
Obfuscation Resilient Search

Through Executable

Classification
Fang-Hsiang Su*, Jonathan Bell§, Gail Kaiser*, Baishakhi

Ray*

*Columbia University, §George Mason University

Problem: Obfuscation Resilient

Search

2

Introduction

Macneto

Why does it matter?

▰Android apps are usually obfuscated

▻Decrease executable size

▻Reduce disallowed reuse such as plagiarism

▻Hide the true intent of the executable: malware

3

Introduction

Why does it matter?

▰A security analyst wants to review the

application

▻A malware analyst receives an unknown malware

▻Checks if such malware is a variant of an existing malware

4

Introduction

Search Problem

Popular Obfuscation Techniques

5

Background

 Lexical transformation

• Replace identifier names

• Anonymize programs/executables

 Control transformation
• Change control flows

 Data transformation
• Encrypt/decrypt data, e.g., strings

• Might insert helper methods changing program structures

Obfuscation Example

6

Background

Search to Deobfuscate

 Recover identifier names

 Classify programs/executables:

○ Given an unknown executable, what are other

relevant executables?

○ Malware family identification

 Detect plagiarism

 Support analyst to discover semantic clusters

among programs

7

Motivation

Macneto: Obfuscation Resilient

Search

8

Obfuscator

semantically

identical

Represented by

Principal Component Vector

(PCV)

Train a DNN that can capture the

semantic similarity

Methodology

Macneto: Obfuscation Resilient

Search

9

DNN

Methodology

Instruction

Dist.

PCV

Offline Training

Macneto: Instruction Distribution

 A semantic proxy of application executables

 Use data flow analysis to collect potential methods

 InstructionDistribution(A) =

Sum(InstructionDistribution(Method))

10

Methodology

Macneto: PCA on Executables

 PCA on instruction distribution

 Select important dimensions

 Reduce dimensions

○ 252 features (instruction types)

->32 dimensions

 Decrease search time

11

Methodology

Macneto: Obfuscation Resilient

Search

12

DNN

Methodology

Instruction

Dist.

PCV

Offline Training

Unknown

Exe

Classifier

PCV

Online Search

Search for

similar PCVs

Research Questions

 RQ1: How precisely can Macneto retrieve

relevant executables?
○ Executable Search

 RQ2: Given an unknown executable, can

Macneto infer meaningful (human readable)

keywords?
○ Executable Understanding

13

Evaluation

Evaluation Settings

 1,500+ Android apps from FDroid repository

 Systematically obfuscate apps by Allatori
○ Anonymize apps

○ Change control flows

○ Encrypt data by inserting helper methods

 Systems to evaluate
○ Macneto

○ PCA: Using only PCA without deep learning to search

○ Naive: Using instruction distribution to search
14

Evaluation

Evaluation Metrics

 Given an obfuscated executable A’ as a query

 Mean Reciprocal Ranking: Multiplicative inverse of rank of

A

 Top@K: if the rank of A is equal or better than Kth position.

K= {1, 5, 10}

 Ex: A is returned by a search system with rank 2nd

○ MRR = ½

○ Top@1 = false, Top@5 = true

15

Evaluation

Result: Executable Search

 K-fold (8-fold) analysis: Each executable will be tested

 Here we present avg. values for 8 experiments

 Training APK: 1359, Testing APK: 200

16

Training

Time (s)

Query

Time (s)

Top@1 MRR Boost@1

Macneto 2845.7 24.09 0.80 0.86 17.76%

PCA 0.0354 20.13 0.74 0.82 8.32%

Naive N/A 65.09 0.68 0.78 0.00%

Evaluation

Result: Executable

Understanding

 Input: An unknown executable without human description

 Output: Key human words

 Find neighbors⇒ Leverage their descriptions

(documents)

17

DocsDocsDocs

MacnetoObf. Exe Similar

Known

Exes

Key words

Evaluation

Result: Executable

Understanding

 net.bierbaumer.otp_authenticator
○ Real description: “...two-factor authentication...scan the

QR code...”

○ Macneto said: “security” and “QR”

18

Evaluation

Out of 20 test APKs, at least one meaningful keyword provided by:

• Macneto :14

• naïve approach: 7

• PCA: 4

Threat of Validity

 While we believe the generalizability of Macneto, only

examine a single obfuscator

 Two executables may have different semantics. After

adding noise by obfuscators, they may become more

similar.

 DNN Hyper parameter tuning: more obfuscators, more

layers
19

Future Work

 Larger scale experiments

○ More executables

○ More obfuscators

○ More types of instructions

 Other proxies to represent executable

semantics

○ Auto-encoders

20

Conclusion

 Goal: precisely search for relevant executables, when the

query is obfuscated

 Macneto = Data flow analysis + PCA + Deep learning

 Up to 84% search precision

 Potential to infer human keywords given unknown

executables
21

Obfuscation Resilient Search

Through Executable

Classification
Fang-Hsiang Su*, Jonathan Bell§, Gail Kaiser*, Baishakhi

Ray*

*Columbia University, §George Mason University

https://github.com/Programming-Systems-Lab/macneto_release

Macneto: Learning

 Insight: Both original and obfuscated application

exectuables share the same semantics⇒ same

labels/classifications

 Input, ID(A_ori), ID(A_obf): Instruction distributions

 Output, PCV(A_ori): Principal Component Vector of

original app

 Deep learning minimizes

23

Methodology

Macneto : Code (Executable)

Search

 Given an unknown executable, the classifier predicts its

PCV

 Using this PCV to search for the most similar

application in the existing codebase

 This similar application can be the original version of

this unknown executable, even it is obfuscated

 Understand executables by inferring human words

24

Methodology

