
Unit Test Virtualization: Optimizing Testing Time
Jonathan Bell and Gail Kaiser

Computer Science Department, Columbia University

CS
@CU

VMVM is much faster than running each test in its own process
We compared VMVM’s overhead to that of traditional, process-based isolation, finding it

significantly reduced test execution time.

Number of
tests in project
0-10 24/71 (34%)
10-100 81/235 (34%)
100-1000 97/238 (41%)
>1000 38/47 (81%)
(Overall) 240/591 (41%)

Number of projects creating
a new process for each test

Number of lines of
code in project
0-10k 7/42 (17%)
10k-100k 60/200 (30%)
100k-1m 114/267 (43%)
> 1m 58/82 (71%)
(Overall) 240/591 (41%)

Number of projects creating
a new process for each test

Testing Time

Each class accessed:
initialized? (run check)

Mark all logged classes as un-
initialized

Test case executes

No

Reinitialize class

Log class

Test case finishes

Instrumentation Time

Add bytecode to
dynamically check and

reset

Find classes that might
need to be reset

Visit each class in the
application

VMVM uses a hybrid static-dynamic analysis
VMVM efficiently resets these static fields on-demand using a two-phase static/

dynamic byte code analysis. Statically, VMVM identifies classes that may possibly
need to be reset and inserts guards. At runtime, these guards are checked.

Test Case 1 Test Case 2

Object A Object B

Object C Object DStatic Fields

Test RunnerObject Graph

Our solution: VMVM’s Unit Test Virtualization

VMVM targets JVM, but is tightly integrated with JUnit. We are currently integrating
VMVM with the Scala compiler’s partest. The Scala compiler test suite contains over

3,500 test cases, each executed in their own process.

Additional challenges:
 • Dependence on custom system class loaders
 • Dependence on custom JVM launch options

Scala source code Java byte code
VMVM-

instrumented Java
byte code

The Problem: Isolating Test Cases

/** If true, cookie values are allowed to contain an equals character
without being quoted. */
public static final boolean ALLOW_EQUALS_IN_VALUE =
 Boolean.valueOf(System.getProperty("org.apache.tomcat.
 util.http.ServerCookie.ALLOW_EQUALS_IN_VALUE","false"))
 .booleanValue();

Code sample from Apache Tomcat that demonstrates the sort of code that can
create unexpected test case dependencies: ALLOW_EQUALS_IN_VALUE can be set

only once: on subsequence executions within the same process, its value will not
change, even if the system property does. This sort of dependency is non-trivial to

detect (in fact, NP-complete).

Developers can accidentally create code that makes testing difficult Standard fix: Execute every test case in its own process
By executing every test in its own process, such side-effects can be ignored, as they are

only persisted as part of the in-memory application state. Restarting the application clears
this state.

Begin Test

Initialize application

Run test

Terminate application

End Test, continue to next

Begin
Test Suite

This fix is very commonly used in large Java projects, and is very slow
We mined the top 1,000 Java projects on ohloh. We looked at those using ant or

maven to run automated tests to see how many isolate test cases in separate
processes. For 20 of these, we calculated the overhead of isolating each test (shown

in bottom table).

VMVM is on GitHub: http://github.com/Programming-Systems-Lab/vmvm

Efficiently reset Java applications to their starting state
Assuming that classes are not reused between test executions (by the test runner),
only possible leakage is through static fields. The graph below shows how such a

leakage could occur.

Applications to non-Java languages

