entirely landlocked by a single country.

 For the italicized parts in the above list, the code had to be able to
deal with any similar input (e.g., from a user). This should not be
hard coded.

4.3.3.2 HALO Quests
We now describe the HALO quests that we used for the above assignment.

 1. TARDIS—To interact with the CIA World Factbook, it would be nice
to have a TARDIS. No, not like in the show, but a Java program that
can transfer and read data from Internet sites. Completing this quest
will reward you with 30 XP. This quest has two tasks:

 a. New Earth—This will probably be your first program that talks
to the Internet. Although this is not as complex as creating a new
Earth, you should test out the basic functionality to make sure it
works. Can your program read one page correctly? Can it read
multiple pages? Can it read all of them?

 b. The Unicorn and the Wasp—Just like Agatha Christie, you should
be able to sift through all the information and find the important
things. Are you able to filter information from the web page to
get only the relevant data?

 2. EXTERMINATE! EXTERMINATE!—The CIA fact book has some
unstructured data—not all of it is organized properly. This may not be
as annoying (or life threatening) as Daleks, but your programs should

AQ 5

K22498_C004.indd 98 01/21/15 10:02 AM

A Gameful Approach ◾ 99

be able to deal with this correctly and not crash (or get exterminated).
Completing this quest will reward you with 30 XP and unlock
Achievement: Torchwood. This quest has two tasks:

 a. Partners in Crime or Your Companion—You can get help for
parsing through the HTML stuff—you could do it yourself, you
could you [sic] regular expressions, or you could use an external
HTML parsing library. Regardless of who your partner in crime
is, are you sure that it is working as expected and not accidentally
removing or keeping information that you would or would not
need, respectively?

 b. Blink—Your program does not need to be afraid of the Angels
and can blink, that is, take longer than a few seconds to run and
get all the information. However, this should not be too long, say
1 hour. Does your program run in a reasonable amount of time?

 3. The Sonic Screwdriver—This is a useful tool used by the Doctor to
make life a little bit easier. Does your code make it easy for you to
answer the required questions? Completing this quest will reward
you with 40 XP. This quest has three tasks:

 a. Human Nature—It might be human nature to hard code certain
pieces of information in your code. However, your code needs to
be generic enough to substitute the italicized parts of the ques-
tions. Is this possible?

 b. The Sontaran Stratagem—For some of the questions, you do not
need a clever strategy (or algorithm). However, for some of the
latter questions, you do. Do you have a good code strategy to deal
with these?

 c. Amy’s Choice—You have a choice of two wild card questions. Did
you come up with an interesting question and answer it?

4.3.3.3 Student-Created HALO Quests
We now describe one of the HALO quests that some students created
for their own project. This highlights that students understood the
basics of software testing, which was the goal with HALO. We include
a short description of the project (quoted from student assignment sub-
missions) along with the quests, because students could define their
own project.

AQ 6

K22498_C004.indd 99 01/21/15 10:02 AM

100 ◾ Computer Games and Software engineering

4.3.3.3.1 Drawsome Golf Drawsome Golf is a multi-player miniature golf
simulator where users draw their own holes. After the hole is drawn, users
take turns putting the ball toward the hole, avoiding the obstacles in their
path. The person who can get into the hole in the lowest amount of strokes is
the winner. There are four tasks to complete for the quest for Drawsome Golf:

 1. Perfectly Framed (Task): Is the panel for the hole situated on the
frame? Is there any discrepancy between where you click and what
shows up on the screen? Is the information bar causing problems?

 2. Win, Lose, or Draw (Task): Are you able to draw lines and water? Are
you able to place the hole and the tee box? Can you add multiple lines
and multiple ponds? Could you add a new type of line?

 3. Like a Rolling Stone (Task): Does the ball move where it is supposed
to? Do you have a good formula for realistic motion of the ball?

 4. When We Collide (Task): Does the ball handle collisions correctly?
Is the behavior correct when the ball hits a line, a wall, the hole, or a
water hazard?

4.3.3.3.2 Matrix Code Encoder/Decoder The user will select a text file that
he or she would like to encode or decode and will select the alphabet and
numerical key for use. Encoded messages can be sent to a designated user
using the networking principles we have learned in class.

 1. I’ll Handel It: Are your classes passing each other the correct infor-
mation? Make sure there is no overlap between the calculations
performed by one class and those of another. Are variables updated
correctly to reflect user input?

 2. Liszt Iterators: During the matrix multiplication process, it is neces-
sary to keep track of several iterators simultaneously. Is each of these
iterators incrementing and/or resetting at appropriate moments?
Does each one accomplish a specific task?

 3. What are you Haydn? Encapsulation is key! Encapsulation makes it
much easier to understand code and to make changes later on. Have
you broken tasks into subtasks, each united by a mini-goal? How can
you break up the encoding and decoding methods? Can you break
the GUI into bite-sized pieces?

K22498_C004.indd 100 01/21/15 10:02 AM

A Gameful Approach ◾ 101

4.4 Better SoftwAre deSIGn vIA A
BAttLeSHIP tournAMent

The second assignment for the class focused on design principles and, in
particular, using interfaces in Java. For the assignment, which constituted
8% of the overall course grade, the students had to implement a battleship
game. Battleship is a two-player board game where each player has a 10 × 10
grid to place five ships of different lengths at the start of the game. Each play-
er’s grid is not visible to the other player, and the player needs to guess the
location of the other player’s ships. Thus, by alternating turns, each player
calls out “shots,” which are grid locations for the other player. If a ship is
present at that location, the player says “hit”; else it is a “miss.” The game
ends when one of the players has hit all the parts of all the opponent’s ships.

The students needed to implement this game in Java with an emphasis
on good design and none on the graphical aspects; the students could cre-
ate any sort of user interface they wanted—a simple command line–based
user interface would suffice as far as the assignment was concerned. To
emphasize good design, we provided the students with three interfaces
as a starting-off point for the assignment. The three interfaces, Game,
Location, and Player, are shown in Listings 1.1, 1.2, and 1.3.

To reinforce the notion of “programming to an interface, not to an imple-
mentation” [19], there was a tournament after the assignment submission
deadline. For the tournament, the teaching staff would provide implementa-
tions of the Game and Location interfaces and use each student’s Player
implementation. (In particular, the students were told to provide two imple-
mentations of the Player—a human player who is interactive and can ask
the user for input and a computer player that can play automatically; this
latter player would be used for the tournament.) As long as the students’ code
respected the interfaces, they would be able to take part in the tournament.

The tournament logistics were as follows. First, all student players
played 1000 games against a simple AI written by the teaching staff. From
these results, we seeded a single-elimination bracket for the student play-
ers to compete directly. Thus, players with good strategies would progress
through the rounds and defeat players with weaker strategies. As an added
extra incentive, there were extra credit points awarded to students based
on how well they performed in the tournament.

Even though the extra credit was not a lot (accounting for only 0.8% of
the total course grade), the combination of the extra credit and the com-
petitive aspect made almost the entire class participate in the tournament.

K22498_C004.indd 101 01/21/15 10:02 AM

102 ◾ Computer Games and Software engineering

Only 116 out of 129 students (89.92%) of the class elected to take part in
the tournament, and of those that wanted to be in the tournament, 107
(92.24%) had implementations that functioned well enough (e.g., did not
crash) and competed in the tournament.

Listing 1.1: The Game Interface

1 /**
2 * The game interface – this will control the

Battleship game.
3 * It will keep track of 2 versions of the “board”

– one for each player.
4 * It will let players take turns.
5 * It will announce hits, misses, and ships sunk

(by calling the appropriate methods in the Player
interface/class).

6 * @author swapneel
7 *
8 */
9 public interface Game {
10
11 int SIZE = 10;
12
13 int CARRIER = 5;
14 int BATTLESHIP = 4;
15 int SUBMARINE = 3;
16 int CRUISER = 3;
17 int DESTROYER = 2;
18
19 /**
20 * This method will initialize the game.
21 * At the end of this method, the board has

been set up and the game can be started
22 * @param p1 Player 1
23 * @param p2 Player 2
24 */
25 void initialize(Player p1, Player p2);
26
27 /**
28 * This is the start point of playing the game.
29 * The game will alternate between the players

letting them take shots at the other team.

K22498_C004.indd 102 01/21/15 10:02 AM

A Gameful Approach ◾ 103

30 * @return Player who won
31 */
32 Player playGame();
34}

Listing 1.2: The Location Interface

1 /**
2 * The Location interface to specify how x and y

coordinates are represented.
3 * This can be used to represent the location of a

ship or a shot.
4 * If the location is a shot, the isShipHorizontal()

method can return an arbitrary value.
5 * @author swapneel
6 *
7 */
8 public interface Location {
9
10 /**
11 * Gets the x coordinate
12 * @return the x coordinate
13 */
14 int getX ();
15
16 /**
17 * Gets the y coordinate
18 * @return the y coordinate
19 */
20 int getY ();
21
22 /**
23 * This method will indicate whether the ship

is horizontal or vertical.
24 * Can return an arbitrary value if the location

is used to indicate a shot (and not a ship)
25 * @return true if ship is horizontal, false

otherwise
26 */
27 boolean isShipHorizontal ();
28
29}

AQ 7

K22498_C004.indd 103 01/21/15 10:02 AM

104 ◾ Computer Games and Software engineering

Listing 1.3: The Player Interface

1 /**
2 * The Player interface
3 * Each player will get to choose where to place the 5

ships and how to take turns shooting at enemy ships
4 * @author swapneel
5 *
6 */
7 public interface Player {
8
9 /**
10 * This method will place a ship on the grid.
11 * This method should guarantee correctness of

location (no overlaps, no ships over the edge
of the board, etc.)

12 * @param size the size of the ship to place
13 * @param retry if an earlier call to this method

returned an invalid position, this method will
be called again with retry set to true.

14 * @return The Location of the ship
15 */
16 Location placeShip (int size, boolean retry);
17
18 /**
19 * This method will get the new target to aim
for
20 * @return The Location of the target
21 */
22 Location getTarget ();
23
24 /**
25 * This method will notify the Player of the

result of the previous shot
26 * @param hit true, if it was a hit; false

otherwise
27 * @param sunk true, if a ship is sunk; false

otherwise
28 */
29 void setResult (boolean hit, boolean sunk);
30
31}

K22498_C004.indd 104 01/21/15 10:02 AM

A Gameful Approach ◾ 105

4.5 feedBACK And retroSPeCtIveS
In this section, we describe the feedback about the course structure given
by the students and our thoughts and retrospectives on using gameful
approaches for CS education.

4.5.1 Student feedback

The student feedback comes from various sources such as midterm and
end of semester surveys, public reviews of the class, and e-mail sent to the
first author.

HALO received mixed reviews—many students found that it was
very useful; other students found that it was not beneficial. Figure 4.2
shows the students’ reasons on why HALO was beneficial. Figure 4.3
shows why students thought that it was not beneficial. The main take-
away for us with HALO was the following: because it was either com-
pletely optional or only for extra credit, typically only students who are
doing really well in the class will use it. Students who are having a hard
time in the class will not want to do something that is optional. In an
analogous manner, students will only do the extra credit if they have
managed to complete the assignment early enough and sufficiently well.
Thus, HALO quests needed to be more oriented toward the students

It helped, but I
had other

programming
difficulties, 1

It made sure that
I did everything
important and

was more fun, 2

Made sure that I
did everything

important for the
assignment, 16

Put me on the
right track to
complete the

assignment, 11

Made it more
fun, 3

Made sure that I
did everything,
but would have

anyway, 2

Clarified
assignment and

what was
expected of me, 4

fIGure 4.2 Reasons why HALO helped students (n = 39). AQ 8

K22498_C004.indd 105 01/21/15 10:02 AM

106 ◾ Computer Games and Software engineering

doing well in the assignment. However, HALO quests need to entice
the struggling students as they might benefit the most by being able
to complete the basic tasks of the assignment. Ideally, we would like to
have some adaptability or dynamic nature of the quests where the dif-
ficulty of the quests will self-adjust based on what the students would
find it most useful for. For example, students who are struggling with
the assignment might want quests for very basic things, whereas stu-
dents who are doing well might want quests for the more challenging
aspects of the assignment.

Some of the student comments are shown below:

•	 I really liked the class tournaments. If only there was a way to
make them like mandatory.

•	 The assignments are completely doable, and he helps us with
them by giving us Halo quests which provide a checklist of
things one should be doing (they’re themed, so the last one was
Doctor Who themed!).

•	 I think it’s awesome that you’re sneaking your taste in music
into the HALO quests. The Coldplay references are hilarious.
PLEASE make every HALO quest music-themed. It keeps me
awake and happy as I do my homework.

I had general
programming

difficulties aside, 1

The tasks were
too trivial and

did not help me,
12

Only benefit was
extra credit—
tasks were too

trivial for me, 12

The quests got in
the way and

were unhelpful, 4

fIGure 4.3 Reasons why HALO was not beneficial to students (n = 29).

K22498_C004.indd 106 01/21/15 10:02 AM

A Gameful Approach ◾ 107

4.5.2 Thoughts on CS Education a Year Later
Our experience with using gameful elements in a classroom has been
largely positive. The first author taught COMS 1007 again, which is now an
honors CS1 class, in spring 2013. For that semester, we made a few changes
based on our experiences from the previous year. We now describe our
decisions and rationale behind these changes.

4.5.2.1 Reflections on HALO
First, we decided not to use HALO in the class. Our decision was largely
based on two aspects: resource constraints and research challenges.

4.5.2.1.1 Constraints The second author developed the HALO eclipse
plug-in and helped students set it up during the first iteration of COMS
1007. For use in future semesters, the plug-in would need to be updated
and maintained. Creating student accounts and having them install and
use the plug-in is straightforward albeit very time consuming, especially
for a class with over 100 students. Note that the students in our classes are
typically freshmen and sophomores with very little experience with Java
and Eclipse. One option would be to get an extra TA, if possible, for future
courses if we want to use HALO.

4.5.2.1.2 Assignment and Quest Design A big advantage with HALO is that
there are no constraints with assignment creation and design. However,
there are a few implications as far as quest design is concerned. First,
creating good and fun quests takes a significant amount of time. In our
experience, quest creation took about 30% time that it takes to create an
assignment. In other words, creating quests for three to four assignments is
about the same time as creating an entire new assignment. This needs to be
factored in with the other time constraints that an instructor might have.
Second, quest creation is much easier and faster if the same person creates
both the assignment and the quests for it. In our case, there were a few
assignments that were designed or conceived by TAs, and unfortunately,
they could not create the quests themselves as they had not taken a software
engineering or software testing class yet. This meant that quest creation
had to be done by the first author, and hence needed much more time.

4.5.2.1.3 Adaptive Quests As the student feedback shows, we need HALO
quests that can target, both, struggling students and students who are doing
well. One option would be to create specific sets of quests for the different

AQ 9

K22498_C004.indd 107 01/21/15 10:02 AM

108 ◾ Computer Games and Software engineering

target demographics. This is not an ideal option however; we would need to
spend much time on quest creation. Further, unless this particular assign-
ment has been used in previous classes, it might be hard to know a priori
what parts of it will be easy and what parts will be difficult, thereby making
it challenging to design appropriate quests. In our experience, instructor
and student opinions on the ease or difficulty of assignments do not always
converge. The better option would be to have some way of automatically
“scaling” the difficulty of quests, but we are not completely sure of what this
entails and much more research is required on this topic.

4.5.2.2 Reflections on Tournaments
Second, we continued using the tournament structure for encourag-
ing students to use good design. The tournament required significant
resources as well. Because we had over 100 students who would partici-
pate in the tournament, the second author wrote a generic framework
that would take all the student code and create and run the tournament
as described above. Automating the entire process certainly was essential
as it helped save a lot of time and the code could be reused for future tour-
naments. In spite of being able to reuse this for the spring 2013 semester, a
significant amount of additional time and effort was still needed. The first
reason was to create the game framework and tournament AI for the
students to compete against. We could not reuse this as we changed the
assignment to use Othello instead of Battleship. The second reason was
actually running the tournament—we ran 1000 games for each student
in the first round. The official timeout policy was 1 minute per game, that
is, if the game took longer than 1 minute to complete, the player would
be disqualified. Using a very conservative estimate that each game takes
1 second to run, we would still need roughly 28 CPU hours to run just
the first round for 100 students. Typically, we try to release homework
grades 1 week after homework is due. If a tournament is to be run, these
numbers need to factor into time and resource allocation constraints for
the class, instructor, and TAs.

4.6 reLAted worK
There has been ongoing work in studying how best to teach students test-
ing. Jones [3,5] proposed integrating software testing across all computer
science courses and suggested splitting different components of testing
across different courses, teaching aspects incrementally so as not to over-
whelm students all at once with testing. Edwards [4] proposed a test-first

K22498_C004.indd 108 01/21/15 10:02 AM

A Gameful Approach ◾ 109

software engineering curriculum, applying test-driven development to all
programming assignments, requiring students to submit complete test
cases with each of their assignments. Our approach is similar to these in
that we also propose early and broad exposure to testing.

Goldwasser proposed a highly social, competitive means to integrate
software testing where students provided test cases that were used in each
other’s code [20]. Elbaum et al. [1] presented Bug Hunt—a tool to teach
software testing in a self-paced, web-driven environment. With Bug Hunt,
students progress through a set of predefined lessons, creating test cases
for sample code. Both of these approaches introduce testing directly into
the curriculum; with HALO, we aim to introduce testing surreptitiously.

Kiniry and Zimmerman [6] proposed teaching formal verification
through secret ninja formal methods—an approach that avoids students’
apprehension to use complex mathematics by hiding it from them. The
secret ninja approach differs from those mentioned earlier in that it exposes
students to new areas without them realizing it. They implemented this tech-
nique at multiple institutions, receiving positive student responses (based on
qualitative evaluations). We adapted their secret ninja method for HALO.

Much work has also been done to create games to teach software engi-
neering concepts. Horning and Wortman [21] created Software Hut, turn-
ing the course project itself into a game, played out by all of the students
together. SimSE and card game were games created to teach students soft-
ware engineering through a game environment [22,23]. Eagle and Barnes
[24] introduced a game to help students learn basic programming tech-
niques: basic loops, arrays, and nested for loops. However, none of these
games focused specifically on testing practices. There has been research
into teaching aspects such as global software development [25] in a class-
room, but these do not focus on software testing.

TankBrains [26] is a collaborative and competitive game used in a CS
course where students competed to develop better AIs. Bug Wars [27] is a
classroom exercise where students seed bugs in code, swap examples, and
compete to find the most bugs (in each other’s code). Although TankBrains
and Bug Wars are specific programming activities, we present a general
approach to teaching introductory computer science that is both coopera-
tive and competitive.

There have been several approaches toward integrating games into CS
curricula. One of the earliest such attempts was Software Hut, where the
authors formulated their project-based software engineering course as a
game [21]. Groups competed to be the most “profitable”—where performance

K22498_C004.indd 109 01/21/15 10:02 AM

110 ◾ Computer Games and Software engineering

was tracked by “program engineering dollars” (a fictional currency). This
technique is similar to ours in that we both tracked student performance
with points and added in other game concepts, such as quests and achieve-
ments. KommGame is an interface that encapsulates many collaborative
software development activities such as creating documentation or report-
ing and resolving bugs and tracks each student with karma points [28]. This
social and collaborative environment represented real-world open-source
development environments.

SimSE [23] and Problems and Programmers [22] are two simulation-
oriented games that give students a “real-world” software engineering
experience. Somewhat similar, Wu’s Castle [24] is a game to teach stu-
dents basic programming constructs such as loops. These three projects
are games, whereas we have built a game layer on top of the regular course
environment.

4.7 ConCLuSIon
In this chapter, we described how we incorporated gameful elements for
teaching software testing and software design in a CS2 class. Students learnt
software testing using a social learning environment. We described our
HALO prototype, an assignment, and the accompanying quests for HALO
to enhance teaching of software testing in a CS2 class. Students learnt soft-
ware design via a competitive tournament, and we described details of our
assignment and on how the tournament was run. The feedback from the
students for both these aspects was largely positive.

We believe that our approach will make testing and design more engag-
ing and fun for students, leading to better systems. We also feel that this
will inculcate good software engineering habits at an early stage.

ACKnowLedGMentS
We thank Joey J. Lee of Teachers College’s Games Research Lab and Jessica
Hammer of Carnegie Mellon University’s Human-Computer Interaction
Institute, for their assistance with the pedagogical aspects of this work.
We thank all the students who participated in the COMS 1007 class. We
thank the teaching assistants, Lakshya Bhagat, Amrita Mazumdar, Paul
Palen, Laura Willson, and Don Yu, for helping with the class.

The authors are members of the Programming Systems Laboratory
(PSL) at Columbia University. PSL is funded in part by NSF CCF-1302269,
NSF CCF-1161079, NSF CNS-0905246, and NIH U54 CA121852.

K22498_C004.indd 110 01/21/15 10:02 AM

A Gameful Approach ◾ 111

referenCeS
 1. Sebastian Elbaum, Suzette Person, Jon Dokulil, and Matt Jorde. Bug hunt:

Making early software testing lessons engaging and affordable. Proceedings
of the 29th International Conference on Software Engineering, pp. 688–697,
IEEE Computer Society, Washington, DC, 2007.

 2. Ursula Jackson, Bill Z. Manaris, and Renée A. McCauley. Strategies for effec-
tive integration of software engineering concepts and techniques into the
undergraduate computer science curriculum. Proceedings of the Twenty-Eighth
SIGCSE Technical Symposium on Computer Science Education, pp. 360–364,
ACM, New York, 1997.

 3. Edward L. Jones. Integrating testing into the curriculum arsenic in small
doses. SIGCSE Bulletin, 33:337–341, 2001.

 4. Stephen H. Edwards. Rethinking computer science education from a test-first
perspective. Companion of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 148–155, ACM,
New York, 2003.

 5. Edward L. Jones. An experiential approach to incorporating software test-
ing into the computer science curriculum. In Proceedings of the 31st Annual
Frontiers in Education Conference, vol. 2, pp. F3D–7–F3D–11, IEEE Computer
Society, Washington, DC, 2001.

 6. Joseph R. Kiniry and Daniel M. Zimmerman. Secret ninja formal meth-
ods. Proceedings of the 15th International Symposium on Formal Methods,
pp. 214–228, Springer-Verlag, Berlin, Germany, 2008.

 7. Swapneel Sheth, Jonathan Bell, and Gail Kaiser. HALO (Highly Addictive,
sociaLly Optimized) software engineering. Proceedings of the 1st International
Workshop on Games and Software Engineering, pp. 29–32, ACM, New York, 2011.

 8. Blizzard Entertainment. World of Warcraft. http://us.battle.net/wow/en.
 9. David Ginat, Owen Astrachan, Daniel D. Garcia, and Mark Guzdial. “But it looks

right!”: The bugs students don’t see. Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, pp. 284–285, ACM, New York, 2004.

 10. Jane McGonigal. Reality Is Broken: Why Games Make Us Better and How
They Can Change the World. Penguin Press, New York, 2011.

 11. Joey J. Lee and Jessica Hammer. Gamification in education: What, how, why
bother? Academic Exchange Quarterly, 15(2):2, 2011.

 12. John P. Charlton and Ian D.W. Danforth. Distinguishing addiction and high
engagement in the context of online game playing. Computers in Human
Behavior, 23(3):1531–1548, 2007.

 13. Patricia Wallace. The Psychology of the Internet. Cambridge University Press,
New York, 2001.

 14. SungBok Park and Ha Hwang. Understanding online game addiction:
Connection between presence and flow. In Human-Computer Interaction.
Interacting in Various Application Domains, Lecture Notes in Computer
Science, vol. 5613, pp. 378–386, Springer, Berlin, 2009.

 15. Tracy Hall, Helen Sharp, Sarah Beecham, Nathan Baddoo, and Hugh Robinson.
What do we know about developer motivation? IEEE Software, 25(4):92–94, 2008.

AQ 10

AQ 12

AQ 11

K22498_C004.indd 111 01/21/15 10:02 AM

112 ◾ Computer Games and Software engineering

 16. Laurie Williams and Lucas Layman. Lab partners: If they’re good enough for
the natural sciences, why aren’t they good enough for us? Proceedings of the 20th
Conference on Software Engineering Education & Training, pp. 72–82, 2007.

 17. Columbia Engineering—The Fu Foundation School of Engineering and
Applied Science. Bulletin 2011–2012. http://bulletin.engineering.columbia.
edu/files/seasbulletin/2011Bulletin.pdf, 2011.

 18. Swapneel Sheth, Jonathan Bell, and Gail Kaiser. A gameful approach to
teaching software design and software testing—Assignments and quests.
Technical Report cucs-030-13, Department of Computer Science, Columbia
University, New York, 2013. http://mice.cs.columbia.edu/getTechreport.
php?techreportID=1557.

 19. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Design, 1995.

 20. Michael H. Goldwasser. A gimmick to integrate software testing throughout
the curriculum. SIGCSE Bulletin, 34:271–275, 2002.

 21. James (Jim) Horning and David B. Wortman. Software hut: A computer
program engineering project in the form of a game. IEEE Transactions on
Software Engineering, 3(4):325–330, 1977.

 22. Alex Baker, Emily Oh Navarro, and André van der Hoek. An experimental
card game for teaching software engineering processes. Journal of Systems
and Software, 75(1/2):3–16, 2005.

 23. Emily Oh Navarro and André van der Hoek. SimSE: An educational sim-
ulation game for teaching the software engineering process. Proceedings
of the 9th Annual SIGCSE Conference on Innovation and Technology in CS
Education, pp. 233–233, 2004.

 24. Michael Eagle and Tiffany Barnes. Experimental evaluation of an educational
game for improved learning in introductory computing. SIGCSE Bulletin,
41:321–325, 2009.

 25. Ita Richardson, Sarah Moore, Daniel Paulish, Valentine Casey, and Dolores
Zage. Globalizing software development in the local classroom. Proceedings
of the 20th Conference on Software Engineering Education Training, pp. 64–71,
July 2007.

 26. Kevin Bierre, Phil Ventura, Andrew Phelps, and Christopher Egert. Motivating
OOP by blowing things up: An exercise in cooperation and competition in an
introductory Java programming course. In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education, pp. 354–358, 2006.

 27. Renee Bryce. Bug Wars: A competitive exercise to find bugs in code. Journal
of Computing Sciences in Colleges, 27(2):43–50, 2011.

 28. Terhi Kilamo, Imed Hammouda, and Mohamed Amine Chatti. Teaching
collaborative software development: A case study. Proceedings of the 2012
International Conference on Software Engineering, pp. 1165–1174, 2012.

AQ 13

AQ 14

K22498_C004.indd 112 01/21/15 10:02 AM

Author Query Sheet

Chapter No: 4

Query No. Queries Response
AQ 1 We have set the Note provided in the chapter

opener page of this chapter as note. Please
confirm if this is okay.

AQ 2 We have shortened the Running Head, please
confirm.

AQ 3 Should “CS” be set as “computer science”
throughout.

AQ 4 Please confirm the deletion of color
indications in Figure 4.1 as it is gray-colored
figure.

AQ 5 Please spell out or clarify XP.
AQ 6 “you could you [sic] regular expressions” not

clear.
AQ 7 Please confirm if line number “34” can be

changed to “33”.
AQ 8 Please provide the significance of numbers

used in Figures 4.2 and 4.3.
AQ 9 Two aspects “resource constraints and

research challenges” have been listed, but
three aspects have been discussed, excluding
research challenges. Please check.

AQ 10 References are renumbered sequentially based
on order of occurrence in citations. Please
confirm.

AQ 11 The section head Bibliography is changed to
References, since all references are cited in
text. Please confirm.

AQ 12 Please provide date and location of proceedings
in references 1, 2, 4, 5, 6, 7, 9, 16, 26, 28.

AQ 13 Please provide publisher name and location
for the book in reference 19.

AQ 14 Please provide date and location of
proceedings in reference 23 and also check the
page range (pp. 233–233).

K22498_C004.indd 113 01/21/15 10:02 AM

