
 1

RAS-Models: A Building Block for
Self-Healing Benchmarks

Rean Griffith, Ritika Virmani, Gail Kaiser
Programming Systems Lab (PSL)

Columbia University

PMCCS-8 Edinburgh, Scotland
September 21st 2007

Presented by Rean Griffith
rg2023@cs.columbia.edu

 2

Overview

 Introduction
 Problem
 Hypothesis
 Experiments & Examples
 Proposed Evaluation Methodology
 Conclusion & Future Work

 3

Introduction

 A self-healing system “…automatically
detects, diagnoses and repairs localized
software and hardware problems” – The Vision
of Autonomic Computing 2003 IEEE Computer Society

 4

Why a Self-Healing Benchmark?

 To quantify the impact of faults (problems)
– Establish a baseline for discussing

“improvements”
 To reason about expected benefits for

systems currently lacking self-healing
mechanisms
– Includes existing/legacy systems

 To quantify the efficacy of self-healing
mechanisms and reason about tradeoffs

 To compare self-healing systems

 5

Problem

 Evaluating self-healing systems and their
mechanisms is non-trivial
– Studying the failure behavior of systems can be

difficult
– Multiple styles of healing to consider (reactive,

preventative, proactive)
– Repairs may fail
– Partially automated repairs are possible

 6

Hypotheses

 Reliability, Availability and Serviceability
provide reasonable evaluation metrics

 Combining practical fault-injection tools with
mathematical modeling techniques provides
the foundation for a feasible and flexible
methodology for evaluating and comparing
the reliability, availability and serviceability
(RAS) characteristics of computing systems

 7

Objective

 To inject faults into the components of the
popular n-tier web-application
– Specifically the application server and Operating

System
 Observe its responses and any recovery

mechanisms available
 Model and evaluate available mechanisms
 Identify weaknesses

 8

Experiment Setup

Target: 3-Tier Web Application

TPC-W Web-application
Resin 3.0.22 Web-server and (Java) Application Server
Sun Hotspot JVM v1.5
MySQL 5.0.27
Linux 2.4.18

Remote Browser Emulation clients to simulate user loads

 9

Practical Fault-Injection Tools

 Kheiron/JVM
– Uses bytecode rewriting to inject faults into Java

Applications
– Faults include: memory leaks, hangs, delays etc.

 Nooks Device-Driver Fault-Injection Tools
– Uses the kernel module interface on Linux (2.4 and

now 2.6) to inject device driver faults
– Faults include: text faults, memory leaks, hangs etc.

 10

Healing Mechanisms Available

 Application Server
– Automatic restarts

 Operating System
– Nooks device driver protection framework
– Manual system reboot

 11

Mathematical Modeling Techniques

 Continuous Time Markov Chains (CTMCs)
– Limiting/steady-state availability
– Yearly downtime
– Repair success rates (fault-coverage)
– Repair times

 Markov Reward Networks
– Downtime costs (time, money, #service visits etc.)
– SLA penalty-avoidance

 12

Example 1: Resin App Server

 Analyzing perfect recovery e.g.
mechanisms addressing resource
leaks/fatal crashes

– S0 – UP state, system working
– S1 – DOWN state, system

restarting
– λfailure = 1 every 8 hours
– µrestart = 47 seconds

 Attaching a value to each state allows
us to evaluate the cost/time impact
associated with these failures.

Results:
Steady state
availability: 99.838%
Downtime per year:
866 minutes

 13

Example 2: Linux w/Nooks

 Analyzing imperfect recovery e.g. device
driver recovery using Nooks

– S0 – UP state, system working
– S1 – UP state, recovering failed driver
– S2 – DOWN state, system reboot
– λdriver_failure = 4 faults every 8 hrs
– µnooks_recovery = 4,093 mu seconds
– µreboot = 82 seconds
– c – coverage factor/success rate

 14

Example 3: Resin + Linux + Nooks
 Composing Markov chains

– S0 – UP state, system working
– S1 – UP state, recovering failed driver
– S2 – DOWN state, system reboot
– S3 – DOWN state, Resin reboot
– λdriver_failure = 4 faults every 8 hrs
– µnooks_recovery = 4,093 mu seconds
– µreboot = 82 seconds
– c – coverage factor
– λmemory_leak_ = 1 every 8 hours
– µrestart_resin = 47 seconds Max availability = 99.835%

Min downtime = 866 minutes

 15

Benefits of CTMCs + Fault Injection

 Able to model and analyze different styles of self-healing
mechanisms

 Quantifies the impact of mechanism details (success
rates, recovery times etc.) on the system’s operational
constraints (SLA penalties, availability etc.)

– Engineering view AND Business view
 Able to identify under-performing mechanisms
 Useful at design time as well as post-production
 Able to control the fault-rates

 16

Caveats of CTMCs + Fault-Injection

 CTMCs may not always be the “right” tool
– Constant hazard-rate assumption

 True distribution of faults may be different
– Fault-independence assumptions

 Limited to analyzing near-coincident faults
 Not suitable for analyzing cascading faults (can we model the

precipitating event as an approximation?)

 Some failures are harder to replicate/induce than others
– Better data on faults will improve fault-injection tools

 Getting detailed breakdown of types/rates of failures
– More data should improve the fault-injection experiments and

relevance of the results

 17

Real-World Downtime Data*

 Mean incidents of unplanned downtime in a
year: 14.85 (n-tier web applications)

 Mean cost of unplanned downtime (Lost
productivity #IT Hours):
– 2115 hrs (52.88 40-hour work-weeks)

 Mean cost of unplanned downtime (Lost
productivity #Non-IT Hours):
– 515.7 hrs** (12.89 40-hour work-weeks)

* “IT Ops Research Report: Downtime and Other Top Concerns,”
StackSafe. July 2007. (Web survey of 400 IT professional panelists, US Only)
** "Revive Systems Buyer Behavior Research," Research Edge, Inc. June 2007

 18

Quick Analysis – End User View

 Unplanned Downtime (Lost productivity Non-IT hrs) per
year: 515.7 hrs (30,942 minutes).

 Is this good? (94.11% Availability)

 Less than two 9’s of availability
– Decreasing the down time by an order of magnitude could

improve system availability by two orders of magnitude

 19

Proposed Data-Driven Evaluation (7U)

 1. Gather failure data and specify fault-model
 2. Establish fault-remediation relationship
 3. Select/create fault-injection tools to mimic faults in 1
 4. Identify Macro-measurements

– Identify environmental constraints governing system-operation
(SLAs, availability, production targets etc.)

 5. Identify Micro-measurements
– Identify metrics related to specifics of self-healing mechanisms

(success rates, recovery time, fault-coverage)
 6. Run fault-injection experiments and record observed

behavior
 7. Construct pre-experiment and post-experiment models

 20

The 7U-Evaluation Method

 21

Conclusions

 Dynamic instrumentation and fault-injection lets us
transparently collect data and replicate problems

 The CTMC-models are flexible enough to quantitatively
analyze various styles of repairs

 The math is the “easy” part compared to getting
customer data on failures, outages, and their impacts.

– These details are critical to defining the notions of “better” and
“good” for these systems

 22

Future Work

 More experiments on an expanded set of operating
systems using more server-applications

– Linux 2.6
– OpenSolaris 10
– Windows XP SP2/Windows 2003 Server

 Modeling and analyzing other self-healing mechanisms
– Error Virtualization (From STEM to SEAD, Locasto et. al Usenix

2007)
– Self-Healing in OpenSolaris 10

 Feedback control for policy-driven repair-mechanism
selection

 23

Questions, Comments, Queries?

Thank you for your time and attention

For more information contact:
Rean Griffith

rg2023@cs.columbia.edu

