
Obfuscation Resilient Search

Through Executable

Classification
Fang-Hsiang Su*, Jonathan Bell§, Gail Kaiser*, Baishakhi

Ray*

*Columbia University, §George Mason University

Problem: Obfuscation Resilient

Search

2

Introduction

Macneto

Why does it matter?

▰Android apps are usually obfuscated

▻Decrease executable size

▻Reduce disallowed reuse such as plagiarism

▻Hide the true intent of the executable: malware

3

Introduction

Why does it matter?

▰A security analyst wants to review the

application

▻A malware analyst receives an unknown malware

▻Checks if such malware is a variant of an existing malware

4

Introduction

Search Problem

Popular Obfuscation Techniques

5

Background

 Lexical transformation

• Replace identifier names

• Anonymize programs/executables

 Control transformation
• Change control flows

 Data transformation
• Encrypt/decrypt data, e.g., strings

• Might insert helper methods changing program structures

Obfuscation Example

6

Background

Search to Deobfuscate

 Recover identifier names

 Classify programs/executables:

○ Given an unknown executable, what are other

relevant executables?

○ Malware family identification

 Detect plagiarism

 Support analyst to discover semantic clusters

among programs

7

Motivation

Macneto: Obfuscation Resilient

Search

8

Obfuscator

semantically

identical

Represented by

Principal Component Vector

(PCV)

Train a DNN that can capture the

semantic similarity

Methodology

Macneto: Obfuscation Resilient

Search

9

DNN

Methodology

Instruction

Dist.

PCV

Offline Training

Macneto: Instruction Distribution

 A semantic proxy of application executables

 Use data flow analysis to collect potential methods

 InstructionDistribution(A) =

Sum(InstructionDistribution(Method))

10

Methodology

Macneto: PCA on Executables

 PCA on instruction distribution

 Select important dimensions

 Reduce dimensions

○ 252 features (instruction types)

->32 dimensions

 Decrease search time

11

Methodology

Macneto: Obfuscation Resilient

Search

12

DNN

Methodology

Instruction

Dist.

PCV

Offline Training

Unknown

Exe

Classifier

PCV

Online Search

Search for

similar PCVs

Research Questions

 RQ1: How precisely can Macneto retrieve

relevant executables?
○ Executable Search

 RQ2: Given an unknown executable, can

Macneto infer meaningful (human readable)

keywords?
○ Executable Understanding

13

Evaluation

Evaluation Settings

 1,500+ Android apps from FDroid repository

 Systematically obfuscate apps by Allatori
○ Anonymize apps

○ Change control flows

○ Encrypt data by inserting helper methods

 Systems to evaluate
○ Macneto

○ PCA: Using only PCA without deep learning to search

○ Naive: Using instruction distribution to search
14

Evaluation

Evaluation Metrics

 Given an obfuscated executable A’ as a query

 Mean Reciprocal Ranking: Multiplicative inverse of rank of

A

 Top@K: if the rank of A is equal or better than Kth position.

K= {1, 5, 10}

 Ex: A is returned by a search system with rank 2nd

○ MRR = ½

○ Top@1 = false, Top@5 = true

15

Evaluation

Result: Executable Search

 K-fold (8-fold) analysis: Each executable will be tested

 Here we present avg. values for 8 experiments

 Training APK: 1359, Testing APK: 200

16

Training

Time (s)

Query

Time (s)

Top@1 MRR Boost@1

Macneto 2845.7 24.09 0.80 0.86 17.76%

PCA 0.0354 20.13 0.74 0.82 8.32%

Naive N/A 65.09 0.68 0.78 0.00%

Evaluation

Result: Executable

Understanding

 Input: An unknown executable without human description

 Output: Key human words

 Find neighbors⇒ Leverage their descriptions

(documents)

17

DocsDocsDocs

MacnetoObf. Exe Similar

Known

Exes

Key words

Evaluation

Result: Executable

Understanding

 net.bierbaumer.otp_authenticator
○ Real description: “...two-factor authentication...scan the

QR code...”

○ Macneto said: “security” and “QR”

18

Evaluation

Out of 20 test APKs, at least one meaningful keyword provided by:

• Macneto :14

• naïve approach: 7

• PCA: 4

Threat of Validity

 While we believe the generalizability of Macneto, only

examine a single obfuscator

 Two executables may have different semantics. After

adding noise by obfuscators, they may become more

similar.

 DNN Hyper parameter tuning: more obfuscators, more

layers
19

Future Work

 Larger scale experiments

○ More executables

○ More obfuscators

○ More types of instructions

 Other proxies to represent executable

semantics

○ Auto-encoders

20

Conclusion

 Goal: precisely search for relevant executables, when the

query is obfuscated

 Macneto = Data flow analysis + PCA + Deep learning

 Up to 84% search precision

 Potential to infer human keywords given unknown

executables
21

Obfuscation Resilient Search

Through Executable

Classification
Fang-Hsiang Su*, Jonathan Bell§, Gail Kaiser*, Baishakhi

Ray*

*Columbia University, §George Mason University

https://github.com/Programming-Systems-Lab/macneto_release

Macneto: Learning

 Insight: Both original and obfuscated application

exectuables share the same semantics⇒ same

labels/classifications

 Input, ID(A_ori), ID(A_obf): Instruction distributions

 Output, PCV(A_ori): Principal Component Vector of

original app

 Deep learning minimizes

23

Methodology

Macneto : Code (Executable)

Search

 Given an unknown executable, the classifier predicts its

PCV

 Using this PCV to search for the most similar

application in the existing codebase

 This similar application can be the original version of

this unknown executable, even it is obfuscated

 Understand executables by inferring human words

24

Methodology

