
T

X
a

b

c

d

e

f

a

A
R
R
A
A

M
M
T
O
V
V

1

t
t
b
e

b
a
f
b
c
p

f

U
f

(
(

0
d

The Journal of Systems and Software 84 (2011) 544–558

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

esting and validating machine learning classifiers by metamorphic testing�

iaoyuan Xiea,d,e,∗, Joshua W.K. Hob, Christian Murphyc,f, Gail Kaiserc, Baowen Xue, Tsong Yueh Chena

Centre for Software Analysis and Testing, Swinburne University of Technology, Hawthorn, Vic. 3122, Australia
Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
Department of Computer Science, Columbia University, New York, NY 10027, USA
School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
State Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19103, USA

r t i c l e i n f o

rticle history:
eceived 10 January 2010
eceived in revised form 17 October 2010
ccepted 25 November 2010
vailable online 7 December 2010

etamorphic testing

a b s t r a c t

Machine learning algorithms have provided core functionality to many application domains – such as
bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications
because often there is no “test oracle” to verify the correctness of the computed outputs. To help address
the software quality, in this paper we present a technique for testing the implementations of machine
learning classification algorithms which support such applications. Our approach is based on the tech-
nique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also
achine learning
est oracle
racle problem
alidation
erification

presented include a case study on a real-world machine learning application framework, and a discussion
of how programmers implementing machine learning algorithms can avoid the common pitfalls discov-
ered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method
has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not
sufficiently effective to detect faults in a supervised classification program. The effectiveness of meta-
morphic testing is further confirmed by the detection of real faults in a popular open-source classification

program.

. Introduction

Machine learning algorithms have provided core functionality
o many application domains – such as bioinformatics, compu-
ational linguistics, etc. As these types of scientific applications
ecome more and more prevalent in society (Mitchell, 1983),
nsuring their quality becomes more and more crucial.

Quality assurance of such applications presents a challenge
ecause conventional software testing techniques are not always
pplicable. In particular, it may be difficult to detect subtle errors,
aults, defects or anomalies in many applications in these domains

ecause it may be either impossible or too expensive to verify the
orrectness of computed outputs, which is referred to as the oracle
roblem (Weyuker, 1982).

� A preliminary version of this paper was presented at the 9th International Con-
erence on Quality Software (QSIC 2009) (Xie et al., 2009).
∗ Corresponding author at: Centre for Software Analysis and Testing, Swinburne
niversity of Technology, Hawthorn, Vic. 3122, Australia. Tel.: +61 3 9214 8678;

ax: +61 3 9819 0823.
E-mail addresses: xxie@groupwise.swin.edu.au (X. Xie), jwho@partners.org

J.W.K. Ho), cmurphy@cs.columbia.edu (C. Murphy), kaiser@cs.columbia.edu
G. Kaiser), bwxu@nju.edu.cn (B. Xu), tychen@groupwise.swin.edu.au (T.Y. Chen).

164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2010.11.920
© 2010 Elsevier Inc. All rights reserved.

The majority of the research effort in the domain of machine
learning focuses on building more accurate models that can bet-
ter achieve the goal of automated learning from the real world.
However, to date very little work has been done on assuring the
correctness of the software applications that implement machine
learning algorithms. Formal proofs of an algorithm’s optimal qual-
ity do not guarantee that an application implements or uses the
algorithm correctly, and thus software testing is necessary.

To help address the quality of machine learning programs,
this paper presents a technique for testing implementations
of the supervised classification algorithms which are used by
many machine learning programs. Our technique is based on
an approach called “metamorphic testing” (Chen et al., 1998),
which uses properties of functions such that it is possible to
predict expected changes to the output for particular changes
to the input. Although the correct output cannot be known in
advance, if the change is not as expected, then a fault must
exist.

In our approach, we first enumerate the metamorphic relations

that classifiers would be expected to demonstrate, then for a given
implementation determine whether each relation is a necessary
property for the corresponding classifier algorithm. If it is, then fail-
ure to exhibit the relation indicates a fault; if the relation is not a
necessary property, then a deviation from the “expected” behav-

dx.doi.org/10.1016/j.jss.2010.11.920
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:xxie@groupwise.swin.edu.au
mailto:jwho@partners.org
mailto:cmurphy@cs.columbia.edu
mailto:kaiser@cs.columbia.edu
mailto:bwxu@nju.edu.cn
mailto:tychen@groupwise.swin.edu.au
dx.doi.org/10.1016/j.jss.2010.11.920

ems an

i
a

o
(
c
i
o
d

b
t
t
r
4
a
c
a
m
p

2

l
b
(
t

n
a
l
e
a
t

2

s
o
a
c
a
fi
t

b
s
t

T
d
g
t
t

F
a

X. Xie et al. / The Journal of Syst

or has been found. In other words, apart from verification, our
pproach also supports validation.

In addition to presenting our technique, we describe a case study
n a real-world machine learning application framework, Weka
Witten and Frank, 2005), which is used as the foundation for many
omputational science tools such as BioWeka (Gewehr et al., 2007)
n bioinformatics. Additionally a mutation analysis is conducted
n Weka to investigate the effectiveness of our method. We also
iscuss how our findings can be of use to other areas.

The rest of this paper is organized as follows. Section 2 provides
ackground information about machine learning and introduces
he specific algorithms that are evaluated. Section 3 discusses
he metamorphic testing approach and the specific metamorphic
elations used for testing machine learning classifiers. Section

presents the results of case studies demonstrating that the
pproach can find faults in real-world machine learning appli-
ations. Section 5 discusses empirical studies that use mutation
nalysis to systematically insert faults into the source code, and
easures the effectiveness of metamorphic testing. Section 6

resents related work, and Section 7 concludes.

. Background

In this section, we present some of the basics of machine
earning and the two algorithms we investigated (k-nearest neigh-
ors and Naïve Bayes Classifier), as well as the terminology used
Alpaydin, 2004). Readers familiar with machine learning may skip
his section.

One complication in our work arose due to conflicting tech-
ical nomenclature: “testing”, “regression”, “validation”, “model”
nd other relevant terms have very different meanings to machine
earning experts than they do to software engineers. Here we
mploy the terms “testing”, “regression testing”, and “validation”
s appropriate for a software engineering audience, but we adopt
he machine learning sense of “model”, as defined below.

.1. Supervised machine learning fundamentals

In general, input to a supervised machine learning classifier con-
ists of a set of training data that can be represented by two vectors
f size k. One vector is for the k training samplesS = 〈s0, s1, . . ., sk−1〉
nd the other is for the corresponding class labelsC = 〈c0, c1, . . .,
k−1〉. Each sample s ∈ S is a vector of size m, which represents m
ttributes from which to learn. Each label ci in C is an element of a
nite set of class labels, that is, ci ∈ L = {l0, l1, . . ., ln−1}, where n is
he number of possible class labels.

Fig. 1 shows a small portion of a training data set that could
e used by supervised learning applications. The rows represent
amples from which to learn, as comma-separated attribute values;
he last number in each row is the label.

Supervised machine learning classifiers consist of two phases.

he first phase (called the training phase) analyzes the training
ata; the result of this analysis is a model that attempts to make
eneralizations about how the attributes relate to the label. In
he second phase (called the testing phase), the model is applied
o another, previously unseen data set (the testing data) where

ig. 1. Example of part of a data set used by supervised machine learning classifier
lgorithms.
d Software 84 (2011) 544–558 545

the labels are unknown. In a classification algorithm, the system
attempts to predict the label of each individual example. That is,
the testing data input is an unlabeled test case ts, and the aim is
to determine its class label ct based on the data-label relationship
learned from the set of training samples S and the corresponding
class labels C, where ct ∈ L.

2.2. Algorithms investigated

In this paper, we only study the k-nearest neighbors classifier
and the Naïve Bayes classifier, because of their popularity in the
machine learning community. However, it should be noted that
the oracle problem description and techniques described below are
not specific to any particular algorithm, and as shown in our pre-
vious work (Chen et al., 2009; Murphy et al., 2008), our results are
applicable to the general case.

In k-nearest neighbors (k NN), for a training sample set S, sup-
pose each sample has m attributes, 〈att0, att1, . . ., attm−1〉, and there
are n classes in S, {l0, l1, . . ., ln−1}. The value of the test case ts is 〈a0,
a1, . . ., am−1〉. k NN computes the distance between each training
sample and the test case. Generally k NN uses the Euclidean Dis-
tance: for a sample si ∈ S, suppose the value of each attribute is 〈sa0,
sa1, . . ., sam−1〉, and the distance between si and ts is as follows:

dist(si, ts) =

√√√√m−1∑
j

(saj − aj)
2.

After sorting all the distances, k NN selects the k nearest ones
which are considered as the k nearest neighbors. Then k NN calcu-
lates the proportion of each label in the k nearest neighbors, and
the label with the highest proportion is assigned as the label of the
test case.

In the Naï ve Bayes Classifier (NBC), for a training sample set S,
suppose each sample has m attributes, 〈att0, att1, . . ., attm−1〉, and
there are n classes in S, {l0, l1, . . ., ln−1}. The value of the test case ts

is 〈a0, a1, . . ., am−1〉. The label of ts is called lts, and is to be predicted
by NBC.

NBC computes the probability of lts to be of class lk, when each
attribute value of ts is 〈a0, a1, . . ., am−1〉. NBC assumes that attributes
are conditionally independent with one another given the class
label, therefore we have the equation:

P(lts = lk|a0a1· · ·am−1) =

P(lk)
∏

j

P(aj|lts = lk)

∑
i

P(li)
∏

j

P(aj|lts = li)

After computing the probability for each li ∈ {l0, l1, . . ., ln−1}, NBC
assigns the label lk with the highest probability, as the label of test
case ts.

Generally NBC uses a normal distribution to compute
P(aj | lts = lk). Thus NBC trains the training sample set to establish
a distribution function for each element attj of vector〈att0, att1, . . .,
attm−1〉 in eachli ∈ {l0, l1, . . ., ln−1}, that is, for all samples with label
li ∈ {l0, l1, . . ., ln−1}, it calculates the mean value � and mean square
deviation � of attj in all samples with li. Then a probability density
function is constructed for a normal distribution with � and �. For

test case ts with m attribute values 〈a0, a1, . . ., am−1〉, NBC computes
the probability of P(aj | lts = lk) using a small interval ı to calculate
the integral area. With the above formulae NBC can then compute
the probability of lts belonging to each li and choose the label with
the highest probability as the classification of ts.

5 ms an

2

“
t
w
m
l
o
u
t
r
f

t
k
t
t
p
B
m
(
i
i

g
n
i
w

3

p
fi
m
t

3

s
h
g
W
r
r
c
i
t
m

a
i
t
a
c
a
m
g
f
e
w
t

46 X. Xie et al. / The Journal of Syste

.3. Oracle problem in supervised machine learning classifiers

As described above, supervised machine learning classifiers
learn” knowledge from the given “training data”, based on which
hey give prediction for the “test data”. For a particular classifier,
hose specification is fixed, the prediction result must be deter-
inistic. However the prediction always involves very complicated

ogical and computational process, and brings difficulties in figuring
ut the expected result, for any arbitrary training data and test data,
nless we can repeat the whole process with a “perfect” version of
he program. Obviously such a “perfect” version never exists in the
eal-world. This makes the supervised machine learning classifiers
all into the category of programs having the oracle problem.

Usually testers for classifier software just utilize some special
est cases which were acquired from previous studies or domain
nowledge, and seldomly conduct comprehensive testing, due to
he oracle problem. Such an approach is unsatisfactory because
hese classifiers usually serve as the kernel and fundamental com-
onents in many applications. For example, a popular tool called
ioWeka (Gewehr et al., 2007) just adopts the algorithms imple-
ented in the famous machine learning algorithm package Weka

Witten and Frank, 2005), for further computation in bioinformat-
cs. Consequently the quality of these machine learning programs
s very crucial.

Therefore in this paper, we propose a method to test such pro-
rams, based on the technique called metamorphic testing. We do
ot directly verify the correctness of each individual testing result;

nstead we check whether they satisfy certain expected properties
ith respect to multiple but related inputs.

. Our approach

Our approach is based on a testing technique called metamor-
hic testing (Chen et al., 1998). In the rest of this section, we will
rst briefly summarize its concept, introduce some guidelines in
etamorphic relation (MR) selection, and then give the definitions

o all the MRs for the two target classifiers.

.1. Metamorphic testing

The oracle problem has been one of the biggest difficulties in
oftware testing during the past decades, and several attempts
ave been conducted to alleviate it. One attempt for testing pro-
rams without a test oracle is to use a “pseudo-oracle” (Davis and
eyuker, 1981), in which multiple implementations of an algo-

ithm process the same input and the results are compared; if the
esults are not the same, then one or both of the implementations
ontains a fault. This is not always feasible, though, since multiple
mplementations may not exist, or they may have been created by
he same developers, or by groups of developers who are prone to

aking the same types of mistakes (Knight and Leveson, 1986).
However, even without multiple implementations, often these

pplications exhibit properties such that if the input were modified
n a certain way, it should be possible to predict some characteris-
ics of the new output, given the output of the original input. This
pproach is known as metamorphic testing. Metamorphic testing
an be implemented easily in practice. The first step is to identify
set of properties (“metamorphic relations”, or MRs) that relate
ultiple inputs and their outputs of the algorithm for the tar-
et program. Then, the source test cases and their corresponding
ollow-up test cases are constructed based on these MRs. We then
xecute all these test cases using the target program, and check
hether the outputs of the source and follow-up test cases satisfy

heir corresponding MRs.
d Software 84 (2011) 544–558

A simple example to which metamorphic testing could be
applied would be one that calculates the standard deviation of a set
of numbers. Certain transformations of the set would be expected
to produce the same result. For instance, permuting the order of the
elements should not affect the calculation; nor would multiplying
each value by −1, since the deviation from the mean would still be
the same.

Furthermore, there are other transformations that will alter
the output, but in a predictable way. For instance, if each value
in the set is multiplied by 2, then the standard deviation should
be twice as much as that of the original set, since the values on
the number line are just “stretched out” and their deviation from
the mean becomes twice as great. Thus, given one set of numbers
(the source test cases), we can use these metamorphic relations to
create three more sets of follow-up test cases (one with the ele-
ments permuted, one with each multiplied by −1, and another
with each multiplied by 2); moreover, given the outputs of the
source test cases, we can predict the outputs of the follow-up test
cases.

3.2. Guidelines for defining metamorphic relations

It is obvious that metamorphic testing is simple in concept, easy
to implement, automatable, and independent of any particular pro-
gramming language. In metamorphic testing, the most crucial step
is the identification of the MRs. In previous studies which focus
on verification, MRs are specifically enumerated for each individ-
ual algorithm under test. Actually we can also harness the domain
knowledge, as a form of MR repository. This knowledge can either
be specific to a particular algorithm, or a general anticipation in
that domain. The former can be used to construct MRs which are
necessary properties and can then be used for the purpose of ver-
ification. And though the latter may not always be the necessary
properties for all peer algorithms, can still be used for the purpose
of validation.

With respect to selecting a good MR, there are several prin-
ciples that can be followed, from both white-box and black-box
perspectives, such as logical hierarchy, difference in execution
traces, user’s profiles, etc. (Chen et al., 2004). For example, based
on the principle of “difference in execution traces”, we should
select MRs with more differences between the execution traces
of source test cases and follow-up test cases. Here is an illustra-
tion. The Shortest-Path program SP accepts 3 parameters as inputs:
a given graph G, a starting node s, and an ending node e. SP(G,
s, e) returns the shortest path between s and e and |SP(G, s, e) |
denotes the length of SP(G, s, e). Let us consider the two follow-
ing MRs. MR1 is | SP(G, s, e) | = | SP(G, s, m) |+| SP(G, m, e) |, where
m denotes a visited node between s and e returned by SP(G, s, e);
and MR2 is |SP(G, s, e) | = | SP(G, e, s) |. Apparently, these two MRs
will execute different path-pairs (source path and follow-up path),
and a path pair with more difference is preferred as a better MR.
Of course in order to decide which MR will result in more exe-
cution difference, we can just run the program and collect the
real coverage information. But we also can acquire this informa-
tion simply by analysing the mechanism of the algorithm, without
any execution. Supposing the algorithm is a forward-search algo-
rithm, obviously MR2 is likely to be associated with more execution
difference than MR1. However if the algorithm is a 2-way search
method, MR2 will not necessarily yield more execution difference
than MR1.

Apart from the above principles, there are also some other

features that may affect the fault detection ability of certain
MR. One important feature is about the type of the relation
among the relevant outputs for an MR. Intuitively speaking,
an equality relation is preferred to a non-equality one. Here
by “equality relation”, we mean in a metamorphic group, the

ems an

s
e
i
a
e
c

3

t
t
a
a
A
w

s
f
o
c

c
m
i
t
r

a
r

t
F
t
s
a
e
t

i
f
i
l
f

s
i
W
t

p
i
a
s

s
I
d
c
i
t
C
d
p
n

X. Xie et al. / The Journal of Syst

ource and the follow-up outputs are expressed in an equality
xpression. This kind of relation is preferred because an equal-
ty expression is tighter than a non-equality one. Consequently
n MR with equality relation is more easily violated than a non-
quality relation. Therefore in this study, we use MRs with such
haracteristics.

.3. Metamorphic relations for supervised classifiers

In previous work (Murphy et al., 2008), we broadly classified six
ypes of metamorphic relations (MRs) applicable to many different
ypes of machine learning applications, including both supervised
nd unsupervised machine learning. In this work, however, our
pproach focuses on the supervised machine learning classifiers.
ccording to the general anticipated behaviors of these algorithms,
e define our MRs formally as follows.

MR-0: Consistence with affine transformation. The result
hould be the same if we apply the same arbitrary affine trans-
ormation function, f(x) = kx + b, (k /= 0) to the values of any subset
f attributes for each sample in the training data set S and the test
ase ts.

MR-1.1: Permutation of class labels. Assume that we have a
lass-label permutation function Perm () to perform one-to-one
apping between a class label in the set of labels L to another label

n L. If the source case result is li, applying the permutation function
o the set of corresponding class labels C for the follow-up case, the
esult of the follow-up case should be Perm(li).

MR-1.2: Permutation of the attribute. If we permute the m
ttributes of all the samples and the test data, the output should
emain unchanged.

MR-2.1: Addition of uninformative attributes. An uninforma-
ive attribute is one that is equally associated with each class label.
or the source input, suppose we get the result ct = li for the test case
s. In the follow-up input, we add an uninformative attribute to each
ample in S and respectively a new attribute in ts. The choice of the
ctual value to be added here is not important as this attribute is
qually associated with the class labels. The output of the follow-up
est case should still be li.

MR-2.2: Addition of informative attributes. For the source
nput, suppose we get the result ct = li for the test case ts. In the
ollow-up input, we add an informative attribute to each sample
n S and ts such that this attribute is strongly associated with class
i and equally associated with all other classes. The output of the
ollow-up test case should still be li.

MR-3.1: Consistence with re-prediction. For the source input,
uppose we get the result ct = li for the test case ts. In the follow-up
nput, we can append ts and ct to the end of S and C respectively.

e call the new training dataset S′ and C′. We take S′, C′ and ts as
he input of the follow-up case, and the output should still be li.

MR-3.2: Additional training sample. For the source input, sup-
ose we get the result ct = li for the test case ts. In the follow-up

nput, we duplicate all samples in S with label li, as well as their
ssociated labels in C. The output of the follow-up test case should
till be li.

MR-4.1: Addition of classes by duplicating samples. For the
ource input, suppose we get the result ct = li for the test case ts.
n the follow-up input, we duplicate all samples in S and C that
o not have label li and concatenate an arbitrary symbol “*” to the
lass labels of the duplicated samples. That is, if the original train-
ng sample set S is associated with class labels 〈A, B, C〉 and li is A,

he set of classes in S in the follow-up input could be 〈A, B, C, B ∗ ,
∗ 〉. The output of the follow-up test case should still be li. Another
erivative of this metamorphic relation is that duplicating all sam-
les from any number of classes which do not have label li should
ot change the result of the output of the follow-up test case.
d Software 84 (2011) 544–558 547

MR-4.2: Addition of classes by re-labeling samples. For the
source input, suppose we get the result ct = li for the test case ts.
In the follow-up input, we re-label some of the samples in S with
labels other than li, through concatenating an arbitrary symbol “*”
to their associated class labels in C. That is, if the original training
set S is associated with class labels 〈A, B, B, B, C, C, C〉 and c0 is A, the
set of classes in S in the follow-up input may become 〈A, B, B, B ∗ ,
C, C ∗ , C ∗ 〉. The output of the follow-up test case should still be li.

MR-5.1: Removal of classes. For the source input, suppose we
get the result ct = li for the test case ts. In the follow-up input, we
remove one entire class of samples in S of which the label is not li.
That is, if the original training sample set S is associated with class
labels 〈A, A, B, B, C, C〉 and li is A, the set of classes in S in the follow-
up input may become 〈A, A, B, B〉. The output of the follow-up test
case should still be li.

MR-5.2: Removal of samples. For the source input, suppose we
get the result ct = li for the test case ts. In the follow-up input, we
remove part of some of the samples in S and C of which the label
is not li. That is, if the original training set S is associated with class
labels 〈A, A, B, B, C, C〉 and li is A, the set of classes in S in the follow-
up input may become 〈A, A, B, C〉. The output of the follow-up test
case should still be li.

3.4. Analysis of relations for classifiers

It can be seen from the above discussion that, for machine learn-
ing classifiers, the MRs can be derived either from the specification
of a particular algorithm under test, or from the users’ general
expectation for the classifiers. Obviously the former group of prop-
erties, which are necessary properties to the relevant algorithm,
can be used for the purpose of verification, that is, if the implemen-
tation does not exhibit this property, then there is a fault. While the
latter ones, which may not be necessary properties for all the clas-
sifiers, can still be adopted to support validation, that is, whether
the selected algorithm can satisfy the user’s expected/potential
requirements.

The discussion on the necessary properties for k NN and NBC
will be detailed in Appendix A. Here we are going to demonstrate
some of the relations that are not necessary properties for the algo-
rithms being implemented, which can still be used for the purpose
of validation.

For k NN, five of the metamorphic relations given above are not
its necessary properties but can be used for validation purposes
instead. MR-1.1 (Permutation of class labels) is not a necessary
property because of tiebreaking between two labels for prediction
that are equally likely: permuting their order may change which
one is chosen by the tiebreaker.

Additionally, MR-5.1 (Removal of classes) is not a necessary
property. Suppose the predicted label of the test case is li. MR-5.1
removes a whole class of samples without label li. Consequently
this will remove the same samples in the set of k nearest neigh-
bors, and thus some other samples will be included in the set of k
nearest neighbors. These samples may have any labels except the
removed one, and so the likelihood of any label (except the removed
one) may increase. Therefore there are two situations: (1) If in the k
nearest neighbors of the source case, the proportion of li is not only
the highest, but also higher than 50%, then in the follow-up predic-
tion, no matter how the k nearest neighbors change, the prediction
will remain the same, because no matter which labels increase, the
proportion of li will still be higher than 50% as well. Thus the predic-
tion remains li. Now consider situation (2), in which in the k nearest

neighbors of the source case, the proportion of li is the highest but
lower or equal to 50%. Since the number of each survived label may
increase, and the original proportion of li is lower or equal to 50%,
it is possible that the proportion of some other label increases and
becomes higher than li: thus, the prediction changes.

5 ms and Software 84 (2011) 544–558

(
o
l

e
a
c
W
e
o
t
t

4

a
a
l
c
i
D
“
F
i
a
b

4

I
p
a
t
l
c
o
w
v
a
a

d
t
d
m
1

t
s
e
fi
a
c
m

a
s
t
e
p
d

Table 1
Result of testing k NN and NBC.

MR kNN NBC

NP VP NP VP

0 Y 0 Y 7.4%
1.1 15.9% Y 0.3%
1.2 Y 0 Y 0
2.1 Y 0 Y 0.6%
2.2 4.1% Y 0
3.1 Y 0 0
3.2 Y 0 Y 0
4.1 25.3% Y 0
48 X. Xie et al. / The Journal of Syste

Similarly MR-2.2 (Addition of informative attributes), MR-4.1
Addition of classes by duplicating samples), and MR-5.2 (Removal
f samples) may not hold if the predicted label has a likelihood of
ess than 50%.

For the NBC, three of the metamorphic relations are not consid-
red necessary properties, but can still be used for validation. They
re MR-3.1 (Consistence with re-prediction), MR-4.2 (Addition of
lasses by re-labeling samples), and MR-5.2 (Removal of samples).

e could neither prove nor disprove MR-3.1 as a necessary prop-
rty of NBC. Hence MR-3.1 is not treated as a necessary property
f NBC in this study. While for the other two MRs, since both of
hem actually introduce noise to the data set, which could affect
he result, we can prove that they are not necessary properties.

. Case studies

To demonstrate the effectiveness of metamorphic verification
nd validation in machine learning classifiers, we applied the
pproach to Weka 3.5.7 (Witten and Frank, 2005). Weka is a popu-
ar open-source machine learning package that implements many
ommon algorithms for data preprocessing, classification, cluster-
ng, association rule mining, attribute selection and visualization.
ue to its large range of functionality, it is normally used as a

workbench” for applying various machine learning algorithms.
urthermore, Weka is widely used as the back-end machine learn-
ng engine for various applications in computational science, such
s BioWeka (Gewehr et al., 2007) for machine learning tasks in
ioinformatics.

.1. Experimental setup

We adopted a random data model in our experiments as follows.
n one source test suite, there are x inputs. Each input i has two
arts: tr i and t i, in which tr i represents the training sample set,
nd t i represents the test case. In each training sample set tr i and
est case t i, there are four attributes: 〈A0, A1, A2, A3〉, and a class
abel L with three possible nominal values {L0, L1, L2}. Since the two
lassifiers under investigation are specific to numeric attributes, in
rder to conform to this, in our study we assign a numeric value
ithin a valid range [a, b] to each attribute, as well as a nominal

alue to the class label, for each tr i and t i in the suite. All the
ssignments are random. Besides the number of samples in tr i is
lso randomly decided with a maximum of k.

This randomly generated data model does not encapsulate any
omain knowledge, that is, we do not use any meaningful, existing
raining data for testing: even though those data sets are more pre-
ictable, they may not be sensitive to detecting faults. Random data
ay, in fact, be more useful at revealing faults (Duran and Ntafos,

984).
Based on each MR-j, x follow-up inputs are constructed from

he x source inputs. After conducting classification with both the
ource and the follow-up inputs, we compare their results against
ach MR-j. A revealed violation in an MR implies either faults (veri-
cation), or a deviation between the actual behaviors of the current
lgorithm and the users’ general anticipation of a machine learning
lassifier (validation), which highlights that the current algorithm
ay not be appropriate for use.
For each MR-j, we conducted several batches of experiments,

nd in each batch of experiments we changed the value of x (size of

ource suite) and k (max number of training samples). Intuitively
he more inputs we tried (the higher is x), the more likely we are to
ncounter violations. Also, we would expect that with fewer sam-
les in the training data set (the less is k), the less predictable the
ata are.
4.2 Y 0 3.9%
5.1 5.9% Y 5.6%
5.2 2.8% 2.8%

In our case study, we instantiate the random model with inputs
number k from 20 to 300, maximal number of training sample k
from 20 to 50, and the valid value range [a, b] for each atrribute of
[1, 20].

4.2. Experimental results and findings

All the MRs that derived from the commonly expected behav-
iors of a machine learning classifier in Section 3.3 are adopted in
our experimental study, for both k NN and NBC. Table 1 summa-
rizes the experimental results. In this table, for each algorithm, MRs
that are its necessary properties are marked as NP, otherwise they
are unmarked; VP indicates the percentage of violations found in
the corresponding MR. Obviously MRs marked with NP are used for
verification, and a non-zero VP indicates the existence of faults. On
the other hand, unmarked MRs are used for the purpose of valida-
tion, and a non-zero VP implies faults or a deviation between the
actual behaviors of this algorithm and the users’ general anticipa-
tion on machine learning classifiers. Such deviation indicates that
for users with the anticipation described by the corresponding MR,
the current algorithm is not an appropriate one for use.

It can be seen from Table 1 that NBC of Weka has violations in
some necessary properties, indicating faults. For both k NN and NBC,
metamorphic relations that could be used for validation are also
violated, perhaps not indicating an actual fault but showing that
the implementations could yield unexpected results and deviate
from the behavior anticipated by the users.

4.2.1. k-Nearest neighbors
None of the necessary properties of k NN were violated in our

experiment, but we did uncover violations in some of the other
properties that are not necessary properties to k NN. Although these
violations are not necessarily indicative of faults per se, they do
demonstrate a deviation from what would normally be expected.
Followings are examples of such violations.

1. Calculating distribution. In the Weka implementation of k
NN, a vector distance with the length of numOfSamples is used to
record the distance between each sample from the training data
and the test case to be classified. After determining the values in
distance, Weka sorts it in ascending order, to find the nearest k sam-
ples from the training data, and then puts their corresponding labels
into another vector k-Neighbor with the length of k.

Weka traverses k-Neighbor, computes the proportion of each
label in it and records the proportions into a vector distribution with
the length of numOfClasses as follows: Each element of vector distri-

bution is initialized as 1/numOfSamples. It then traverses the array
k-Neighbor, and for each label in k-Neighbor, it adds the weight of its
distribution value (in our experiments, the weight is 1), that is, for
each i, distribution[k-Neighbor[i].label] + 1. Finally, Weka normalizes
the whole distribution vector.

X. Xie et al. / The Journal of Systems an

t
s
1
a
1
b
0
0

t
n
c
t
t
a
b
i

a
t
m
p
t
d

c
a
h
o

t
p
e
o
f
a
a

4

e
p

o
t
r
g
ı
t

Fig. 2. Sample data sets.

Fig. 2 shows two data sets, with the training data on the left, and
he test case to be classified on the right. For the test case to be clas-
ified, the (unsorted) values in the vector distance are 〈11.40, 7.35,
2.77, 10.63, 13, 4.24〉, and the values in k-Neighbor are 〈1, 2, 0〉,
ssuming k = 3. The vector distribution is initialized as 〈1/6, 1/6, 1/6,
/6, 1/6, 1/6〉. After traversing the vector k-Neighbor, we get distri-
ution = 〈1 + 1/6, 1 + 1/6, 1 + 1/6, 1/6, 1/6, 1/6〉 = 〈1.167, 1.167, 1.167,
.167, 0.167, 0.167〉. After the normalization, distribution = 〈0.292,
.292, 0.292, 0.042, 0.042, 0.042〉.

The issue here, as revealed by MR-5.1 (Removal of classes), is
hat labels which never existed in the training data samples have
on-zero probability of being chosen in the vector distribution. By
ommon sense, one might expect that if a label did not occur in the
raining data, there would be no reason to classify a test case with
hat label. However, by initializing the distribution vector so that
ll labels are equally likely, even non-existent ones become possi-
le. Although this is not necessarily an incorrect implementation,

t does deviate from what one would normally expect.
2. Choosing labels with equal likelihood. Another issue is

bout the choice of the label when there are multiple labels with
he same probability. Our testing indicated that in some cases, this

ethod may lead to the violation in some MR transformations,
articularly MR-1.1 (Permutation of class labels), MR-2.2 (Addi-
ion of informative attributes), and MR-4.1 (Addition of classes by
uplicating samples).

Consider the same example in Fig. 2. To perform the classifi-
ation, Weka chooses the first highest value in distribution, and
ssigns its label to the test case. For this example, l0, l1, and l2 all
ave the same highest proportion in distribution, so based on the
rder of the labels, the final prediction is l0, since it is first.

However, if the labels are permuted (as in MR-1.1, for instance),
hen another label with equal probability might be chosen if it hap-
ens to be first. This is not a fault per se (after all, if there are three
qually-likely classifications and the function needs to return only
ne, it must choose somehow) but rather it represents a deviation
rom expected behavior (that is, the order of the data set shall not
ffect the computed outputs), which could have an effect on an
pplication expecting such a scenario.

.2.2. Naïve Bayes classifier
Our investigation into NBC revealed violations in both the nec-

ssary MRs indicating faults, and the MRs that are not necessary
roperties to NBC, indicating faults or unexpected behaviors.

1. Loss of precision. Precision can be lost due to the treatment
f continuous values. In a pure mathematical model, a normal dis-

ribution is used for continuous values. Obviously it is impossible to
ealize true continuity in a digital computer. To implement the inte-
ral function, for instance, it is necessary to define a small interval
to calculate the area. In Weka, a variable called precision is used as

he interval. The precision for attj is defined as the average interval of
d Software 84 (2011) 544–558 549

all the values. For example, suppose there are 5 samples in the train-
ing sample set, and the values of attj in the five samples are 2, 7, 7, 5,
and 10 respectively. After sorting the values we have vector 〈2, 5, 7,
7, 10〉. Thus precision = [(5 − 2) + (7 − 5) + (10 − 7)]/(1 + 1 + 1) = 2.67.

However, Weka rounds all the values x in both the training
samples and test case with precision pr by usinground(x/pr) ∗ pr.
These rounded values are used for the computation of the
mean value �, mean square deviation �, and the probability
P(lts = lk | a0a1 · · · am−1). This manipulation means that Weka treats
all the values within ((2k − 1) ∗ pr/2, (2k + 1) ∗ pr/2] as k ∗ pr, in which
k is any integer.

This may lead to the loss of precision and hence may result in
the violation of some MR transformations, particularly MR-0 (Con-
sistence with affine transformation) and 5.1 (Removal of classes).
As a reminder, both of these are necessary properties.

There are also related problems of calculating integrals in Weka.
A particular calculation determines the integral of a certain function
from negative infinity to t = x − �/�. When t > 0, a replacement is
made so that the calculation becomes 1 minus the integral from t
to positive infinity. However, this may raise an issue because in
Weka, all these values are of the Java datatype “double”, which
only has a maximum of 16 bits for the decimal fraction. It is very
common that the value of the integral is very small, thus after the
subtraction by 1.0, there may be a loss of precision. For example,
if the integral I is evaluated to 0.0000000000000001, then 1.0 –
I = 0.9999999999999999. Since there are 16 bits of the number 9,
in Java the double value is treated as 1.0. This also contributed to
the violation of MR-0 (Consistence with affine transformation).

2. Calculating proportions of each label. In NBC, to compute
the value of P(lts = lk | a0a1 · · · am−1), we need to calculate P(lk). Gen-
erally when the samples are equally weighted, P(lk) = (number of
samples with lk)/(number of all the samples). However, Weka uses
Laplace Accuracy by default, that is, P(lk) = (number of samples
with lk + 1)/(number of all the samples + number of classes).

For example, consider a training set with six classes and eight
samples, with labels as follows: 〈l0, l0, l1, l1, l1, l2, l3, l3〉. Following
the probability theory, the vector of proportions for l0 to l5 is 〈2/8,
3/8, 1/8, 2/8, 0/8, 0/8〉 = 〈0.25, 0.375, 0.125, 0.25, 0, 0〉. However in
Weka, using Laplace Accuracy, the vector of proportions for l0 to l5
becomes 〈(2 + 1)/(8 + 6), (3 + 1)/(8 + 6), (1 + 1)/(8 + 6), (2 + 1)/(8 + 6),
(0 + 1)/(8 + 6), (0 + 1)/(8 + 6)〉 = 〈0.214, 0.286, 0.143, 0.214, 0.071,
0.071〉. This difference caused a violation of MR-2.1 (Addition of
uninformative attributes), which was also considered a necessary
property.

3. Choosing labels. Finally, there are problems in the principle of
“choosing the first label with the highest possibility”, as seen above
for k NN. Usually the probabilities are different among different
labels. However in Weka, since the non-existent labels in the train-
ing set have non-zero probability, those non-existent labels may
conceivably share the same highest probability. This caused a viola-
tion of MR-1.1 (Permutation of class labels), which was considered
a necessary property.

4.3. Discussion

4.3.1. Addressing violations of properties
Our experiments reported the violation of four MRs in k NN;

however, none of these were necessary properties and are mostly
related to the situation where the algorithm must return one result
but more than one “correct” answers are available. However, in
NBC, we uncovered violations of some necessary properties, which

indicate faults. Our experience of this study shall be valuable to
those who are developing similar applications.

To address the issues in NBC related to the precision of floating
point numbers, we suggest using the BigDecimal class in Java rather
than the “double” datatype. A BigDecimal represents immutable

5 ms and Software 84 (2011) 544–558

a
p
o
d
t
t
V
d

N
t
b
H
t
s
t
t
r
b
L

4

u
a
t
o
i

t
m
t
p
M
r
v
c
o
N
o
i
a
o

a
i
2
l
b
w
k
s

t
b
v
a
l
a
t
t
a
r
t
O
a

Table 2
Selected files for mutation analysis.

k NN NBC

weka.classifiers.lazy.IBk.java weka.classifiers.bayes.NaiveBayes.java
weka.core.Attribute.java weka.core.Attribute.java
weka.core.Instance.java weka.core.Instance.java
weka.core.Instances.java weka.core.Utils.java
weka.core.Utils.java weka.core.Statistics
weka.core.neighboursearch.

LinearNNSearch.java
weka.estimators.DiscreteEstimator.java

weka.core.neighboursearch. weka.estimators.Estimator.java
50 X. Xie et al. / The Journal of Syste

rbitrary precision decimal numbers, and consists of an arbitrary
recision integer unscaled value and a 32-bit integer scale. If zero
r positive, the scale is the number of digits to the right of the
ecimal point. If negative, the unscaled value of the number is mul-
iplied by ten to the power of the negation of the scale. The value of
he number represented by the BigDecimal is therefore (unscaled-
alue ∗ 10-scale). Thus, it can help to avoid the loss of precision when
oing “1.0 − x”.

The use of Laplace Accuracy also caused some violations in the
BC implementation. The reason is as follows. Since Weka treats

he label as a nominal attribute, the label will then be processed
y Laplace Accuracy as a nominal attribute in the training data set.
owever, the label should not be treated in such a way. As noted,

he side effect of using Laplace Accuracy is that the labels that never
how up in the training set also have non-zero probability, and thus
hey may interfere with the prediction, especially when the size of
he training sample set is quite small. In some cases the predicted
esults are the non-existent labels. We suggest that the label should
e treated as a special-case nominal attribute, to which the use of
aplace Accuracy should be disabled.

.3.2. More general applications
Our technique has been shown to be effective for the two partic-

lar algorithms. More importantly, it is actually feasible for other
reas of machine learning. First, our previous studies have shown
he effectiveness of using MT for the purpose of verification in some
ther types of machine learning areas (ranking, unsupervised learn-
ng, etc.) (Murphy et al., 2008, 2009; Murphy and Kaiser, 2010).

Secondly, our technique actually introduces a general process
o verify and validate a machine learning algorithm, based on

etamorphic testing. In this process, MRs are defined based on
he general domain knowledge, and can be adopted in any of the
eer algorithms for the same application domain. That is, if an
R can be proved as the necessary property to a specific algo-

ithm, it will serve for the purpose of verification, otherwise, for
alidation. In particular, this study focuses on supervised classifi-
ation algorithms, and the experience from this study should be
f broad applicability to many other algorithms in this field. The k
N and NBC algorithms described in this paper are representatives
f two major algorithmic approaches to supervised classification:
nstance-based learning algorithms and generative model-based
lgorithms, respectively. The list of MRs in Section 3.3 is just part
f the MR repository in the whole machine learning domain.

More importantly, the approach can be used to validate
ny application that relies on machine learning techniques. For
nstance, bioinformatics tools such as Medusa (Middendorf et al.,
005) use classification algorithms. If the underlying machine

earning algorithms are not correctly implemented, or do not
ehave as the user expects, then the overall application likewise
ill not perform as anticipated. As long as the user of the software

nows the expected metamorphic relations, then the approach is
imple and powerful to validate the implementation.

One emerging application of these supervised classifiers is in
he area of clinical diagnosis using a combination of systems-level
iomolecular data (e.g., microarrays or sequencing data) and con-
entional pathology tests (e.g., blood count, histological images,
nd clinical symptoms). It has been demonstrated that a machine
earning approach of multiple data types can yield more objective
nd accurate diagnostic and prognostic information than conven-
ional clinical approaches alone. However, for clinical adoption of
his approach, these programs that implement machine learning

lgorithms must be rigorously verified and validated for their cor-
ectness and reliability (Ho et al., in press). A mis-diagnosis due
o a software fault can lead to serious, even fatal, consequences.
ur case studies clearly demonstrated the importance of rigorous
nd systematic testing of this type of machine learning algorithm.
NearestNeighbourSearch.java
weka.core.NormalizableDistance.java weka.estimators.KernelEstimator.java
weka.core.EuclideanDistance.java weka.estimators.NormalEstimator.java

Thus our proposed testing strategy based on metamorphic testing
becomes even more crucial to improve the quality of one of the
most critical parts in these kinds of applications.

5. Mutation analysis

In the case study presented in Section 4, we applied the meta-
morphic relations in Section 3.3 to the k NN and NBC classifiers
implemented in Weka-3.5.7. Through the violations of the neces-
sary properties of NBC, we discovered faults in its implementation.
Even though these real-world faults illustrate the effectiveness of
our method in verification of programs that do not have test ora-
cles, they cannot empirically show how effective our method is.
Thus, in this section, we conduct further experiments with muta-
tion analysis, aiming to investigate the effectiveness of our method
in verification.

5.1. Experimental setup

To gain an understanding of how effective metamorphic testing
is at detecting faults in applications without test oracles, we use
mutation analysis to systematically insert faults into the applica-
tions of interest. Mutation analysis has been shown to be suitable
for evaluation of effectiveness, as experiments comparing mutants
to real faults have suggested that mutants are a good proxy for
comparisons of testing techniques (Andrews et al., 2005).

5.1.1. Mutant generation
In our mutation analysis, we applied MuJava (Ma et al., 2005) to

systematically generate mutants for Weka-3.5.7. MuJava is a pow-
erful and automatic mutation analysis system, which allows user to
select related source files to be mutated. Since Weka is large-scale
software (the total source code is about 16.4M), and our experi-
ments only focused on certain major functions of k NN and NBC,
in order to exclude the equivalent mutants, we only selected files
related to these two classifiers according to their hierarchy struc-
ture. Table 2 lists all the selected files in our mutation analysis for
both k NN and NBC.

With respect to the types of faults, MuJava provides two lev-
els of mutation operators: method-level operators (also known as
“traditional operators” that were originally designed for structured
programs (Offutt et al., 1996)) and “class-level operators” (partic-
ularly designed for object-oriented programs) (Ma et al., 2005).

Usually MuJava can generate many more syntactically correct
mutants using method-level operators than using the class-level
ones. Hence in our experiments, we targeted these traditional

method-level mutants, which may induce both intra-method and
inter-method failures. For both k NN and NBC, we randomly
selected 30 valid mutants generated by MuJava, and the operators
covered by these mutants are listed in Table 3.

X. Xie et al. / The Journal of Systems and Software 84 (2011) 544–558 551

Table 3
Mutation operators covered by selected mutants.

Operator Description

AOR Arithmetic Operator Replacement
ROR Relational Operator Replacement
COR Conditional Operator Replacement
SOR Shift Operator Replacement
LOR Logical Operator Replacement
ASR Short-Cut Assignment Operator Replacement

Table 4
Metamorphic relations for k NN used in mutation analysis.

k = 1 k = 3

MR-1.1 Permutation of
class labels

MR-0 Consistence with affine
transformation

MR-2.2 Addition of
informative attributes

MR-1.2 Permutation of the attribute

MR-4.1 Addition of classes
by duplicating samples

MR-2.1 Addition of uninformative
attributes

MR-5.1 Removal of classes MR-3.1 Consistence with re-prediction
MR-5.2 Removal of MR-3.2 Additional training sample

5

t
n
fi
i
t
k

M
t
t
M
i
d
T
t

Table 5
Metamorphic relations for NBC used in mutation analysis.

MR-0 Consistence with affine transformation

MR-1.1 Permutation of class labels
MR-1.2 Permutation of the attribute
MR-2.1 Addition of uninformative attributes
MR-2.2 Addition of informative attributes
MR-3.2 Additional training sample

T
E

samples
MR-4.2 Addition of classes by re-labeling
samples

.1.2. Selection and modification of MRs
Since the mutation analysis serves for the purpose of verifica-

ion, in this experiment, we need to adopt those MRs which are
ecessary properties for the classifier. For each necessary MR, if we
nd violations in certain mutants, we can declare that this mutant

s killed by the MR, that is, the fault has been detected. The goal of
he experiment is to calculate what percentage of the mutants are
illed by the MRs, as a measure of the fault-detection effectiveness.

For k NN, apart from the necessary MRs, we also modify other
Rs to make them become necessary properties, to fit for our muta-

ion analysis. As for NBC, we only select 8 MRs from Section 3.3
hat have been proved as necessary properties, and define a new

R (MR-NBC) which is a necessary property of NBC, according to

ts specification. The definition of MR-NBC, as well as the detailed
iscussion of the necessity for all MRs are presented in Appendix A.
ables 4 and 5 summarize the MRs used for k NN and NBC respec-
ively in the mutation analysis for verification.

able 6
ffectiveness of metamorphic relations for k NN.

Metamorphic relation

Mutant 0 1.1 1.2 2.1 2.2

Original 0 0 0 0 0
v1 0 1.7 7.7 27.0 5.7
v2 0 0 0 0 0
v3 0 0 0 0 42.7
v5 0 2.3 0 0 0
v6 0 11.3 0 26.3 37.0
v7 0 9.7 0 0 1.7
v9 0 9.0 0 0 3.3
v10 0 1.3 22.7 34.3 94.7
v12 0 10.3 0 0 1.7
v13 0 0.3 22.3 0 0
v15 0 0 16.3 0 13.7
v16 0 10.0 0 26.3 37.0
v17 0 13.7 0 0 0
v18 0 11.0 0 0 0
v19 0 9.3 0 26.3 37.0
v20 0 0 0 0 43.7
v21 0 1 0 42.7 24.0
v22 0 68.3 0 0 0
v24 0 62.7 0 0 0

Total 0 15 4 6 12
MR-4.1 Addition of classes by duplicating samples
MR-5.1 Removal of classes
MR-NBC Consistence with value permutation

5.2. Empirical results and analysis

5.2.1. Metamorphic testing results
In the mutation analysis, we adopted 300 randomly generated

inputs as source test inputs. Each test input consists of one training
dataset and one test case, following the same model used in
Section 4.

In the previous experimental study, we found some real faults
in the source code of the NBC classifier of Weka-3.5.7. Thus in the
mutation analysis, in order to exclude the violations that are due to
these real faults, we eliminated the test inputs which violated MRs
in the original version of Weka-3.5.7. And we check the violated
test pairs in mutants to make sure that they are really due to the
modification, instead of the real faults.

We applied MuJava to all the selected files in Table 2, and ran-
domly selected 30 valid mutants for both k NN and NBC. Obviously
our method targets the non-crash failures. Hence after exclud-
ing the mutants that cause runtime exceptions, we obtained 24
mutants for k NN and 26 mutants for NBC.

Table 6 lists the results for all mutants that were killed by at
least one MR in Table 4 for k NN. Each cell except the last line of
Table 6 records the percentage of violated input pairs among all
valid input pairs, for the relevant metamorphic relation and mutant
version. The last line records the total number of killed mutants of
the corresponding MR.

It can be seen from Table 6 that our method is very effective

in killing mutants: 19 out of 24 mutants have been killed by some
of the current source inputs and their follow-up inputs generated
with these 11 metamorphic relations. After examining the five sur-
viving mutants, we discovered that three out of the five mutants

3.1 3.2 4.1 4.2 5.1 5.2

0 0 0 0 0 0
0 0 0 0 6.7 3.7
0 0 0 0 4.7 3.0
0 0 0 0 4.7 3.7
0 0 2.3 0 6.7 3.0
0 0 0 0 2.0 0
0 0 0 0 4.0 1.7
8.3 0 41.7 0 5.0 2.0
0 0 0 0 4.3 5.3
0 0 0 0 4.0 1.7
0 0 0 0 3.0 3.0
0 0 0 0 3.3 2.3
0 0 0 0 2.0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2.0 0
0 0 0 0 2.3 1.7
0.7 0 0 0 3.7 4.0
0 0 0 0 0 0
0 0 0 0 0 0

2 0 2 0 15 16

552 X. Xie et al. / The Journal of Systems and Software 84 (2011) 544–558

Table 7
Effectiveness of metamorphic relations for NBC.

Metamorphic relation

Mutant 0 1.1 1.2 2.1 2.2 3.2 4.1 5.1 NBC

Original 0 0 0 0 0 0 0 0 0
v1 6.7 7.7 7.3 6.7 7.3 6.3 7.3 18.9 7.0
v2 0.7 0 0.3 0 0 0 0 0 0
v4 3.3 0 0 0 0 0 0 1.4 0
v5 45.6 30.9 29.7 25.6 28.3 37.7 52.3 68.0 29.3
v6 0.4 1.7 0.3 0 0 0 0.3 0 0
v7 4.8 10.1 1.3 2.4 1.0 1.3 1.3 7.1 1.3
v9 0.4 0 0 0 0 0 0 1.4 0
v11 0.4 1.3 0 0 0 0 0.3 0 0
v12 17.4 5.0 47.0 66.4 2.3 2.7 2.7 16.4 2.7
v15 81.9 80.5 79.0 90.3 87.0 79.0 79.0 89.3 79.0
v16 0.7 10.7 0 0 0 0 0 0.7 0
v17 50.7 53.0 50.3 41.6 50.0 51.3 50.3 63.7 50.3
v18 6.3 6.4 1.7 1.7 1.3 10.3 20.3 15.0 1.0
v19 7.4 8.7 0.7 1.3 0.3 4.0 8.3 11.4 0.7
v20 19.3 0.3 0.3 1.3 1.0 8.3 12.0 11.0 0.3
v21 33.3 0.7 0.3 0.7 0.7 0.3 0.3 13.9 0.3
v22 40.0 4.0 4.0 3.7 2.7 2.7 4.0 19.2 3.3
v24 0 2.4 0 0 0 0 0.3 0 0

a
t
r
a
p
t
l
o
t
t
a
9

r
A
(
e

S
o
t
e
r
I
m
e
l
o
t
e

m
a
o
c
l
t

o
i
v

v25 49.3 53.4 50.0 42.0
v26 0 2.0 0 0

Total 18 17 14 12

re equivalent mutants with respect to the current source inputs,
he parameters in the command line, and all the 11 metamorphic
elations. The reason for the equivalent mutants is that Weka is
large-scale program; even though we have selected the related
rogram files for mutation analysis, we do not target all the func-
ionality in these files. The parameters we used in the command
ine and the metamorphic relations that we have enumerated are
nly related to certain properties of the target algorithm. Thus in
he three mutants, the modified statements are not executed using
he current source inputs, the parameters in command line, and
ll the 11 metamorphic relations. Hence the actual effectiveness is
0.5%(19 out of 21 mutants).

The results in Table 6 also show that different metamorphic
elations have different performance in detecting program faults.
mong all 11 MRs, MR-1.1 and MR-5.1 had the highest killing rate

15 out of 21, 71.4%), while MR-0, MR-3.2 and MR-4.2 had the low-
st killing rate (0 out of 21).

We also inspected the average violation percentage of all MRs.
ince we enumerated all the metamorphic relations only by means
f the background knowledge of the classifier without referring to
he source code of the Weka implementation, and we also gen-
rated all mutants and test inputs randomly, our metamorphic
elations are hence unbiased to any mutants under investigation.
n this way, the average violation percentage for the MRs over all

utants (including all the survived mutants) can be used as an
ffectiveness measurement of metamorphic testing, that is, how
ikely a test input pair (source test input and follow-up test input)
n average will reveal a violation. From Table 6, we can calculate
hat for k NN, the average percentage is 4.2% for the 21 non-
quivalent mutants.

Similarly, we investigated the effectiveness of each selected
etamorphic relation in the mutation analysis for NBC. The results

re presented in Table 7, which lists all mutants violating at least
ne MR in Table 5. Each cell except the last line records the per-
entage of violated input pairs among all valid input pairs and the
ast line of the table records the total number of killed mutants of

he corresponding MR.

For NBC, our method demonstrates a very good performance: 20
ut of 26 mutants have been killed by some of the current source
nputs and nine metamorphic relations. And among the six sur-
iving mutants, four are equivalent mutants with respect to the
60.7 53.3 50.0 63.0 50.0
0 0 0.3 0 0

12 12 16 15 12

current source inputs, the parameters in the command line, and all
the nine metamorphic relations. Hence the actual effectiveness is
20 out of 22 mutants (90.9%).

Different from k NN, where some MRs kill none or a small num-
ber of mutants, in NBC, about half of the mutants are killed by any
given MR. For example, MR-0, which kills no mutants in k NN, can
kill 18 mutants in NBC. And consequently in NBC, the average vio-
lation percentage of the nine MRs is much higher than that in k NN.
This average percentage is 13.2% among all the 22 non-equivalent
mutants.

5.2.2. Cross-validation analysis
Apart from metamorphic testing, we also conducted cross-

validation on these mutants. In the machine learning community,
cross-validation is commonly used to assess how well the classifi-
cation algorithms can model the classification process. Normally its
results are affected by three main factors: (1) the predictive power
of the underlying classification algorithm, (2) the correctness of the
implementation of the algorithm, and (3) the characteristic of the
training dataset.

Cross-validation is primarily used to validate the appropriate-
ness of the classification algorithm to the given problem. Hence it is
often implicitly assumed that the implementation of the algorithm
is correct. Since k NN and NBC are extensively used classification
algorithms, their predictive power is expected to be reliable. For
example, given a reasonable training dataset, they should perform
well in cross-validation. For the training dataset, we have used a
range of simulated datasets, with which the predictive results of
cross-validation can be estimated beforehand for a reasonable clas-
sification algorithm. Therefore in our experiments, for these two
classifiers under investigation, a correct implementation should
perform consistently with the predicted results. Correspondingly
an unexpected performance of cross-validation is an alarm of soft-
ware faults in their implementation.

We say that a mutant is being “killed” by the cross-validation
strategy if the observed error-rate patterns using the simulated

datasets deviates significantly from our expected error-rate pat-
terns given the knowledge of data simulation process. And in our
experiments, we did find some mutants that “survive” the cross-
validation procedure. This observation implies that the systematic
software testing is indispensable for these kinds of machine learn-

ems and Software 84 (2011) 544–558 553

i
o
b

w
v
s
t
i
i
b
a
c
m
m

d
t
s
s
p
u
u
c
a
c
e
N
c
i
o
a
o
s
i
d
a
W
w
f

u
s
r
w
o
c
t
s
c
d
a
e
R
b

“
t
e
o

e
e
v
T
o

Table 8
Cross-validation error-rate for k NN.

Mutants Rule-1 Rule-1.5 Rule-2 Result

Original 80.1 4.0 0.1 –
v1 79.8 10.6 1.6 S
v2 80.1 4.0 0.1 S
v3 80.0 80.0 80.0 K
v5 80.1 6.8 0.2 S
v6 80.0 80.0 80.0 K
v7 79.7 5.8 1.2 S
v9 80.0 44.4 40.8 K
v10 80.1 100.0 100.0 K
v12 79.7 5.8 1.2 S
v13 80.1 5.7 0.2 S
v15 80.1 100.0 100.0 K
v16 80.0 80.0 80.0 K
v17 80.0 80.0 80.0 K
v18 80.0 80.0 80.0 K
v19 80.0 80.0 80.0 K

These experimental data reveal that there do exist some
mutants that can achieve expected performances in cross-
validation, despite the fact that these mutants are faulty
implementations of the algorithms. Given the lack of systematic
testing strategies for machine learning algorithms, cross-validation

Table 9
Cross-validation error-rate for NBC.

Mutants Rule-1 Rule-1.5 Rule-2 Result

Original 80.1 3.4 0.1 –
v1 80.6 49.7 60.0 K
v2 80.0 3.4 0.1 S
v4 80.2 3.4 0.1 S
v5 80.0 80.0 80.0 K
v6 80.0 3.4 0.1 S
v7 80.0 80.0 80.0 K
v9 80.0 3.3 0.1 S
v11 80.0 3.4 0.1 S
v12 80.2 18.2 3.5 S
v15 100.0 100.0 100.0 K
v16 80.0 80.0 80.0 K
v17 80.2 81.1 91.2 K
v18 80.0 80.0 80.0 K
v19 80.0 80.0 80.0 K
v20 79.9 27.2 39.9 K
X. Xie et al. / The Journal of Syst

ng applications. Furthermore, due to the frequent occurrence of the
racle problem in this application domain, our proposed method
ecomes particularly critical.

In our experiments, we conducted k-fold cross-validation,
hich is a typical cross-validation method. In k-fold cross-

alidation, the original sample set is randomly partitioned into k
ubsets (k > 1). Among the k subsets, a single subset is retained as
he validation data for testing the classifier model, and the remain-
ng subsets are used as training data. The cross-validation process
s then repeated k times. The k results from the k folds then can
e averaged or summarized (or otherwise combined) to produce
single estimation (McLachlan et al., 2004). In cross-validation, a

lassifier is simply evaluated in terms of its respective fraction of
isclassified instances, noted as the error-rate. A lower error-rate
eans a better performance of a classifier.
In the cross-validation analysis, we used some simulation

atasets that contain signals that allow samples from each class
o be readily distinguishable from one another using any rea-
onable classification algorithms. These simulated datasets have
imilar sizes and formats as the randomly generated training sam-
le sets used in the mutation analysis. They were produced and
sed in another bioinformatics study (Ho et al., 2008) that sim-
lates microarray gene expression data containing realistic noise
haracteristics. All the samples in the simulated datasets have five
ttributes. And each dataset contains 100 samples comprising five
lasses (class 1, 2, . . ., 5) of 20 samples each. The expression level of
ach attribute in each sample is simulated by a normal distribution
(�c, �) where �c is the mean expression level characteristics to
lass c ∈ {1, 2, 3, 4, 5}. The same value is used for variance (�2 = 2)
n all simulated datasets. Three different ways of the assignment
f �c for every class c (referred to as Rule-1, Rule-1.5 and Rule-2)
re defined in our experiments, which result in different amounts
f signals for class discrimination. In Rule-1, the mean expres-
ion value of successive class is different by a factor of one, that
s, �1 = �2 = · · · = �5 = 1 for every attribute. Then all the samples
rawn from all five classes would have the same signal distribution,
nd therefore contain no discriminative attributes for classification.
hile in Rule-1.5 and Rule-2, we simulated datasets for the case
here the mean feature values from successive classes differ by a

actor of 1.5, and 2, respectively.
Actually for any correct implementation of the two classifiers

nder investigation, the error-rate with these three groups of
imulated dataset can be roughly estimated based on their cor-
esponding generation process. For a dataset generated by Rule-1
hich contains no signals for class discrimination, we expect to

bserve a cross-validation accuracy of about 1/5 = 20%, and thus a
ross-validation error-rate of a Rule-1 dataset around 80%, because
his is the chance of observing a false positive in a five-class clas-
ification problem by a random classifier (i.e., the worst possible
lassifier). While datasets generated by Rule-1.5 and Rule-2 contain
iscriminatory signals, therefore a cross-validation analysis usu-
lly yields very low error-rate for both of them. Furthermore, the
rror-rate for the Rule-2 dataset could be even smaller than the
ule-1.5 dataset in most cases, because better class separation can
e obtained by Rule-2.

Accordingly, in our experiment, a mutant is said to have been
killed” by cross-validation if the observed error-rate patterns using
he simulated datasets deviate significantly from the expected
rror-rate patterns (error-rate of Rule-1 � 80%, and the error-rates
f Rule-1.5 and Rule-2 are progressively smaller).

In our experiments we conducted 10-fold cross-validation for

ach simulated dataset, and utilized 300 datasets simulated from
ach rule. Hence, we have a total of 900 datasets for the cross-
alidation experiment. Table 8 presents the results for k NN, while
able 9 shows the performance of NBC. In each table, we list both the
riginal version and the mutants that were killed by metamorphic
v20 80.2 80.0 80.0 K
v21 79.9 80.0 80.0 K
v22 100.0 100.0 100.0 K
v24 100.0 100.0 100.0 K

testing. Each cell from column 2 to column 4 records the average
error-rate among all 300 datasets for the corresponding rule. The
cell in the last column, “Result”, indicates whether the correspond-
ing mutant “is killed” or “survives” in cross-validation, by using K
for the killed mutant and S for the survival.

It can be seen from Tables 8 and 9 that, for both k NN and NBC,
there are some survivals in the cross-validation.

Obviously, in the original program version, the cross-validation
performs within our expectation, that is, the error-rate in Rule-1
is around 80%, and in Rule-1.5 and Rule-2, the error-rates become
progressively smaller. However there are also some mutants whose
error-rates of the three rules have the same expected trend as the
original program version, which are considered as survivals in our
experiments. It can be seen that for k NN, there are 6 out of 19
(31.6%) of the mutants survive the cross-validation. And for NBC,
using cross-validation alone will miss 8 out of 20 (40.0%) of the
mutants.
v21 80.0 80.0 5.4 K
v22 80.0 80.0 60.0 K
v24 80.0 3.4 0.1 S
v25 80.2 81.1 91.0 K
v26 80.0 3.4 0.1 S

5 ms an

h
a
n
N
r
t
t
i
m
s
i
b
i
t

r

A
(
r
r
m
5

n
c
t
d

6

p
w
n
C
a
t
t

w
t
s
t
p
t
t
d
t
q
t
c
d
s
s
h
f
t
p

i
1
B
M
i
U

54 X. Xie et al. / The Journal of Syste

as been commonly adopted as an informal method for evaluating
supervised classifier algorithm for decades, even thought it was
ever designed for the purpose of either verification or validation.
evertheless, most practitioners in the machine learning field have

elied on the cross-validation method to check the correctness of
he implementation of the algorithm. In other words, our observa-
ions imply that an additional way to verify the correctness of the
mplementation is necessary. Because of the oracle problem, meta-

orphic testing becomes appealing and suitable in testing these
upervised machine learning programs. In fact, metamorphic test-
ng is very powerful in detecting faults even in mutants that cannot
e readily identified by cross-validation. For example, mutant v1

n the k NN experiment has an ASR mutant in the EuclideanDis-
ance.java file, line 182. The modification is:

esult = diff ∗ diff;//correct : result+ = diff ∗ diff;

ccording to the cross-validation error-rates in our experiment
Table 8), this mutant would likely not be detected since the error-
ate patterns from the simulated data falls within the expected
ange. On the other hand, metamorphic testing is able to kill this
utant. Table 6 shows that MR-1.1, MR-1.2, MR-2.1, MR-2.2, MR-

.1 and MR-5.2 all reveal this mutant.
As a result, our experiment shows that the cross-validation tech-

ique is not sufficiently effective to detect faults in a supervised
lassification program. It is strongly recommended to adopt MT as
he supplement to this technique in order to provide more confi-
ence of the software quality.

. Related work

Machine learning has aroused the interest of more and more
eople in software engineering. Currently there has been much
ork that applies machine learning techniques to software engi-
eering, in particular, to software testing (e.g., Briand, 2008;
heatham et al., 1995; Zhang and Tsai, 2003). However we are not
ware of any work in the reverse sense: applying software testing
echniques to machine learning applications, particularly to those
hat have no reliable test oracle.

Despite the fact that the machine learning programs have been
idely utilized, there is no systematic testing method to guaran-

ee their quality. Apart from the testing objective (Weka) in this
tudy, Orange (Demsar et al., 2004) is another famous framework
hat aids machine learning developers. But the testing functionality
rovided by these two frameworks is only focused on comparing
he quality of the results, but not evaluating the “correctness” of
he implementations. Though there are repositories of “reusable”
ata sets being collected (e.g., the UCI Machine Learning Reposi-
ory (Newman et al., 1998)) for the purpose of comparing result
uality, such as the accuracy of the prediction, they are not for
esting. Furthermore there are also many other applications which
ontain machine learning components, such as some intrusion
etection systems (Mell et al., 2003; Puketza et al., 2002), intru-
ion tolerant systems (Madan et al., 2004), and other security
ystems (Balzarotti et al., 2008). However testing in these systems
as typically addressed quantitative measurements like overhead,

alse alarm rates, or ability to detect zero-day attacks, rather than
he detection of faults in the implementation as studied in this
aper.

On the other hand, applying metamorphic testing to situations
n which there is no test oracle was first suggested in (Chen et al.,

998) and is further discussed in (Chen et al., 2002; Gotlieb and
otella, 2003; Guderlei and Mayer, 2007). Currently the studies in
T include two main directions. The first one is to apply MT to ver-

fy software in various application domains without a test oracle.
p to now the application domains in which MT has been shown to
d Software 84 (2011) 544–558

be effective include service-oriented software (Chan et al., 2007),
context-sensitive middleware-based software (Tse et al., 2004),
stochastic optimisation algorithms (Yoo, 2010), feature models
(Segura et al., 2010), bioinformatics (Chen et al., 2009), etc. However
none of these works has explicitly focused on the machine learning
area, which should be more complicated due to its nature of a dis-
cipline rather than a simple group of peer algorithms. Actually, our
previous studies provided several MRs to test some machine learn-
ing applications (Murphy et al., 2008). But they only focused on the
verification with quite simple MRs. The study in this paper has pro-
vided a more comprehensive MR repository. More importantly, we
also extend the role of MT beyond the verification, demonstrating
that it can also be adopted for the purpose of validation.

The other research direction that has recently been explored is
the integration of MT with other testing and analysis techniques.
One representative study in this direction is the method called
semi-proving, which integrates MT with symbolic execution, for
program proving, testing, and debugging (Chen et al., in press).
And another study is the proposal of a novel concept, mice, which
is based on the integration of metamorphic relation and program
slices, to support various software testing and analysis purposes,
such as spectrum-based fault localization (Xie et al., 2010).

7. Conclusion and future work

Our contribution in this study is a systematic approach, which
enables users and programmers to easily and effectively verify
and validate the machine learning components of their software.
Neither sound knowledge nor experience of software testing is
required in our proposed method. This study has successfully
demonstrated the feasibility of MT as a verification and valida-
tion method for classification algorithms. The effectiveness of our
proposed method is demonstrated by its detection of real faults
in a popular open-source software, Weka, and by the technique of
mutation analysis. Despite the fact that we use simple MRs with-
out referring to deep domain knowledge; our proposed method has
demonstrated a high rate of effectiveness. Furthermore, we also
demonstrate that cross-validation alone is not sufficient to verify
these classification algorithms.

Since our proposed method is basically a testing method, it
inherits one limitation from software testing, that is, if there is no
violation revealed by any MR, we can neither conclude the correct-
ness nor the appropriateness of the algorithm under investigation.
Actually this is the common limitation for all the testing techniques,
thus for any software with critical safety requirements, a supple-
mentary verification method should be adopted, apart from using
our method.

Similar to other applications of MT, the most important activ-
ity of our method is the identification of MRs, as the effectiveness
of our method is critically determined by the choice of MR. Since
this paper is focused on illustrating the applicability of our method
with sample MRs for representative classifiers, a more compre-
hensive investigation on the performance of different MRs will be
conducted in our future study.

Moreover as discussed in previous sections, our method has
actually provided a general process. In view of the simplicity in con-
cept and easiness of automation, our method can be easily adopted
in various machine learning application domains, with a continu-
ally building MR repository in the future.
Acknowledgments

This project is partially supported by an Australian Research
Council Discovery Grant (ARC DP0771733), the National Nat-
ural Science Foundation of China (90818027 and 60721002),

ems an

t
(
g
(
g
C
N

A

a

A

M
f

i
w
b

d

T
b

f
t
w

w
a
a
a

d

T
b

o
s
b
b
b
i
a

t
t
t
i
w
n
(
r

X. Xie et al. / The Journal of Syst

he National High Technology Development Program of China
2009AA01Z147), the Major State Basic Research Development Pro-
ram of China (2009CB320703), and the 863 Plan Program of China
2008AA01Z142). Murphy and Kaiser are members of the Pro-
ramming Systems Laboratory, funded in part by CNS-0905246,
NS-0717544, CNS-0627473, CNS-0426623 and EIA-0202063, and
IH grant 1U54CA121852-01A1.

ppendix A.

In this section, we discuss the necessity of MRs for both k NN
nd NBC.

.1. Necessary MRs for k-nearest neighbors

In our previous study (Xie et al., 2009), we adopted a total of 11
Rs on k NN, and 6 of them can be proved as necessary properties

or k NN with any value of k.
1. MR-0: Consistence with affine transformation. Each value

n the training sample set and in the test case is transformed in this
ay: kx + b (k /= 0). Thus, this MR does not change the distance

etween si and ts. The distance is:

ist(si
′, ts

′) =

√√√√ m∑
j

[(k ∗ saj + b) − (k ∗ aj + b)]2

= k

√√√√ m∑
j

(saj − aj)
2.

herefore MR-0 does not change the order in the k nearest neigh-
ors and will still give the same prediction.

2. MR-1.2: Permutation of the attribute. It can be seen from the
ormula for calculating the distance that the result is not related to
he order of the attributes. Thus, the permutation of the attributes
ill not affect the prediction result.

3. MR-2.1: Addition of uninformative attributes. In this MR,
e add a new attributeattm to both the samples and the test case

nd assign them with the same value. Suppose the value ofattm is
. It is obvious that MR-2.1 will not change the distance between
ny sample si and test case ts. The new distance is:

ist(si
′, ts

′) =

√√√√m−1∑
j

(saj − aj)
2 + (a − a)2 =

√√√√m−1∑
j

(saj − aj)
2.

herefore MR-2.1 does not change anything in the k nearest neigh-
ors and will still give the same prediction.

4. MR-3.1: Consistence with re-prediction. Suppose the label
f a test case is li. We put the test case back into the training sample
et, and from the distance formula we can know that the distance
etween the new sample and the test case is 0. Thus, the num-
er of samples with label li in the k nearest neighbors increases
y 1, and obviously the proportion of samples with label li will

ncreases. Therefore, the follow-up prediction remains the same, li,
s the source prediction.

5. MR-3.2: Additional training sample. Suppose the label of a
est case is li. MR-3.2 duplicates the samples with label li in the
raining sample set. These new samples have the same value as
he old ones, thus the number of samples with label li increases

n the k nearest neighbors (maximum is being doubled). Mean-

hile, the samples with other labels are excluded from the k nearest
eighbors. Thus, the proportion of samples with label li increases
maximum is being doubled). Therefore the follow-up prediction
emains the same, li, as the source prediction.
d Software 84 (2011) 544–558 555

6. MR-4.2: Addition of classes by re-labelling samples. Sup-
pose the label of a test case is li. MR-4.2 renames parts of the
samples, which have labels other than li. This will not change the
value of the distance between each sample and test case. It just
changes the label of the distance. Thus it changes the label in the k
nearest neighbors. This will not result in any changes in the num-
ber and proportion of samples with label li. It only may decrease
the number and the proportion of samples which have labels other
than li; therefore it will not affect the follow-up prediction.

The remaining MRs can be proved as not necessary properties
for any k. Actually, those MRs usually lead to changing the distance
between the training samples and the test case, thus the ranking
of all distances and the proportion in the k nearest neighbors also
change correspondingly. However if we fix k as 1, these MRs all
become necessary properties.

The reason is apparent. Since all the samples are sorted ascend-
ingly by the distance to test case (no duplicated samples in our
experiments), when k = 1, the k NN classifier just picks up the first
sample, and makes its label as the predicted result. Even though
the MRs may change the distance between the samples and the
test case, and consequently change the ranking, they do not affect
the top position of all the sorted distances. Thus if we assign k = 1,
these MRs become necessary properties and can be adopted in our
mutation analysis.

A.2. Necessary MRs for Naïve Bayes classifier

For NBC, we adopted 12 MRs in our previous study, and 9 of
them can be proved as necessary properties.

1. MR-0: Consistence with affine transformation. To imple-
ment the calculation of an integral in a digital computer, it is
necessary to define a small interval ı to calculate the area. In
Weka, they use a variable called Precision as the interval. The Pre-
cision for attj is defined as the average interval of all the values.
For example, suppose there are five samples in the training sam-
ple set, and the values of attj in the five samples are 2, 7, 7, 5,
and 10. After sorting the values we have 2, 5, 7, 7, 10. Thus, Pre-
cision = [(5 − 2) + (7 − 5) + (10 − 7)]/(1 + 1 + 1) = 2.67. If all the values
are the same, Precision (abbreviated pr) equals its default value,
0.01. In the computation, Weka rounds all the values x in both the
training samples and the test case with pr as rint(x/pr) ∗ pr, in which
rint is the function to round to the nearest integer. This manipula-
tion means that Weka treats all the values within ((2k − 1) ∗ pr/2,
(2k + 1) ∗ pr/2] as k ∗ pr, in which k is any integer. This manipulation
may lead to a loss of precision; however, it provides a mechanism to
disperse the continuous values in the mathematic model, in order
to be make the model suitable for computer implementation.

In Weka, the small interval ı is the magnitude of precision.
According to formula for calculating area, we have:

P(aj|lts = lk) = 1

�
√

2�

∫ aj+pr/2

aj−pr/2

e−(x−�)2/2�2
dx.

In MR-0, each value x in the training set and the test case are trans-
formed in this way: ϕ = k ∗ x + b(k /= 0). According to the calculation
of pr, pr′ is set to be k ∗ pr + b. According to the formula of mean value
� and mean square deviation �, we have �′ = k ∗ � + b, and � ′ = k ∗ �.
And the formula for probability is as follows:

P(k ∗ aj + b|lts = lk) = 1

� ′√2�

∫ k∗aj+b+k∗pr/2

k∗aj+b−k∗pr/2

e−(ϕ−�′)2/2�′2
dϕ
by substituting � ′ with k ∗ �, and �′ with k ∗ � + b, we have:

P(k ∗ aj + b|lts = lk) = 1

k�
√

2�

∫ k∗aj+b+k∗pr/2

k∗aj+b−k∗pr/2

e−(ϕ−k�−b)2/2k�2
dϕ

5 ms an

b

P

t
c

p
t
m

N
t

P

T
t

c
d

w
a
.
i

P

S
t
P

n
p
f
P

c
n
r

a
a
m
a
t
l
n
i
f

l

56 X. Xie et al. / The Journal of Syste

y substituting ϕ with k ∗ x + b, we have:

(k ∗ aj + b|lts = lk) = 1

k�
√

2�

∫ aj+pr/2

aj−pr/2

e−(kx+b−k�−b)2/2k2�2
d(kx + b)

⇒ P(k ∗ aj + b|lts = lk) = 1

�
√

2�

∫ aj+pr/2

aj−pr/2

e−(x−�)2/2�2
dx = P(aj |lts = lk).

It can be seen from the above formula that after the transformation,
he probability will not change, thus the prediction result will not
hange either.

2. MR-1.1: Permutation of class labels. This MR reflects a key
roperty of mathematical function such as NBC that the output of
he classifier is deterministic, and is not affected by random per-

utation.
3. MR-1.2: Permutation of the attribute. It is known that in

BC, we assume all the attributes are independent, thus we have
he following formula:

(lts = lk|a0a1· · ·am−1) =

P(lk)
∏

j

P(aj|lts = lk)

∑
i

P(li)
∏

j

P(aj|lts = li)

herefore, changing the attribute order will not affect the predic-
ion result.

Actually, it can be concluded that all classifiers should have a
onsistent result in this MR, assuming the attributes are indepen-
ent to each other.

4. MR-2.1: Addition of uninformative attributes. In this MR,
e add a new attribute attm with identical value to both the samples

nd the test case. Suppose the value of attm is a. For each lk ∈ {l0, l1,
. ., ln−1}, the probability P(lts = lk | a0a1 · · · am−1) can be re-written
n the following way:

(lts = lk|a0a1· · ·am)

=

P(lts = lk)
∏

j

P(aj|lts = lk) ∗ P(attm = a|lts = lk)

∑
i

P(lts = li)
∏

j

P(aj|lts = li) ∗ P(attm = am|lts = li)

ince the new attribute attm has the same value a in all the samples,
he mean value � = a and the mean square deviation � = 0. Thus the
(attm = a | lts = lk) part is equal to 1 for all the lk ∈ {l0, l1, . . ., ln−1}.

In Weka, since it is infeasible for computer to deal with the
ormal distribution with � = 0, they give � a default minimum of
r/2 ∗ 3. Thus for each lk ∈ {l0, l1, . . ., ln−1}, the numerator in the
ormula above will be changed by multiplying a constant value
(attm = a | lts = lk), which is a little less than 1.

It follows that the probability for each lk ∈ {l0, l1, . . ., ln−1}
hanges in the same way. Thus the order of the probabilities will
ot change; consequently the prediction in the follow-up cases will
emain the same as the one in the source cases.

5. MR-2.2: Addition of informative attributes. In this MR, we
dd a new attribute attm to both the samples and the test case and
ssign the samples having the same label with the same value;
eanwhile, we assign the new attribute’s value in the test case

s the one of its predicted label. For example, suppose there are
hree classes in the training samples, {l0, l1, l2}, and the predicted
abel of the test case is l0. In the MR-2.2 transformation, we add a

ew attribute and make it different among different classes, that

s, for samples with l0, the attm = a; for samples with l1, the attm = b;
or samples with l2, the attm = c; and for the test case, the attm = a.

Since the denominator in the formula for each lk ∈ {l0, l1, . . .,
n−1} are the same, only the numerator will affect the result.
d Software 84 (2011) 544–558

For l0, the mean value of attm is � = a; the mean square deviation
of attm is � = ı (since it is hard to deal with a normal distribution
with � = 0, we assign a very small number to �).

For l1, the mean value of attm is � = b; the mean square deviation
of attm is � = ı.

For l2, the mean value of attm is � = c; the mean square deviation
of attm is � = ı.

Thus the numerator in the formula for l0 is multiplied by a value
of P(attm = a | lts = l0), which is quite close to 1. Also, the numerator
in the formula for l1 is multiplied by a value of P(attm = b | lts = l1),
which is quite close to 0. Last, the numerator in the formula for l2
is multiplied by a value of P(attm = c | lts = l2), which is quite close to
0.

Therefore the former highest possibility almost remains the
same, while the other two decrease dramatically. Consequently the
follow-up prediction will remain the same as in the source case.

6. MR-3.2: Additional training sample. Suppose the label of test
case is li. MR-3.2 duplicates the samples with label li in the train-
ing data set. Those new samples have the same value as the old
ones, thus the mean value and the mean square deviation of each
attribute in li will not change. Meanwhile, the mean square devia-
tion of each attribute in other labels will not change either. The only
change is the proportion of each lk ∈ {l0, l1, . . ., ln−1}: P(lts = lk); that
is, P(lts = li) increases, while P(lts = lk) for the other labels decreases.

Therefore the probability of ts belonging to li increases, while
the probability of ts being one of the other labels decreases. The
prediction is still li, as in the source case.

7. MR-4.1: Addition of classes by duplicating samples. Sup-
pose we have labels {l0, l1, . . ., ln−1}, the number of each distinct
label li ∈ {l0, l1, . . ., ln−1} in the training sample set is count [i], and
its corresponding proportion is proportion [i]. For each li ∈ {l0, l1, . . .,
ln−1}, the mean value of attj is �ij; the mean square deviation is �ij.
Suppose the prediction in source case is lk. Thus in the MR-4.1 trans-
formation, we duplicate all samples with li ∈ {l0, l1, . . ., ln−1}(i /= k)
and rename them as li’. After duplication the �ij and �ij for the orig-
inal labels remain the same value as the ones in the source case. The
only change is the proportion [], which is as follows:

proportion′[i] = proportion[i] ∗

m−1∑
0

count[i]

count[0] + 2
m−1∑

1

count[i]

And for the new added label li’, their �, � and proportion [] values
are all the same for li. Therefore proportion [0] remains the highest
value, and the prediction will not change in the follow-up case.

8. MR-5.1: Removal of classes. This MR transformation only
changes the proportion of each class, rather than changing the dis-
tribution in each survived class. Suppose we have labels {l0, l1, . . .,
ln−1}, the number of each distinct label li ∈ {l0, l1, . . ., ln−1} in the
training sample set is count [i], and its corresponding proportion is
proportion [i]. For each li ∈ {l0, l1, . . ., ln−1}, the mean value of attj is
�ij; the mean square deviation is �ij. Suppose the prediction in the
source case is l0, and l2 is the label being removed. Thus, after trans-
formation, the � and � for each survived label remain the same as in
the source case. The only change is the count [i] and the proportion
[i], which changes as follows:

m−1∑

proportion′[i] = proportion[i] ∗ 0

count[i]

m−1∑
0

count[i] − count[2]

ems an

T
c

t
c
t
l
s

a
p
f
m
T
c

R

A
A

B

B

C

C

C

C

C

C

C

D

D

D

G

G

G

H

H

K

M

M

X. Xie et al. / The Journal of Syst

herefore, the prediction remains the same as in the source
ase.

9. MR-NBC: Consistence with value permutation. Permuting
he values of any attribute among all samples in S with the same
lass does not change the prediction result. For example, there are
wo samples sk1 and sk2, whose class ck1 and ck2 share the same
abel value l0. Then swapping the values of any attribute in sk1 and
k2, will not change the output prediction.

This is based on the assumption of NBC that all the attributes
re independent. If we permute the value of attrj among all sam-
les with label li, this will not change the P(attrj | lts = li). Because
or each li ∈ {l0, l1, . . ., ln−1}, the mean value �ij of attj, and the

ean square deviation �ij will not change in this permutation.
hus MR-NBC will not change the prediction made in the source
ase.

eferences

lpaydin, E., 2004. Introduction to Machine Learning. The MIT Press.
ndrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mutation an appropriate tool for

testing experiments? In: Proceedings of the 27th International Conference on
Software Engineering (ICSE), pp. 402–411.

alzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.,
2008. Saner: composing static and dynamic analysis to validate sanitization in
web applications. In: Proceedings of the 29th IEEE Symposium on Security and
Privacy (S&P), pp. 387–401.

riand, L., 2008. Novel applications of machine learning in software testing. In:
Proceedings of the 8th International Conference on Quality Software(QSIC), pp.
3–10.

han, W.K., Cheung, S.C., Leung, K.R.P.H., 2007. A metamorphic testing approach for
online testing of service-oriented software applications. International Journal of
Web Services Research 4 (1), 60–80.

heatham, T.J., Yoo, J.P., Wahl, N.J., 1995. Software testing: a machine learning exper-
iment. In: Proceedings of the ACM 23rd Annual Conference on Computer Science,
pp. 135–141.

hen, T.Y., Cheung, S.C., Yiu, S., 1998. Metamorphic testing: a new approach for gen-
erating next test cases. Tech. Rep. HKUST-CS98-01, Dept. of Computer Science,
Hong Kong University of Science and Technology.

hen, T.Y., Ho, J.W.K., Liu, H., Xie, X., 2009. An innovative approach for testing bioin-
formatics programs using metamorphic testing. BMC Bioinformatics 10, 24–
36.

hen, T.Y., Huang, D.H., Tse, T.H., Zhou, Z.Q., 2004. Case studies on the selection
of useful relations in metamorphic testing. In: Proceedings of the 4th Ibero-
American Symposium on Software Engineering and Knowledge Engineering
(JIISIC), pp. 569–583.

hen, T.Y., Tse, T.H., Zhou, Z., in press. Semi-proving: an integrated method for
program proving, testing, and debugging. IEEE Transactions on Software Engi-
neering.

hen, T.Y., Tse, T.H., Zhou, Z.Q., 2002. Fault-based testing without the need of oracles.
Information and Software Technology 44 (15), 923–931.

avis, M.D., Weyuker, E.J., 1981. Pseudo-oracles for non-testable programs. In: Pro-
ceedings of the ACM Annual Conference, pp. 254–257.

emsar, J., Zupan, B., Leban, G., Curk, T., 2004. Orange: from experimental machine
learning to interactive data mining. Lecture Notes in Computer Science,
537–539.

uran, J., Ntafos, S., 1984. An evaluation of random testing. IEEE Transactions on
Software Engineering 10 (4), 438–444.

ewehr, J.E., Szugat, M., Zimmer, R., 2007. BioWeka – extending the Weka frame-
work for bioinformatics. Bioinformatics 23 (5), 651–653.

otlieb, A., Botella, B., 2003. Automated metamorphic testing. In: Proceedings of the
27th Annual International Conference on Computer Software and Applications
(COMPSAC), pp. 34–40.

uderlei, R., Mayer, J., 2007. Statistical metamorphic testing testing programs with
random output by means of statistical hypothesis tests and metamorphic test-
ing. In: Proceedings of the 7th International Conference on Quality Software
(QSIC), pp. 404–409.

o, J.W.K., Lin, M.W., Adelstein, S., dos Remedios, C.G., 2009. Customising an anti-
bodyleukocyte capture microarray for Systemic Lupus Erythematosus: Beyond
biomarker discovery. Proteomics – Clinical Applications 4 (2), 179–189.

o, J.W.K., Stefani, M., dos Remedios, C.G., Charleston, M.A., 2008. Differential
variability analysis of gene expression and its application to human diseases.
Bioinformatics 24 (13), 390–398.

night, J., Leveson, N., 1986. An experimental evaluation of the assumption of
independence in multi-version programming. IEEE Transactions on Software

Engineering 12 (1), 96–109.

a, Y.-S., Offutt, J., Kwon, Y.R., 2005. MuJava: an automated class mutation system.
Journal of Software Testing, Verification and Reliability 15 (2), 97–133.

adan, B., Goeva-Popstojanova, K., Vaidyanathan, K., Trivedi, K., 2004. A method for
modeling and quantifying the security attributes of intrusion tolerant systems.
Performance Evaluation 56 (1–4), 167–186.
d Software 84 (2011) 544–558 557

McLachlan, G.J., Do, K.-A., Ambroise, C., 2004. Analyzing Microarray Gene Expression
Data. Wiley.

Mell, P., Hu, V., Lippmann, R., Haines, J., Zissman, M., 2003. An overview of issues in
testing intrusion detection systems. Tech. Rep. NIST IR 7007, National Institute
of Standard and Technology.

Middendorf, M., Kundaje, A., Shah, M., Freund, Y., Wiggins, C.H., Leslie, C., 2005.
Motif discovery through predictive modeling of gene regulation. Research in
Computational Molecular Biology 3500, 538–552.

Mitchell, T., 1983. Machine Learning: An Artificial Intelligence Approach, vol. III.
Morgan Kaufmann.

Murphy, C., Kaiser, G., 2010. Empirical evaluation of approaches to testing applica-
tions without test oracles. Tech. Rep. CUCS-039-09, Dept. of Computer Science,
Columbia University.

Murphy, C., Kaiser, G., Hu, L., Wu, L., 2008. Properties of machine learning applica-
tions for use in metamorphic testing. In: Proceedings of the 20th International
Conference on Software Engineering and Knowledge Engineering (SEKE), pp.
867–872.

Murphy, C., Shen, K., Kaiser, G., 2009. Using JML runtime assertion checking to auto-
mate metamorphic testing in applications without test oracles. In: Proceedings
of 2nd International Conference on Software Testing Verification and Validation
(ICST), pp. 436–445.

Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J., 1998. UCI Repository of Machine
Learning Databases. Dept. of Information and Computer Science, University of
California.

Offutt, A., Lee, A., Rothermel, G., Untch, R., Zapf, C., 1996. An experimental determina-
tion of sufficient mutant operators. ACM Transactions on Software Engineering
and Methodology 5 (2), 99–118.

Puketza, N., Zhang, K., Chung, M., Mukherjee, B., Olsson, R., 2002. A methodology for
testing intrusion detection systems. IEEE Transactions on Software Engineering
22 (10), 719–729.

Segura, S., Hierons, R., Benavides, D., Ruiz-Cortés, A., 2010. Automated test data gen-
eration on the analyses of feature models: a metamorphic testing approach. In:
Proceedings of 3rd International Conference on Software Testing Verification
and Validation (ICST), pp. 35–44.

Tse, T.H., Yau, S.S., Chan, W.K., Lu, H., Chen, T.Y., 2004. Testing context-sensitive
middleware-based software applications. In: Proceedings of the 28th Annual
International Conference on Computer Software and Applications (COMPSAC),
pp. 458–466.

Weyuker, E.J., 1982. On testing non-testable programs. Computer Journal 25 (4),
465–470.

Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and
Techniques, 2nd edition. Morgan Kaufmann.

Xie, X., Ho, J.W.K., Murphy, C., Kaiser, G., Xu, B.W., Chen, T.Y., 2009. Application of
metamorphic testing to supervised classifiers. In: Proceedings of the 9th Inter-
national Conference on Quality Software (QSIC), pp. 135–144.

Xie, X., Wong, W.E., Chen, T.Y., Xu, B., 2010. Spectrum-based fault localization with-
out test oracles. Tech. Rep. UTDCS-07-10, Dept. of Computer Science, University
of Texas at Dallas.

Yoo, S., 2010. Metamorphic testing of stochastic optimisation. In: Proceedings of the
3rd International Conference on Software Testing, Verification, and Validation
Workshops (ICSTW), pp. 192–201.

Zhang, D., Tsai, J., 2003. Machine learning and software engineering. Software Qual-
ity Journal 11 (2), 87–119.

Xiaoyuan Xie is currently a PhD student in Swinburne University of Technol-
ogy in Australia. She received her BSc and MPhil degrees in Computer Science
from Southeast University in China, with both being awarded the “Excellent The-
sis of State”. Her main research interests include software analysis, testing and
debugging.

Joshua W.K. Ho is currently a postdoctoral research fellow at the Brigham and
Women’s Hospital and Harvard Medical School. He completed a BSc (Hon) in Biol-
ogy, Biochemistry, and Computer Science at the University of Sydney in 2006 and
was awarded a University Medal for his outstanding academic accomplishment.
He subsequently completed a PhD in Bioinformatics from the University of Sydney
and National ICT Australia in 2010. His main research interest is computational and
systems biology, with a special focus on translational medicine.

Christian Murphy is a Lecturer at the University of Pennsylvania. He com-
pleted his PhD in Computer Science at Columbia University in 2010, where his
research focused on software testing and software engineering. Prior to his grad-
uate studies, Dr. Murphy worked in the software industry for seven years, and
earned a BS (summa cum laude) in Computer Engineering from Boston University
in 1995.

Gail E. Kaiser is a Professor of Computer Science and the Director of the Pro-
gramming Systems Laboratory in the Computer Science Department at Columbia
University. She was named an NSF Presidential Young Investigator in Software Engi-
neering and Software Systems in 1988, and has published over 150 refereed papers
in a range of software areas. Prof. Kaiser’s research interests include software test-
ing, collaborative work, computer and network security, parallel and distributed

systems, self-managing systems, Web technologies, information management, and
software development environments and tools. She has consulted or worked sum-
mers for courseware authoring, software process and networking startups, several
defense contractors, the Software Engineering Institute, Bell Labs, IBM, Siemens,
Sun and Telcordia. Her lab has been funded by NSF, NIH, DARPA, ONR, NASA, NYS
Science & Technology Foundation, and numerous companies. Prof. Kaiser served

5 ms an

o
a
c
c
t
o
e
d
h
M

58 X. Xie et al. / The Journal of Syste

n the editorial board of IEEE Internet Computing for many years, was a founding
ssociate editor of ACM Transactions on Software Engineering and Methodology,
haired an ACM SIGSOFT Symposium on Foundations of Software Engineering, vice
haired three of the IEEE International Conference on Distributed Computing Sys-

ems, and serves frequently on conference program committees. She also served
n the Committee of Examiners for the Educational Testing Service’s Computer Sci-
nce Advanced Test (the GRE CS test) for one term (three years), and has chaired her
epartment’s doctoral program since 1997 - which makes her an Associate Chair of
er department. Prof. Kaiser received her PhD and MS from CMU and her ScB from
IT.
d Software 84 (2011) 544–558

Baowen Xu was born in 1961. He is a professor at the department of Computer
Science and Technology, Nanjing University. His research areas are programming
languages, software engineering, concurrent software and web software.
Tsong Yueh Chen received his BSc and MPhil degrees from The University of Hong
Kong; MSc degree and DIC from the Imperial College of London University; and PhD
degree from The University of Melbourne. He is currently the Chair Professor of
Software Engineering and the Director of the Centre for Software Analysis and Test-
ing, Swinburne University of Technology, Australia. His research interests include
software testing, debugging, software maintenance, and software design.

	Testing and validating machine learning classifiers by metamorphic testing
	Introduction
	Background
	Supervised machine learning fundamentals
	Algorithms investigated
	Oracle problem in supervised machine learning classifiers

	Our approach
	Metamorphic testing
	Guidelines for defining metamorphic relations
	Metamorphic relations for supervised classifiers
	Analysis of relations for classifiers

	Case studies
	Experimental setup
	Experimental results and findings
	k-Nearest neighbors
	Naïve Bayes classifier

	Discussion
	Addressing violations of properties
	More general applications

	Mutation analysis
	Experimental setup
	Mutant generation
	Selection and modification of MRs

	Empirical results and analysis
	Metamorphic testing results
	Cross-validation analysis

	Related work
	Conclusion and future work
	Acknowledgments
	Necessary MRs for k-nearest neighbors
	Necessary MRs for Naïve Bayes classifier
	References

	References

