
IWSC 2016

Challenges in 
Behavioral Code 
Clone Detection

Fang-Hsiang Su, 
Jonathan Bell, and
Gail Kaiser
Columbia University



Why Detecting Code Clones
❖ Code Clone: Similar code

❖ How to define similar: 

❖ Look-alike, function-alike, behavior-alike

❖ 4 types of clones 

❖ Syntactically, Structurally, Semantically similar, etc.

❖ Helpful for Developers
❖ Comprehend programs

❖ Search for useful APIs

❖ Re-engineer software systems



State Of The Art
❖ General Procedure

❖ Abstract programs + Compute similarity

❖ Static Analysis
❖ Token based: CCFinder, Baxter’s, etc.

❖ Abstract Syntax Tree: Deckard, Bellon’s, etc.

❖ Program Dependence Graph: JPlag, Krinke’s, etc.

❖ Dynamic Analysis
❖ Observe program I/Os: EQMiner, Deissenboeck’s, etc.

❖ Observe program side effects: Blanket Execution, etc.

Goal: Detect 
behave/function-alike 
programs

Question:
Static analysis detect all?

Argument: Probably no, 
static approximates
dynamic



• What:
• Detect programs with similar behavior

• How:
• Effective abstraction for runtime behavior
• Appropriate metrics to measure behavior
• Powerful algorithm to compute similarity



Application
❖ Program comprehension

❖ An user study shows how developers comprehend programs [1]

❖ 50% of comprehension strategies relevant to similar code

❖ Cross-binary detection of similar programs

❖ Detect similar programs under different languages, instruction sets

❖ Not only software engineering, but also security community

❖ Code search

❖ More

1. W.Maalej,R.Tiarks,T.Roehm,and R.Koschke.On theComprehension of Program Comprehension. 
ACM Transactions on Software Engineering Methodology, 23(4):31:1–31:37, Sept. 2014. 



Research Schedule
❖ Detect programs with the same (similar) I/Os

❖ Deissenboeck’s challenges to detect identical I/O clones proposed by EQMiner 
in Object Oriented languages

❖ What are I/Os, how to generate valid inputs, how to compare program outputs

❖ Our work : an in-vivo approach with configurable I/O comparison models to 
detect functionally similar programs

❖ Detect programs with similar runtime behaviors

❖ Interpret runtime behaviors of programs as graphs at instruction level

❖ Design a powerful (sub) graph isomorphism solver to detect patterns 
(clones) among programs



Conclusion
❖ Most current work focuses on static approach

❖ Static clones are approximation of real program 
behavior

❖ Dynamic approaches to detect similar code are 
challenging
❖ What’s the abstraction of runtime behavior?

❖ What’s the metric to evaluate runtime similarity?

❖ What’s the effective computational model?

We look forward to overcoming them!


