
VMVM: Unit Test Virtualization for Java

Jonathan Bell
Columbia University

500 West 120th St, MC 0401
New York, NY USA

jbell@cs.columbia.edu

Gail Kaiser
Columbia University

500 West 120th St, MC 0401
New York, NY USA

kaiser@cs.columbia.edu

ABSTRACT
As software evolves and grows, its regression test suites tend
to grow as well. When these test suites become too large,
they can eventually reach a point where they become too
length to regularly execute. Previous work in Test Suite
Minimization has reduced the number of tests in such suites
by attempting to identify those that are redundant (e.g. by a
coverage metric). Our approach to ameliorating the runtime
of these large test suites is complementary, instead focusing
on reducing the overhead of running each test, an approach
that we call Unit Test Virtualization. This Tool Demon-
stration presents our implementation of Unit Test Virtual-
ization, VmVm (pronounced “vroom-vroom”) and summa-
rizes an evaluation of our implementation on 20 real-world
Java applications, showing that it reduces test suite ex-
ecution time by up to 97% (on average, 62%). A com-
panion video to this demonstration is available online, at
https://www.youtube.com/watch?v=sRpqF3rJERI.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools

General Terms
Reliability, Performance

Keywords
Testing, test optimization, unit test virtualization

1. MOTIVATION AND OVERVIEW
In the process of maintaining software, developers often

create regression tests to ensure that in the event that bugs
recur, they will be detected by the test suite. While these
test suites can be very useful for ensuring that previously-
repaired faults are not reintroduced, they can become cum-
bersome to run: because developers are often creating new

To appear at the 36th International Conference on Software Engineering,
Hyderabad India, June 2014 (ICSE ’14).

Begin Test

Initialize application

Run test

Terminate application

End Test, continue to next

Begin
Test Suite

Begin Test

Initialize application

Run test

Reset application

End Test, continue to next

Begin
Test Suite

Traditional Unit Testing

Optimized Unit Testing

Figure 1: The test execution loop

tests, the test suite can grow very large. In fact, previous
work has reported cases in industry where test suites can
take up to several weeks to execute fully [14]. Long run-
ning test suites are contradictory to modern continuous in-
tegration environments, where tests are expected to be run
frequently.

In order to reduce the cost of running these test suites,
researchers have widely investigated the field of Test Suite
Minimization [6,8–11,15,16]. Test Suite Minimization (TSM)
is a general approach to reducing the size of test suites by
identifying tests that are redundant — for example, those
that do not add additional statement or branch coverage to
the test suite. However, identifying exact duplicates is a
hard problem, as such coverage metrics are not necessarily
accurate.

We present a complementary approach to reducing the
cost of running long test suites, instead focusing on reduc-
ing the overhead of the test suite as a whole1. Figure 1
shows a high level overview of the implementation of nor-
mal unit testing. For each test in the suite, the system under
test is initialized, tested, then shut down. We observe that
these initialization steps can be time consuming (relative to
the tests themselves), and that perhaps test suite execution
can be sped up by removing the initialization phase from
the loop. In an ideal unit testing world, we would instead
initialize the system under test only once, and then after

1Our ICSE 2014 research track publication [3] describes this
approach in much greater detail, although without focusing
on the usage of the tool as much as this demonstration does

Table 1: Number of projects that restart the system
under test for each test, grouped by tests per project

of Tests in Project # of Projects Restarting App

0-10 24/71 (34%))
10-100 81/235 (34%)
100-1000 97/238 (41%)
>1000 38/47 (81%)

All Projects 240/591 (41%)

each test execution, reset the system to its starting state, a
process suggested by the bottom part of Figure 1.

At first, it may seem like this should be a non-problem:
do developers actually create test suites where each test exe-
cutes on a freshly started instance of the system under test?
Why wouldn’t developers simply write a post-test method
to ensure that the system under test is in the correct state
for the next test, without this costly application restart?
We performed a study of the 591 largest open-source Java
projects (that contained unit tests) in the Ohloh reposi-
tory [1] to determine the extent to which developers create
test suites where each test occurs in its own process. This
study is described in much greater detail (including the se-
lection of the projects) in Section 2.1 of our accompanying
technical paper [3], and the results of the study are partially
reproduced in Table 1 in this document. Overall 41% of all
projects surveyed executed each test against a new process;
in projects with many tests (over 1,000 tests), 81% of the
projects did this. We find this to be an indicator that par-
ticularly in large, complex applications (which have many
tests), it is necessary to execute each test in its own process.

To understand the overhead of isolating test cases, we
selected 20 projects from this same corpus of large Java
projects which include JUnit tests and executed their test
suites several times: once with each test case running in its
own process (isolated) and once with all test cases running
in the same process (no isolation). We found the average
runtime overhead of isolating test cases in this way to be
627% (this study is described in much greater detail in Sec-
tion 2.3 of our accompanying technical paper [3]) — clearly
presenting room for improvement.

For further insight into why this is necessary, we turned to
studying the test suite for the Apache Tomcat J2EE server,
version 7.0.42 (a project which executes each test case in a
new process). We modified the test runner to execute each
test in the same process (without fully restarting the ap-
plication in-between tests) and observed 16 test cases fail
(which didn’t fail when executing the test suite normally).
Upon inspection of one of the failing tests, we found the
following comment: “Note because of the use of static final
constants in Cookies, each of these tests must be executed
in a new JVM instance” 2. In this case, developers required
that each test be executed in its own process because tests
are dependent on certain application constants being set dif-
ferently upon initialization, and the only way to re-execute
that initialization code is to restart the application.

In the case of complex applications with hundreds of thou-
sands of lines of code and many dependencies it may be dif-
ficult or impossible to identify all potential side effects of

2http://svn.apache.org/repos/asf/tomcat/trunk/
test/org/apache/tomcat/util/http/CookiesBaseTest.
java

Begin Test Process

Execute Test

Normal Test Setup

Normal Test Teardown

Unit Test Virtualization:
Reinitialize contaminated areas

U
ni

t T
es

t V
irt

ua
liz

at
io

n:

Lo
g

ac
ce

ss
es

 th
at

 m
ay

ca

us
e

co
nt

am
in

at
io

n

System is Clean

Contaminated System

Figure 2: Unit Test Virtualization Overview

running a test. As an example of another such dependency,
Muşlu et al. [12] discuss a bug in the Apache Commons CLI
library that took approximately four years from initial re-
port to reach a confirmed fix. The Apache Commons CLI
project is an example of a project that does not isolate its
test cases to execute on clean instances of the application
(presumably to avoid the performance penalty). Part of the
confusion in this case was that there had been a test case
designed specifically to detect the failure reported, and that
that test case passed, yet the failure remained. In fact, the
reason that the test case passed was that the error was de-
pendent on classes being initialized in a certain order: if
the test case in question was executed before any others,
it failed, and if it executed in the order that it was in by
default, it passed. This error could have been detected im-
mediately if each test were isolated by executing them in
separate processes, on freshly started instances of the ap-
plication under test. To avoid the potential for unexpected
errors in tests, we believe that many developers (81% of the
large applications surveyed) choose to execute each test case
in its own process, hence isolating its side effects.

Unit Test Virtualization is our approach to compromise
between the opposing tradeoffs of test isolation and test
performance: a lightweight technique to achieve the same
test case isolation that is otherwise achieved by restarting
the application for every test execution. With Unit Test
Virtualization, we execute each unit test in its own virtual
container, effectively isolating all possible side effects of each
test. This formal demonstration describes the usage of our
implementation of Unit Test Virtualization in Java, VmVm,
which is released under an MIT license and available for
download on GitHub [2].

2. UNIT TEST VIRTUALIZATION
Our key insight that enables Unit Test Virtualization is

that it’s often unnecessary to completely reinitialize the sys-
tem under test in-between every test case execution in order
to still isolate application side-effects. Figure 2 presents a
high-level overview of our approach: during each test exe-
cution, we log any memory accesses that may cause side-
effects. Then, after each test completes, we reinitialize only
those areas that are contaminated. Pronounced “vroom-
vroom,” VmVm supports such reinitialization by creating a
Virtual Machine-like runtime within the Java Virtual Ma-
chine, and is our implementation of Unit Test Virtualization
for Java.

In a static analysis pass, VmVm determines what Java
Classes may possibly become contaminated with side-effects.

This analysis is coarse grained, and considers any Class
that has mutable, static fields as targets for contamination.
We leverage the managed memory model of Java here, in
that it is straightforward to detect what memory could be
shared between two test case executions. During execution,
VmVm detects when such Classes are loaded, and after a
test case completes, VmVm efficiently causes all such classes
to be re-initialized upon their next access, hence resetting all
of these mutable static fields which could cause information
leakage between executions. We do not consider state shared
between test cases in external files or databases, but consider
this acceptable as such state leakage is also not addressed by
running each test case in its own process. This demonstra-
tion will focus primarily on the application of VmVm (rather
than on the details of its implementation). For additional
details regarding its implementation, please refer to our ac-
companying technical paper [3].

2.1 Usage
VmVm is available for download via github [2], and is

designed to be easy for developers to use, in a two step pro-
cess. First, developers use VmVm to instrument their ap-
plications (including dependent libraries) with instructions
to support efficient re-initialization. This process uses the
ASM [4] byte code manipulation library to automate the
instrumentation. VmVm provides a simple interface for in-
strumenting applications, taking as input a folder contain-
ing an application (and all of its dependent libraries) and
outputting another folder containing a replica of the in-
put, but with VmVm instrumentation added. The specific
usage syntax is java -cp lib/asm-all-4.1.jar:vmvm.jar

edu.columbia.cs.psl.vmvm.Instrumenter <folder-to-

instrument> <dest>.
The second step, after instrumenting their application,

is for developers to modify their application test scripts
to execute test cases in the same process, and to notify
VmVm when a test case completes so that it can reinitialize
the effected portions of the application. This notification
is made by simply calling our API method, VirtualRun-

time.reset(). This entire process is simplified, as there are
two common build automation systems used in Java, ant

and maven, for which we provide the necessary code and de-
tailed instructions to include VmVm in the testing process.

2.1.1 Using VmVm with ant projects
For ant projects, developers must only modify their ant

build.xml file to add to the classpath two jars (the VmVm jar
and the VMVM-AntMvn-Listener jar file, which contains
classes specific for interacting with ant), to add our ant JU-
nit test listener to the configuration, and to execute all test
cases in the same process. Specifically, the following lines
are added:

<c l a s spa th>
<pathelement path=”ant−mvn−f o rmatte r . j a r ” /

>
<pathelement l o c a t i o n=”vmvm. j a r ”/>

</ c l a s spa th>
<jvmarg value=”−Xbootc lasspath /a:vmvm .

jar :asm−a l l −4.1 . j a r ”/>
<f o rmatte r classname=”edu . columbia . cs . p s l .

vmvm. AntJUnitTestListener ” extens i on=” .
xml ”/>

To modify ant’s configuration to execute all of the test cases
in the same process, a developer would add the option fork-

Mode="once" to the junit tag of the build.xml file.

2.1.2 Using VmVm with maven projects
Developers can modify their maven projects to use the

VmVm isolation mechanism by the same two jar files in
their test configuration, similar to the process for ant-based
systems. In the case of maven, we provide test execution
listener that hooks into the surefire testing plugin — devel-
opers simply modify their testing configuration to include
our jars in the test classpath, and to register our listener:

<c on f i gu r a t i on>
<add i t iona lC las spathElements>
<addi t iona lClasspathElement>vmvm. j a r</

addi t iona lClasspathElement>
<addi t iona lClasspathElement>ant−mvn−

f o rmatte r . j a r</
addi t iona lClasspathElement>

</ add i t iona lC las spathElements>
<p r op e r t i e s>
<property>
<name> l i s t e n e r</name>
<value>edu . columbia . cs . p s l .vmvm.

MvnVMVMListener</ value>
</ property>

</ p r op e r t i e s>
</ c on f i gu r a t i on>

3. EVALUATION
To evaluate the performance of VmVm, we first compared

it to several Test Suite Minimization (TSM) techniques. To
compare VmVm to TSM, we turned to a study performed by
Zhang et al. [18], which evaluated the performance of four
TSM techniques. Zhang et al. studied the performance of
each technique in terms of fault finding reduction and test
suite size reduction across several version of four real-world
Java applications downloaded from the Software Infrastruc-
ture Repository [7]. We downloaded the same applications,
replicating their experiments using VmVm instead of the
TSM mechanisms from their study, comparing the results.
VmVm showed a reduction in test suite execution time of
42% with no loss of fault finding ability, while the TSM tech-
nique we compared to (there were several studied by [18];
we selected the most stable in terms of fault finding ability)
showed a reduction in test suite size of 12%. From these re-
sults (described further in [3]), we conclude that VmVm can
provide a significant reduction in test suite execution time,
compared to existing TSM mechanisms.

We evaluated VmVm further by selecting 20 open source
Java applications that contain JUnit test suites. Projects
were selected for this study with the aim of including a mix of
both widely used and recognizable projects (e.g. the Apache
Tomcat project, a popular JSP server with 8537 commits
and 47 total contributors), and smaller projects (e.g. JTor,
an alpha-quality Tor implementation with only 445 commits
and 6 contributors overall). On average, each application
had 475,000 lines of code, 56 test classes, and was 7.32 years
old (significantly larger than the applications used to com-
pare to TSM and used by [18]). For all twenty applications
tested, VmVm was able to successfully instrument the ap-
plication and isolate the test cases effectively, providing an
average speedup of 62% with a maximum speedup of 97%
(compared to isolating each test case in its own process).

More detailed results from this study are available in our
accompanying technical paper [3].

4. RELATED WORK
Unit Test Virtualization can be seen as complementary

to Test Suite Minimization (TSM), an approach where test
cases that do not increase coverage metrics for the overall
suite are removed, as redundant [9]. This optimization prob-
lem is NP-complete, and there have been many heuristics
developed to approximate the minimization [6, 9, 11] (and
others, not specified due to space constraints). We believe
that it may be feasible to combine TSM with Unit Test Vir-
tualization, minimizing both the number of tests executed
and the amount of time spent executing those tests.

The implementation of Unit Test Virtualization can be
seen as similar in overall goal to sandboxing systems. How-
ever, while sandbox systems restrict all access from an ap-
plication (or a subcomponent thereof) to a limited parti-
tion of memory, our goal is to allow that application nor-
mal access to resources, but to record such accesses so that
they can be reverted, more similar to checkpoint-restart sys-
tems. Most relevant are several checkpoint style systems
that directly target Java. Nikolov et al. presented recover-
able class loaders, allowing for more efficient reinitialization
of classes, but requiring a customized JVM [13], whereas
VmVm functions on any commodity JVM. Xu et al. created
a generic language-level technique for snapshotting Java pro-
grams [17], however our approach eliminates the need for ex-
plicit checkpoints, instead always reinitializing the system to
its starting state.

Unit Test Virtualization may be more similar to microre-
booting, a system-level approach to reinitializing small com-
ponents of applications [5], although microrebooting requires
developers to specifically decouple components to enable
microrebooting, while Unit Test Virtualization requires no
changes to the application under test. A much more thor-
ough discussion of the relevant literature can be found in
our technical paper [3].

5. CONCLUSIONS
Unit Test Virtualization is a powerful new approach to

reduce the execution time of long test suites. VmVm (pro-
nounced “vroom-vroom”) is an easy to use implementation
of Unit Test Virtualization, implemented for Java, and avail-
able for download via github [2]. VmVm provides a signif-
icant reduction in testing time in applications that isolate
their test cases. We are very interested in developer feedback
regarding the usability and applicability of VmVm, and are
actively promoting it to relevant open source projects.

6. ACKNOWLEDGMENTS
The authors are members of the Programming Systems

Laboratory, funded in part by NSF CCF-1161079, NSF CNS-
0905246, and NIH U54 CA121852.

7. REFERENCES
[1] Ohloh, inc. http://www.ohloh.net.

[2] J. Bell and G. Kaiser. Vmvm: Unit test virtualization
in java. https://github.com/Programming-Systems-
Lab/vmvm.

[3] J. Bell and G. Kaiser. Unit Test Virtualization with
VMVM. In Proceedings of the 2014 International
Conference on Software Engineering, ICSE 2014,
Piscataway, NJ, USA, Jun 2014. IEEE Press.

[4] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A
code manipulation tool to implement adaptable
systems. In In Adaptable and extensible component
systems, 2002.

[5] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot: A technique for cheap recovery.
OSDI’04, pages 3–3, Berkeley, CA, USA, 2004.
USENIX Association.

[6] T. Chen and M. Lau. A new heuristic for test suite
reduction. Information and Software Technology,
40(5–6):347 – 354, 1998.

[7] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering: An International Journal,
10(4):405–435, 2005.

[8] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel.
On-demand test suite reduction. ICSE 2012, pages
738–748, Piscataway, NJ, USA, 2012. IEEE Press.

[9] M. J. Harrold, R. Gupta, and M. L. Soffa. A
methodology for controlling the size of a test suite.
ACM TOSEM, 2(3):270–285, July 1993.

[10] D. Jeffrey and N. Gupta. Improving fault detection
capability by selectively retaining test cases during
test suite reduction. IEEE Trans. Softw. Eng.,
33(2):108–123, Feb. 2007.

[11] J. A. Jones and M. J. Harrold. Test-suite reduction
and prioritization for modified condition/decision
coverage. IEEE Trans. Softw. Eng., 29(3):195–209,
Mar. 2003.

[12] K. Muşlu, B. Soran, and J. Wuttke. Finding bugs by
isolating unit tests. ESEC/FSE ’11, pages 496–499,
New York, NY, USA, 2011. ACM.

[13] V. Nikolov, R. Kapitza, and F. J. Hauck. Recoverable
class loaders for a fast restart of java applications.
Mobile Networks and Applications, 14(1):53–64, Feb.
2009.

[14] G. Rothermel, R. Untch, C. Chu, and M. Harrold.
Test case prioritization: an empirical study. volume
ICSM ’99, pages 179–188, 1999.

[15] S. Tallam and N. Gupta. A concept analysis inspired
greedy algorithm for test suite minimization. In
Proceedings of the 6th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, PASTE ’05, pages 35–42, New York, NY,
USA, 2005. ACM.

[16] W. E. Wong, J. R. Horgan, S. London, and A. P.
Mathur. Effect of test set minimization on fault
detection effectiveness. ICSE ’95, pages 41–50, New
York, NY, USA, 1995. ACM.

[17] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient
checkpointing of java software using context-sensitive
capture and replay. ESEC-FSE ’07, pages 85–94, New
York, NY, USA, 2007. ACM.

[18] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. An
empirical study of junit test-suite reduction. In
Software Reliability Engineering (ISSRE) 2011, pages
170–179, 2011.

