
Towards Using Cached Data Mining for Large
Scale Recommender Systems

Swapneel Sheth and Gail Kaiser

Abstract. Recommender systems are becoming increasingly popular. As these sys-
tems become commonplace and the number of users increases, it will become im-
portant for these systems to be able to cope with a large and diverse set of users
whose recommendation needs may be very different from each other. In particular,
large scale recommender systems will need to ensure that users’ requests for recom-
mendations can be answered with low response times and high throughput. In this
paper, we explore how to use caches and cached data mining to improve the per-
formance of recommender systems by improving throughput and reducing response
time for providing recommendations. We describe the structure of our cache, which
can be viewed as a prefetch cache that prefetches all types of supported recommen-
dations, and how it is used in our recommender system. We also describe the results
of our empirical study to measure the efficacy of our cache.

1 Introduction

Recommender systems have become increasingly commonplace. Recommender
systems are being used in a variety of domains such as recommending music we
may like [10, 14], things we might like to buy [1], and friends we may know [7].
There have also been many recommender systems targeted towards specialized do-
mains such as software engineering [4, 9, 11, 12] and medicine [18]. While there
has been a lot of work in the academic community on various aspects of recom-
mender systems such as recommendation algorithms [15, 21] and implications of
social networks in recommender systems [8, 20], there has been very limited work
that has explored the use of caches and cached data mining to improve the perfor-
mance of recommender systems by increasing throughput and reducing response
time for providing recommendations. This will be of particular concern as these

Swapneel Sheth · Gail Kaiser
Department of Computer Science, Columbia University, New York, NY 10027
e-mail: {swapneel,kaiser}@cs.columbia.edu

F.L. Gaol (Ed.): Recent Progress in DEIT, Vol. 1, LNEE 156, pp. 349–357.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{swapneel,kaiser}@cs.columbia.edu


350 S. Sheth and G. Kaiser

recommender systems become even more popular and their user and fan base grow.
With a large number of users, there are two specific issues that recommender sys-
tems would have to deal with - how to generate recommendations efficiently from a
large set of data and how to provide these recommendations efficiently to a diverse
set of users, where each user’s requirements for recommendations are different from
the others.

In this paper, we describe how we use cached data mining to answer users’
queries and provide recommendations in a very efficient way. We describe our back-
ground and motivation in the next section. Section 3 describes in detail the recom-
mendations provided by our system and how we use cached data mining. Section
4 describes our empirical study and results. Finally, we conclude the paper with a
discussion of the related work in Section 5.

2 Background and Motivation

We are working with researchers at Columbia University’s Center for Computa-
tional Biology and Bioinformatics (C2B2), particularly its MAGNet (Multiscale
Analysis of Genomic and Cellular Networks) Center to explore new ways in which
researchers in computational biology and bioinformatics can collaborate to share
data, analyze results, and share knowledge. Our approach is based on social net-
working metaphors for collaborative work where users can ask questions such as:
Who likes movies that I like?; What food and wine pairings go well together?; What
book would I like given that I like this book?

Our implementation of this approach is a system called “genSpace” [13], which
uses collaborative filtering to provide recommendations to users. genSpace is a plu-
gin to an open-source Java-based platform for integrated genomics called “geWork-
bench” [5]. Using geWorkbench, researchers in computational biology and bioin-
formatics can load in data sets such as DNA, protein, and gene sequences. They
can then run complex analysis tools such as filtering, normalization, clustering, and
pattern detection. There are over 50 such analysis tools supported by geWorkbench,
and each tool has many different runtime parameters. Choosing the right tool to use
and the sequences in which to use these tools (workflows) can be very daunting,
especially to new users. One substantial way that we diverge from and expand upon
the collaborative filtering provided by popular websites is that we address the or-
dering among related activities conducted in sequence, i.e., as a workflow. E.g., a
common workflow in geWorkbench is to run the ARACNe (Algorithm for the Re-
construction of Accurate Cellular Networks) analysis [3] followed by the MINDy
(Modulator Inference by Network Dynamics) analysis [17]. Issues stemming from
this ordering concern are, however, outside of the scope of this paper.

genSpace aims to flatten the learning curve and enable users to quickly become
productive. In particular, for users who do not know where to start, it recommends
the most popular three tools and workflows. For users already familiar with using
one or more tools in their standalone form outside geWorkbench, it recommends the
most popular workflow that starts with or includes a particular tool and the best tool



Towards Using Cached Data Mining for Large Scale Recommender Systems 351

to run next given that you’ve just run a particular tool. In order to achieve this, we
log users’ activities as they use geWorkbench and send the logs to a central server,
where data mining and collaborative filtering techniques generate these and other
kinds of recommendations.

Currently, our genSpace recommender system is modest in size. Our database
has about 10000 rows of data from around 150 distinct users. Since we anticipate
a significant increase in usage when geWorkbench soon introduces a Web-based
client, we wanted to study how our system would respond to and/or if it could cope
with a large increase in the number of users and user data.

In this paper, we discuss how we use cached data mining for providing recom-
mendations to users in genSpace. We also describe an empirical study highlighting
their benefits and improvements to the response time and throughput to user queries.

3 Cached Data Mining and genSpace Recommendations

3.1 Recommendations in genSpace

In genSpace, we support two different kinds of recommendations - static and dy-
namic.

3.1.1 Static Recommendations

Static Recommendations are those recommendations that do not depend on the cur-
rent activity of the user. Typically, such recommendations follow a “pull” model
where a user explicitly asks for these recommendations. Examples of such recom-
mendations include the top tools, the top workflows, and the most popular workflow
that includes or starts with a particular tool.

3.1.2 Dynamic Recommendations

Dynamic Recommendations are those recommendations that do depend on the cur-
rent activity of the user. Typically, such recommendations follow a “push” model
where the system automatically pushes these recommendations to the user. Exam-
ples of such recommendations include suggesting the best analysis tool to run next
based on what the user has done so far and suggesting popular superflows (work-
flows that include the user’s current workflow).

All these recommendations are generated using data mining to derive patterns
and trends from the user data.

3.2 genSpace Caching

genSpace has a server-side cache that supports pushing or pulling recommendations
to/from the users. It can be viewed as a prefetch cache that prefetches all types of
recommendations supported by the system. It is not a traditional cache where items



352 S. Sheth and G. Kaiser

are added to the cache when they are requested and there exist notions of cache
hits, cache misses, cache replacement policies and so on. Every recommendation
that we need will be present in the cache and we won’t need to go to the database
for any information. Due to this, we do not have the problem of a cache miss and
we do not need to worry about cache replacement and by definition, our hit rate
and recall is 100%. When the genSpace server starts up, the genSpace cache is
generated using a combination of SQL queries and stored procedures from our SQL
database backend that stores all the user data. The cache is periodically re-generated
as needed - currently, every day. If we did not have a cache, we would have to run
the SQL queries on demand every time a user request came in for recommendations.
We would also have to re-run the same query multiple times if different users asked
for the same set of recommendations.

We also address the problem of concept drift [19] where workflows performed
by users six months may not be so relevant today. E.g., after publication of major
findings that involved a form of analysis that was previously rare or after upgrading
to a new geWorkbench release that integrates additional tools or even for no known
reason, many users shift their usage patterns. We use an exponential time-decay
formula [6] to weigh recent user data more heavily. This weighting is done each
time the cache is generated.

After weighting the data, the static recommendations are computed and stored in
the cache. We build an index for each analysis tool found in the log data, to represent
the following information: the number of times this tool has been used, the number
of times this tool has been used as a workflow head, the most popular tool before
and after this tool in workflows, the most popular workflows containing this tool,
and all workflows that include this tool. This cached index uses hashing based on
the tool name to give us constant time lookup for tool-specific information. Finally,
a tree-based index of popular workflows aids in the dynamic recommendations. All
these parts together comprise the genSpace Caching System.

genSpace usually gets around 10-20 new logs every day and due to this, we re-
generate our cache every day. As the number of users for our system increases, con-
cept drift may take place on shorter timescales and we may need to re-generate the
cache more often to deal with it. The re-generation frequency is easily configured on
our server and will be ramped up as needed. However, more studies need to be done
to measure and fully understand the effect of concept drift on cache re-generation
and this is part of our future work. The next section contains some empirical results
on the time required to re-generate our cache.

Finally, due to the structure of the genSpace cache, it can only support the cur-
rently existing types of recommendations. If we wanted to support additional types
of recommendations, the cache would need to be augmented with the appropriate
information. E.g., we currently don’t support providing recommendations based on
the file-type on which the analysis tools are run. To support this, our cache would
need to store information regarding the file-types for the analyses.



Towards Using Cached Data Mining for Large Scale Recommender Systems 353

4 Empirical Study

The genSpace cache has already been deployed in our production system although
it may not be needed currently due to the modest number of users. In order to un-
derstand the prospective real-world improvements due to our cache, we carried out
an empirical study. For our study, we varied the number of rows of our database (in
the range of around 3500, 10000, 100000, and one million) and measured its impact
on average response time and throughput to user queries for recommendations. We
simulated 1000 concurrent users requesting recommendations. We also compared
these results to the results obtained if we did not have a cache and used SQL queries
instead every time for generating recommendations.

We used Apache JMeter [2] for load testing our server and measuring perfor-
mance. The genSpace server, including the cache, is implemented in Java. Our server
and client machines were common Windows XP machines with no non-essential sys-
tem processes running and had more than 2GB of surplus RAM available.

Fig. 1 Database Size vs. Average Response Time, for “Get Most Popular Workflow Heads”

Figure 1 shows the plot of the database size (in number of rows) versus the Av-
erage Response Time for a recommendation that gets the most popular workflow
heads, i.e., tools at the start of a workflow. The red line with squares as data points
shows the response time when using SQL queries-on-demand and the blue line with
triangles as data points shows the response time when using our cache. As shown in
the figure, as the size of the database increases, the response time using SQL queries-
on-demand increases by a large amount. Meanwhile, the response time using our
cache remains roughly constant. This shows that as the database size increases, us-
ing SQL queries-on-demand is not practical whereas using the cache enables us to
answer users’ queries in roughly the same time regardless of the database size.

Figure 2 shows the plot of the database size (in number of rows) versus the
Throughput for a recommendation that gets the most popular tools in the system.
The red line with squares as data points shows the response time when using SQL



354 S. Sheth and G. Kaiser

Fig. 2 Database Size vs. Throughput, for “Get Most Popular Tools”

queries-on-demand and the blue line with triangles as data points shows the response
time when using our cache. From the graphs, we see that the cache outperforms the
SQL queries-on-demand approach by a factor of at least 3 to as much as 200 as
database size increases.

Most of the static and dynamic recommendations mentioned in Section 3 were
part of the empirical study and our results were similar to the ones shown above
and generally show that using the cache improves the throughput and reduces the
response time.

We also measured how long our cache generation process takes. As mentioned
earlier, we currently re-generate our cache every day and it might be necessary to re-
generate our cache more often. In our study, it takes around ten seconds to generate
the cache for a database that has around one million rows and about 100 seconds for
a database that has around ten million rows. Thus, even if our database size increases
by a large amount, we can still manage to re-generate the cache periodically as often
as needed.

5 Related Work

To the best of our knowledge, there is very little in the published literature dis-
cussing caches for recommendation systems; in fact, we found exactly one paper
that discusses this. Qasim et al. [16] propose a general solution using active caches
for providing recommendations in all types of recommender systems. Active Caches
are caches that can answer neighborhood queries for recommendations, i.e., simi-
lar queries to a given query and act as limited query processors. Due to this, the
approach proposed by Qasim et al. is limited to neighborhood queries for recom-
mendations and will not work well, in general, for all kinds of queries and focusing
on just neighborhood queries may not improve overall system performance by a
significant amount. As recommender systems become increasingly popular, there



Towards Using Cached Data Mining for Large Scale Recommender Systems 355

might exist a very diverse user base that is interested in different kinds of recom-
mendations from the system.

In fact, as mentioned in their paper, due to overheads of caching, the system
might actually perform worse than having no cache. Our genSpace solution, on the
other hand, is not limited to neighborhood queries for recommendations and works
well for all kinds of recommendations supported by our genSpace system. This is
because our system, unlike the one mentioned by Qasim et al., is a prefetch cache
that prefetches all recommendations; all user recommendations can be answered
using the cache, rather than just the neighborhood ones. Of course, as our system
evolves and new types of recommendations are added, we would need to enhance
our cache to support those as well.

Further, Qasim et al., in the experimental section of their paper, focus on the
Hit Ratio, Recall, and Efficiency of computing the cache. While these metrics are
important, we feel it would more meaningful to see what this translates to, from a
user’s point of view. A typical user is not directly concerned about hit ratio and re-
call; rather, he is usually directly concerned with the latency and response time for
these recommendations. Our empirical study shows that using caches in genSpace
has significantly improved the throughput and reduced the response time for recom-
mendations, thus improving the overall user experience. Also, as we use a prefetch
cache that prefetches all types of recommendations supported by the system, by
definition, the hit ratio and recall for our system is 100%.

6 Conclusion

We have described how we use prefetch caching in our genSpace recommender
system. We have also described the structure of our cache, which can be viewed
as a prefetch cache that prefetches all types of supported recommendations, and
our empirical study that shows the advantages of using our cache, which improves
throughput and reduces response time for recommendations. We believe that the
use of such caches will prove very beneficial to recommender systems, particularly
as the number of users of such systems grow and the system needs to support the
diverse needs of its users, where different users are interested in very different kinds
of recommendations from the system and the recommendations they request do not
overlap.

Acknowledgements. The authors would like to thank Aris Floratos, Kiran Keshav, and Zhou
Ji for their guidance and assistance with genSpace. We would also like to thank Cheng Niu,
Joshua Nankin, Eric Schmidt, and Yuan Wang for their assistance in the implementation of the
genSpace cache and in the empirical study to measure its efficacy. The authors are members
of the Programming Systems Lab, funded in part by NSF CNS-0905246, CNS-0717544,
CNS-0627473 and CNS-0426623, and NIH 1 U54 CA121852-01A1.



356 S. Sheth and G. Kaiser

References

1. Amazon.com, http://www.amazon.com
2. Apache: Jmeter, http://jakarta.apache.org/jmeter/
3. Basso, K., Margolin, A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.:

Reverse engineering of regulatory networks in human B cells. Nature Genetics 37(4),
382–390 (2005)

4. Begel, A., Phang, K.Y., Zimmermann, T.: Codebook:discovering and ex-
ploiting relationships in software repositories. In: ICSE 2010: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering,
pp. 125–134. ACM, New York (2010),
doi: http://doi.acm.org/10.1145/1806799.1806821

5. Califano, A., Floratos, A., Kustagi, M., Watkinson, J.: geWorkbench: An Open-Source
Platform for Integrated Genomics,
http://www.geworkbench.org

6. Cohen, E., Strauss, M.: Maintaining time-decaying stream aggregates. In: Proc. of the
22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS), pp. 223–233 (2003)

7. Facebook, http://www.facebook.com
8. Geyer, W., Dugan, C., Millen, D.R., Muller, M., Freyne, J.: Recommending topics for

selfdescriptions in online user profiles. In: RecSys 2008: Proc. of the 2008 ACM Con-
ference on Recommender Systems, pp. 59–66 (2008),
doi: http://doi.acm.org/10.1145/1454008.1454019

9. Holmes, R., Ratchford, T., Robillard, M.P., Walker, R.J.: Automatically recommending
triage decisions for pragmatic reuse tasks. In: Proceedings of the 24th IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp. 397–408 (2009)

10. Last.fm, http://www.last.fm
11. McCarey, F., Cinnéide, M., Kushmerick, N.: Rascal: A recommender agent for agile

reuse. Artificial Intelligence Review 24(3), 253–276 (2005)
12. Murphy, C., Kaiser, G.E., Loveland, K., Hasan, S.: Retina: Helping Students and Instruc-

tors Based on Observed Programming Activities. In: Proc. of the 40th ACM SIGCSE
Techn. Symp. on CS Education, pp. 178–182 (2009)

13. Murphy, C., Sheth, S., Kaiser, G., Wilcox, L.: genSpace: Exploring Social Networking
Metaphors for Knowledge Sharing and Scientific Collaborative Work. In: 1st Interna-
tional Workshop on Social Software Engineering and Applications (SoSEA), pp. 29–36
(2008)

14. Pandora Radio, http://www.pandora.com
15. Park, Y.J., Tuzhilin, A.: The long tail of recommender systems and how to leverage it.

In: RecSys 2008: Proc. of the 2008 ACM Conf. on Recommender Systems, pp. 11–18
(2008), doi: http://doi.acm.org/10.1145/1454008.1454012

16. Qasim, U., Oria, V., Wu, Y.F.B., Houle, M.E., Özsu, M.T.: A partial-order based active
cache for recommender systems. In: RecSys 2009: Proceedings of the Third ACM Con-
ference on Recommender Systems, pp. 209–212. ACM, New York (2009),
doi: http://doi.acm.org/10.1145/1639714.1639750

17. Wang, K., Saito, M., Bisikirska, B., Alvarez, M., Lim, W., Rajbhandari, P., Shen, Q.,
Nemenman, I., Basso, K., Margolin, A., et al.: Genome-wide identification of post-
translational modulators of transcription factor activity in human B cells. Nature Biotech-
nology 27(9), 829–837 (2009)

18. WebMD Symptom Checker, http://symptoms.webmd.com

http://www.amazon.com
http://jakarta.apache.org/jmeter/
http://doi.acm.org/10.1145/1806799.1806821
http://www.geworkbench.org
http://www.facebook.com
http://doi.acm.org/10.1145/1454008.1454019
http://www.last.fm
http://www.pandora.com
http://doi.acm.org/10.1145/1454008.1454012
http://doi.acm.org/10.1145/1639714.1639750
http://symptoms.webmd.com


Towards Using Cached Data Mining for Large Scale Recommender Systems 357

19. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts.
Machine Learning 23(1), 69–101 (1996)

20. Zanardi, V., Capra, L.: Social ranking: uncovering relevant content using tag-based rec-
ommender systems. In: RecSys 2008: Proc. of the 2008 ACM Conf. on Recommender
Systems, pp. 51–58 (2008),
doi: http://doi.acm.org/10.1145/1454008.1454018

21. Zhang, J., Pu, P.: A recursive prediction algorithm for collaborative filtering recom-
mender systems. In: RecSys 2007: Proc. of the 2007 ACM Conference on Recommender
Systems, pp. 57–64 (2007),
doi: http://doi.acm.org/10.1145/1297231.1297241

http://doi.acm.org/10.1145/1454008.1454018
http://doi.acm.org/10.1145/1297231.1297241

	Towards Using Cached Data Mining for Large 
Scale Recommender Systems
	Introduction
	Background and Motivation
	Cached Data Mining and genSpace Recommendations
	Recommendations in genSpace
	genSpace Caching

	Empirical Study
	Related Work
	Conclusion
	References




