
Swapneel Sheth

swapneel@cs.columbia.edu

@swapneel

Spring 2012

1

COMS E6125 Web-enHanced Information 
Management

(WHIM)

Web Development Frameworks

mailto:swapneel@cs.columbia.edu
mailto:swapneel@cs.columbia.edu


l Static HTML Document
l Web Servers would retrieve the text file and send 

it to the user
l Needed some mechanism to output dynamic 

information from queries executed in real-time

2

Topic 1 – History and Background of 
Web Application Development



l Standard for external gateway programs to 
interface with information servers such as HTTP 
servers

l CGI programs can be written in any language and 
can either be compiled or “interpreted”

− Compiled Languages: C, C++, Fortran, etc.
− Scripting Languages: Perl, Shell scripts, etc.

3

Common Gateway Interface (CGI)



4

Common Gateway Interface (CGI)



l Advantages
− Ability to provide dynamic real-time content

l Disadvantages
− Too low level
− Various security issues
− Each invocation needs to fork a new process, 

thus sub-optimal

5

Common Gateway Interface (CGI)



l Dynamically add small amounts of content in static 
pages

l Special code gets executed on the server and 
dynamically replaced with real content

l NOT a replacement for CGI – an easier way to 
include small amounts of dynamic information 
when CGI is overkill

l Similar to JSPs

6

Server Side Includes (SSI)



l ASP was Microsoft's first server-side script engine 
for dynamically-generated web pages

l Originally released as an addon to IIS Server
l Most pages written in VBScript, but other languages 

are allowed (e.g., JScript, PerlScript)

7

Active Server Pages (ASP)



l Java's solution for generating dynamic web content
l Servlet 1.0 specification finalized in June 1997
l Servlet is an Object that receives a request and 

generates a response based on that request
l Servlets can maintain state across requests
l Can be automatically created from JavaServer Pages 

(JSPs)

8

Java Servlets



9

Java Servlets



l What is MVC?
− Model – View – Controller
− Architectural and Design Pattern 
− Described in 1979 by Trygve Reenskaug who 

was working on SmallTalk at Xerox PARC
l MVC – Then and Now

− “Rediscovered” for web app development

10

Topic 2 – MVC Frameworks



l “MVC was conceived as a general solution to the 
problem of users controlling a large and complex 
data set.”

l “The hardest part was to hit upon good names for 
the different architectural components. Model-
View-Editor was the first set.”

11

Quotes from Trygve Reenskaug



12

MVC Architecture 



l Corresponds to the database – some form of data 
persistence

l Can be a real database like MySQL, PostgreSQL, 
etc. 

l Can alternatively be an XML file, flat files, etc.

13

MVC Architecture – Model Layer 



l Decouple the data storage and retrieval from the 
other aspects such as the UI

l UI does not change depending on whether the data 
comes from an XML file or from an Oracle DB

l Central place to do all the validations such as 
integrity constraints and null checks

14

MVC Architecture – Model Layer (2) 



l Corresponds to the User Interface
l For web apps, this is typically a web page
l The web page designer need not be concerned 

about things like business logic
l Programmers typically use tools like Eclipse and 

emacs; Web page designers use different tools like 
Adobe Dreamweaver

l Allow the web page designers to use whatever they 
are comfortable with

15

MVC Architecture – View Layer 



l Corresponds to the “business logic”
l Theoretically lets the programmers use any 

language they are comfortable with
− There are no dependencies with the View or 

the Model Layers
l In practice, this is not true as picking an MVC 

framework forces you to use a fixed programming 
language

16

MVC Architecture – Controller Layer 



17



l Web Application Framework created by David 
Heinemeier Hansson (DHH) at 37signals

l Extracted from real-world web application called 
Basecamp and made open source in 2004

l Some 37signals applications
− Basecamp (project management)
− Ta-Da List (personal todo list)
− Campfire (business oriented online chat service)

18

Topic 3 – Ruby on Rails



l Uses Ruby
l Ruby is a dynamic, object-oriented programming 

language 
l Created by Yukihiro Matsumoto (Matz) in 1995
l Based on Perl, Smalltalk, Eiffel, Ada, and Lisp
l Supports multiple programming paradigms – 

functional, OO, imperative, etc.
l Strong support for reflection and Metaprogramming

19

Ruby on Rails



l “I wanted a language more powerful than Perl and 
more object-oriented than Python. Then, I 
remembered my old dream and decided to design 
my own language.” – Matz

l Principle of Least Surprise
l Make programming fun!

20

Design Philosophy of Ruby



21

Sample Ruby Code



l Don’t Repeat Yourself (DRY)
− Very Little Duplication
− “Every piece of knowledge in a system should be 

expressed in just one place”
l Convention over Configuration

− Sensible Defaults for Everything
− “Follow the conventions and you can write a Rails 

application using less code than a typical Java web 
application uses in XML configuration”

22

Design Philosophy of Ruby on Rails



l Inspired other MVC frameworks
l Most notable ones include

− Symfony
− CakePHP
− PHP on TRAX
− Merb

23

Design Philosophy of Ruby on Rails



l Active Record is the default Model Component in 
Rails and is the Base Class for all models

l Provides Object-Relational Mapping (ORM)
− Mapping between tables in the database and the 

classes in the application
− Classes correspond to Tables
− Attributes correspond to columns of the table
− Objects correspond to rows of the table

l Provides database independence, basic CRUD 
functionality, advanced finding capabilities, etc.

24

Ruby on Rails – Model Layer



25

Ruby on Rails – Model Layer (2)



l Action View manages the views in Rails applications
l Can create both HTML and XML output by default
l Manages rendering templates, including nested and 

partial templates, and includes built-in AJAX 
support

l Can embed Ruby code in HTML for the View Layer 
(similar to JSPs, etc.)

26

Ruby on Rails – View Layer



27

Ruby on Rails – View Layer (2)



l Action Controller manages the controllers in a 
Rails application

l The Action Controller framework processes 
incoming requests to a Rails application, extracts 
parameters, and dispatches them to the intended 
action

l Services provided by Action Controller include 
session management, template rendering, and 
redirect management.

28

Ruby on Rails – Controller Layer



29

Ruby on Rails – Controller Layer (2)



l Action Mailer
− Framework for building e-mail services. 

l Active Resource
− Framework for managing the connection 

between business objects and RESTful web 
services

l Action Web Service
− Server-side support for SOAP and XML-RPC 

protocols in Rails applications

30

Ruby on Rails – Other Components



l Many Web Servers and hosting options
l WEBrick bundled with Rails
l Other options include Apache (with mod_rails or 

FastCGI), Mongrel, nginx, lighttpd, etc.
l Dedicated Rails hosting companies: Rails Machine, 

Engine Yard, etc.

31

Ruby on Rails – Deployment



l There are LOTS of web application frameworks
l Picking which one to use is not trivial
l Many factors come into consideration when picking a 

framework
− Familiarity with programming language
− Legacy Code
− Easy of Use
− Documentation
− Fun Factor!

32

Topic 4 – MVC Framework Comparison



l Project done for WHIM in Spring 2007
l Basic Idea

− Implement the exact same web application in 
6 different frameworks

− Compare the frameworks on criteria such as
l Lines of Code, Number of Methods
l Performance Benchmarks like 

throughput, latency, cpu and memory 
usage

33

Six Degrees of Separation



l Phase 1
− Build a CRUD application for creating Music 

Catalogs
− Application should have only basic features 

like Searching and Sorting
l Phase 2

− Benchmark using Apache Benchmark, Siege, 
Funkload

34

Six Degrees of Separation



35

People



36

Benchmarks



37

Benchmark Results – Lines of Code



38

Benchmark Results – Throughput, Latency



39

Benchmark Results – CPU Usage



40

Benchmark Results – CPU Usage



41

Benchmark Results – CPU Usage



42

Benchmark Results – Memory



43

Benchmark Results – Memory



44

Benchmark Results – Memory



l Screencast by Sean Kelly
l Sean Kelly is a technologist at NASA's Jet 

Propulsion Laboratory
l Compares Java J2EE, Ruby on Rails, Zope/Plone, 

TurboGears, Django
l Link to Video

45

Better Web App Development

http://oodt.jpl.nasa.gov/better-web-app.mov
http://oodt.jpl.nasa.gov/better-web-app.mov


Swapneel Sheth

swapneel@cs.columbia.edu

@swapneel

Spring 2012

46

COMS E6125 Web-enHanced Information 
Management

(WHIM)

Web Development Frameworks

mailto:swapneel@cs.columbia.edu
mailto:swapneel@cs.columbia.edu

