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Abstract—When software engineering researchers discuss
“similar” code, we often mean code determined by static analysis
to be textually, syntactically or structurally similar, known as
code clones (looks alike). Ideally, we would like to also include
code that is behaviorally or functionally similar, even if it looks
completely different. The state of the art in detecting these
behavioral clones focuses on checking the functional equivalence
of the inputs and outputs of code fragments, regardless of its
internal behavior (focusing only on input and output states). We
argue that with an advance in dynamic code clone detection
towards detecting behavioral clones (i.e., those with similar
execution behavior), we can greatly increase the applications of
behavioral clones as a whole for general program understanding
tasks.

I. INTRODUCTION

Software developers are often tasked to work with unfa-

miliar code that they do not understand. A developer might

not know what the code is supposed to do, how it works,

how it is supposed to work, how to fix it to make it work,

but documentation might be poor, outdated, or non-existent.

Furthermore, knowledgeable co-workers are not always imme-

diately available to help. We believe that if the developer can

be presented with “similar” code – code that is known (by the

IDE) to execute in the same way or compute the same function,

the developer might 1) find the similar code more readable;

2) identify familiar code to transfer her existing knowledge to

the code at hand; 3) gain insights from a different structure

that (the IDE tells her) implements the same behavior.

Numerous researchers have investigated code that exhibits

static – textual, syntactic or structural – similarity. That is,

code that looks alike. Visual differences might range from

whitespace, layout and comments to identifiers, literals and

types to changed, added and removed statements (sometimes

referred to as type 1 to type 3 “code clones”, resp. [3]).

Type 4 is a catch-all for all semantically similar clones,

but it lacks scientific formulations to classify them. Static

detection techniques attempt to match the source code text

[11] or some static internal representation such as tokens [1],

abstract syntax trees [2], [9], program dependence graphs [15],

[16], or a combination of multiple program representations

[4]. [7] found static similarity at the assembly code level.

But static techniques cannot always detect code that behaves
alike, i.e., that exhibits similar dynamic (runtime) behavior,

but does not look alike [10], [12]. When the developer does

not understand the code she needs to work with, showing her

more code that looks about the same may not be helpful. But

explaining that certain other code that looks quite different

actually behaves very similarly could provide clues to what

her own code does and how it works. Thus tools that detect

and manage statically similar code may miss opportunities to

help developers understand execution behavior [14].

Some researchers have investigated how to detect code that

exhibits dynamic – executional, functional or behavioral –

similarity. Dynamically similar code might perform the same

computation from a functional input/output perspective [5],

[10], [17], perform the same transformation of application

state [8], or produce outputs satisfying the same constraints

[13]. The corresponding source code may be expressed in

structurally or conceptually different ways. If a developer

is having difficulty understanding what the subject code is

supposed to do or how it works, it could help to examine

dynamically similar code: A different structural or conceptual

approach might provide exactly the insight needed.

While previous work has equated dynamic similarity with

some conception of functional equivalence, we propose a

broader view. Our key insight is that any behavioral rep-

resentation with an appropriate comparison metric might be

used to detect code whose dynamic characteristics would be

considered “similar” by human developers. Therefore, we raise

the question: what makes two code fragments “behaviorally

similar?”

II. DISCUSSION

While most previous work considers code fragments to

be behaviorally similar if they are functionally equivalent,

we argue that this is an overly-strong definition. Code may

perform a similar computation, but with dissimilar outputs. To

support developers in understanding how code works, we seek

to detect code that behaves similarly. We see static similarity as

Sim(Code1, Code2) ≥ thresh and define dynamic similarity

as Sim(Exec(Code1), Exec(Code2)) ≥ thresh.

Consider for example the three code samples shown in

Figure 1. Listings 1 and 3 take an array as input and return its

sum; Listing 2 returns two times the sum. Note that Listing

2 is very similar in terms of apparent behavior, although it is

not functionally equivalent. We believe that all three listings

represent a behavioral clone group, although with existing

definitions, either 1 and 3 are clones (for techniques that

consider inputs and outputs), or only 1 and 2 (for techniques

that consider abstract syntax trees).
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i n t magic1 ( i n t [ ] a r ) {
i n t sum = 0 ;
f o r ( i n t i =0 ; i<a r . l e n g t h

; i ++)
sum += a r [ i ] ;

r e t u r n sum ;
}

Listing 1. Code Sample 1

i n t magic2 ( i n t [ ] a r ) {
i n t sum = 0 ;
f o r ( i n t i =0 ; i<a r . l e n g t h

; i ++)
sum += 2 * a r [ i ] ;

r e t u r n sum ;
}

Listing 2. Code Sample 2

i n t magic3 ( i n t [ ] a r ) {
i n t sum = 0 ;
i n t i = 0 ;
t r y {

w h i l e ( t r u e )
sum += a r [ i + + ] ;

}
c a t c h ( Ar ray IndexOutOfBoundsExcep t ion ex ) {}
r e t u r n sum ;

}
Listing 3. Code Sample 3

Fig. 1: Three code samples, all which behave similarly.

We propose similarity detection techniques based on run-
time behavior (i.e., instructions executed) as an alternative

model for identifying code that is behaviorally similar. Our

idea is rooted in the relative success of techniques that intro-

duce characteristic vectors as signatures to represent the static

properties of code fragments [9], [19]. However, no purely

static approach could detect all behavioral clones, since in the

general case, code’s behavior is unknowable until its execution.

Instead, we propose to use dynamic signatures such as feature

vectors of execution traces [6] enable detection of code that

results in similar execution behavior regardless of its static

composition.

III. APPLICATIONS AND CONCLUSIONS

Maalej et al. [18] conducted a comprehensive qualitative

and quantitative study of how developers practice program

comprehension. Four of the eight comprehension strategies

identified either directly involve seeking “similar” code or

potentially could be enhanced by similar code from the same

codebase and/or an open-source repository: Interact with UI

to test expected program behavior; Debug application to

elicit runtime information; Clone to avoid comprehension and

minimize effort; Identify starting point for comprehension and

filter irrelevant code based on experience. Three of their six

knowledge needs and channels seem relevant to similar code:

Source code is more trusted than documentation; Standards

facilitate comprehension; Cryptic, meaningless names hamper

comprehension. Maalej et al. did not observe any use of

comprehension tools and said developers seem unaware of

them, and concluded by calling for reconsidering research

agendas towards context-aware tool support.
We believe that dynamic code clone tools can answer this

call. For example, detecting functionally or behaviorally sim-

ilar code could augment UI interactions with the subject code

or debugger elicitation of its runtime information. Functionally

or behaviorally similar code could provide additional starting

points for comprehension besides the subject code. The similar

source code might be trusted more than documentation, better

comply with standards than the subject code, or use less

cryptic more meaningful identifiers. We believe advances in

dynamic clone detection will open doors for applying code

clones to program understanding in ways previously not pos-

sible. Showing the developer code that looks similar may not

be helpful for understanding the code at hand, but showing

code that behaves similarly and/or computes a similar function

could provide valuable clues to what her code does and how

it works.
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