
A Case Study in Software Adaptation
Giuseppe Valetto

Columbia University and Telecom Italia Lab
Via Reiss Romoli 274

10148, Turin, Italy
+39 011 2288788

Giuseppe.Valetto@tilab.com

Gail Kaiser
Columbia University

Department of Computer Science
New York, NY 10027, United States

+1 212 939 7081

Kaiser@cs.columbia.edu

ABSTRACT
We attach a feedback-control-loop infrastructure to an existing
target system, to continually monitor and dynamically adapt its
activities and performance. (This approach could also be applied
to “new” systems, as an alternative to “building in” adaptation
facilities, but we do not address that here.) Our infrastructure
consists of multiple layers, with the objectives of 1. probing,
measuring and reporting of activity and state during the execution
of the target system among its components and connectors; 2.
gauging, analysis and interpretation of the reported events; and 3.
whenever necessary, feedback onto the probes and gauges, to
focus them (e.g., drill deeper), or onto the running target system,
to direct its automatic adjustment and reconfiguration. We report
on our successful experience using this approach in the dynamic
adaptation of a large-scale commercial application requiring both
coarse and fine-grained modifications.

Categories and Subject Descriptors
D.3.3 D.2.4, D.2.5 [Software Engineering]: Software/Program
Verification – reliability, validation; Testing and Debugging –
diagnostics, error handling and recovery, monitors.

General Terms
Management, Performance, Reliability.

Keywords
Dynamic Adaptation, Dynamic Reconfiguration, Perpetual
Testing, Distributed Systems, Software Process Enactment,
Workflow, Coordination.

1. INTRODUCTION
Our approach to adaptation adds a feedback control loop outside
and orthogonal to the legacy system’s main computation, control
and communication. (Note that by legacy we mean any pre-
existing software, not necessarily truly ancient software,
constructed in, say, COBOL or Fortran.) The only direct
interaction with the target system is to insert (or wrap) probes that
detect system events, and impose (in some target-specific manner)

effectors that can make adjustments and reconfigurations in that
system. System models must also be devised based on the target
system’s functional and non-functional properties, protocols,
architecture, domain model, etc., so that higher-level gauges can
interpret probe emissions, and controllers can decide upon and
enact system repairs and adaptations. Such system models can be
developed piecemeal and incrementally, with respect to selected
system views or substructures, so a priori full-scale analysis is
unnecessary.
Others have also proposed to control the behavior and
performance of a running application, either as a generic
coordination mechanism [1], or attacking specific aspects of
dynamic adaptation: dynamic service composition and
management [21], deployment [13], self-modification [8],
“perpetual testing” [18]. The distinction of our approach is
precisely the externalization of the dynamic adaptation
infrastructure, which minimizes interdependencies with the
systems that are subject to its control. We see this as a key to
generality, with respect to the reach, granularity and kinds of
dynamic adaptation that can be exerted.

Previous papers [22][12][14] introduced our concepts, model and
system – called Kinesthetics eXtreme (KX, pronounced “kicks”) -
for applying dynamic adaptation facilities “from the outside” of a
given target system. In this paper, we evaluate the model’s merits
and limitations based on experience gained by putting it to test on
a real-world, mass-market Internet service.

2. THE KX INFRASTRUCTURE
2.1 Overview
Figure 1 shows an idealized view of our infrastructure.
Initially, data is collected from the running target system. It is
instrumented with non-invasive probes that report raw data to
other layers via the Probe Bus. The data is then interpreted via a
set of gauges that map the probe data into various models of the
system. The gauges then report their findings to the Gauge Bus.
Then the Decision and Control layer can analyze the implications
of the interpreted data on overall system performance and make
decisions on whether to: (1) introduce new gauges in the
interpretation layer to analyze further, or disable some as
superfluous; (2) deploy new probes to provide more detailed
information to the remaining gauges, or turn some off to reduce
“noise”; and/or (3) reconfigure the system itself, perhaps
changing the running system’s structure by introducing new
modules or modifying system or component parameters. The
system reconfiguration would be carried out via
deployment/activation of software effectors to reconfigure, tune

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSS '02, Nov 18-19, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-609-9/02/0011 ...$5.00 or adapt individual components and/or major substructures of the

system.

mailto:Giuseppe.Valetto@tilab.com

Figure 1: Externalized Dynamic Adaptation Infrastructure.
e emphasize that this infrastructure model is largely phasize that this infrastructure model is largely

Collection

Co n

Probes

Gauges

Controllers

Legacy System(s)

Gauge Bus

Probe Bus

W
iindependent of the running system. However, this is notndependent of the running system. However, this is not to say

nitoring the execution
e need a minimally invasive approach that

e use a variety of

rmat for structuring probe output data. Our intent is to

supports the unstructured attribute/value pairs handled by today’s

es are software entities that gather, filter, aggregate,
comp rement information about software

rpret probe data against various

necessary, the

 constructs higher-level

that the specific probes, gauges, controllers, effectors and models
are themselves independent of the running system – they are not.
The probes and effectors must often be specialized to the
implementation technology; the gauges and decision mechanisms
must be specialized to the problem domain and environmental
context. However, we anticipate that reuse should be
commonplace, such as for probes and gauges geared towards
availability, robustness, network QoS, etc.

2.2 Monitoring
Probing is a necessary prerequisite for mo
of a running system. W
can be guaranteed to have zero or negligible effect on the
performance and reliability of the system. A probe here is an
individual sensor attached to or associated with a running
program – or a component or connector of a running program. A
probe can sense some portion of the program's, or its
environment's, execution and make that data available by issuing
events. One focus of the DARPA DASADA program [19][10],
under which KX has been developed to date, has been to agree
upon a “standard” API for controlling probes.
Most of our own work has focused on interoperable infrastructure,
rather than the probe technology itself. W
probes developed by outside sources as well as ourselves (e.g., the
“probelet” in Figure 2, not discussed here), and can “drop in” any
probe technology meeting the DASADA standard API [2]. For
example, OBJS’ ProbeMeister [16] dynamically inserts probes
into Java byte code, and Teknowledge’s “instrumented
connectors” [3] replace Win32 DLLs with pre-instrumented
libraries.
We have proposed the “Smart Events” XML Schema [9] as a
standard fo
unify the disparate ways in which the varied probe technologies
describe observed events. This Schema includes extension points
for inserting additional tag structures appropriate for specific
probe and/or gauge technologies. We are aware that XML text is
verbose, so we are investigating efficient “wire formats” for
XML-based event notations – which would allow the wide base of
XML processing tools to be employed at final destinations but
incurring relatively little traffic penalty. Our implementation also

content-based messaging event buses like U. Colorado’s Siena
[5].

2.3 Dynamic Analysis
Gaug

Decision

ute, and/or analyze measu
systems. In particular, they inte
models, to produce higher-level outputs: gauges can emit events
just as can probes can. These events are typically at a higher level
of abstraction, but the aforementioned Smart Events XML
Schema has been defined to support both levels. As with probes, a
major concern of the DASADA program has been defining a
standard gauge API to allow interoperability [11].
Our own gauges operate within a framework consisting of two
major components, Event Packager and Event Distiller, shown in
Figure 2. The Event Packager transforms, when
raw-data format of legacy probe output into Smart Events-
compatible event streams (using probe- or probe source-specific
plugins). It also packages and logs these events in an SQL-based
persistent store for possible replaying. The replay can be either
“precisely timed” or “fast-forwarded”.
The Event Distiller recognizes complex temporal event patterns
from multiple probe sources (conceptually similar to Stanford’s
Complex Event Processing [15]), and
measurements to reflect the system state represented by the
events. The Event Distiller is “programmed” by a collection of
condition/action rules, where the condition specifies the event
pattern and the action specifies what to do when that pattern is
recognized – typically generation of an appropriate higher-level
event. These events interface with the decision layer and,
optionally, gauge visualizers.

models
with
not need to “kn

Figure 2. KX Probes and Gauges
Both the probe and gauge buses follow publish/subscribe

content-based routing, so event producers and consumers do
ow about” each other.

Interpretation

nfiguratio

Effectors

2.4 Feedback to Reconfiguration Effectors are the most target-specific aspect of our approach, and
often must be handcrafted. Workflakes currently conducts an
adaptation workflow by selecting, instantiating and dispatching
Worklets mobile agents [22], and coordinating the activities of the
deployed Worklets on the target system’s components and
connectors. Worklets carry Java mobile code encased in “jackets”
that determine conditional execution and repetition, timing, etc.

Gauge outputs are input to a decision process that determines
what course of action to take, if any. The decision process may
be supported by a variety of tools, including, e.g., an architecture
transformation tool (such as CMU’s Tailor [20]) that reacts to
gauges that detect differences between the running and the
nominal architecture. Executing high-level repair action(s), e.g.,
to reconfigure the architecture, will often involve several
activities at the effector (implementation) level. Some of these
activities may be conditional or dependent on others, or may
simply fail, so one needs to be able to express the adaptation
process as a workflow rich enough to express contingency plans.
This decision and control layer might also invoke the
management actions of the probe and gauge layers on occasion,
for example, to induce refined measurements before proceeding
with adaptation.

3. DYNAMICALLY ADAPTING AN
INTERNET MASS-MARKET SERVICE
Our case study concerns a multi-channel instant messaging (IM)
service for personal communication, which operates on a variety
of channels, such as the Web, PC-based Internet chat, Short
Message Service (SMS), WAP, etc. The service is currently
offered on a 24/7/365 basis as a value-added service to thousands
of users.

We use our Workflakes decentralized workflow system [23], as
illustrated in Figure 3, to instantiate and coordinate all kinds of
adaptations of the running system, from local actions to global
topological changes. Workflakes is built on top of BBN’s
Cougaar distributed agents architecture [10].

Our goals are twofold: We want to achieve service optimization,
with respect to the overall QoS perceived by the end users, which
can be achieved by adapting the functional and/or extra-functional
characteristics of the various service components as well as their
interactions. QoS requirements include on-the-fly architectural
modification for scalability, in response to the detection of host-
and component-specific load thresholds, as well as on-the-fly
reconfiguration of the server farm hosting the service. We also
aim to support dynamic monitoring and control of the running
service, that is, simplify and resolve a number of concerns related
to the continuous management of such a complex distributed
application. These requirements include automated deployment of
the service code; automated bootstrapping and configuration of
the service; monitoring of database connectivity from within the
service; monitoring of crashes and shutdowns of IM servers;
monitoring of client load over time; and support for “hot” service
staging via automated rollout of new versions and patches.

Our case study is organized as a series of iterations, which aim at
incrementally fulfilling requirements originating from needs
discovered in the field by the service provisioning organization,
and elicited from the application development and maintenance
team. For each iteration, results are first evaluated in the lab; then
new requirements are accepted for the next iteration, while the
results produced are delivered and put to test on the field. We
report hereby on the results of the first iteration.

Figure 3. KX Feedback Loop Using Workflakes

We do not yet employ a true workflow notation to describe these
activities; the workflow is currently expressed as a set of coding
patterns in Java, which are then dynamically loaded into and
executed by the Workflakes engine. In the longer term, we will
integrate a process workflow specification language, which must
support the description of the actions to be applied to repair and
adapt a system, including at which location(s) the changes should
be applied. The language needs to specify both sequential and
parallel execution of actions, and how to deal with unsuccessful
actions, by retrying, attempting alternate actions, rolling back or
compensating changes.

The service runtime environment, as shown in Figure 4, consists
of a typical three-tiered server farm: a load balancer provides the
frontend of the service to all end-users and redirects all client
traffic to several replicas of the IM components, which are
installed and operate on a set of middle tier hosts. The various
replicas of the IM server all share a relational database and a
common runtime state repository, which make up the backend
tier, and allow replicas to operate in an undifferentiated way as a
collective service. Some of the IM servers provide additional
facilities, which handle access to the service through specific
channels, such as SMS or WAP, and interoperate with third-party
components and resources that remain outside of the scope of the
service, e.g., the gateways to the cell phone communication
network. Those extra facilities wrap the core IM functionality in
various ways. Given this kind of modularity, it is possible to
achieve continual validation of all of the service components in a
server farm in a consistent way, by applying probing, gauging and
repair in the first place on the core IM server components, and

As with probes, effectors can be realized with various
technologies. Effector actions range over a spectrum from simple
adaptations – relatively low-level adjustments to a well-defined
target system API, e.g., changing a process variable or calling a
method – to potentially complex reconfiguration commands that
cause structurally significant changes, possibly involving high-
level adjustments at the system/environmental level. The latter
may involve, e.g., starting, migrating, restarting, or stopping one
or more processes, and/or rearranging the connections among
components.

extending them as needed to validate any critical features of the
additional wrapping components.

Figure 4. The IM service architecture

The case study addresses all of our requirements using a specific
set of probes, gauges and repairs on top of the common facilities
provided by the KX platform. Workflakes addresses the
manageability requirements by taking responsibility to correctly
initiate the service software via a completely automatic process,
which replaces the original manual procedures and later scripts
for the installation, deployment and bootstrapping of service
components. This process is enabled by explicitly integrating
knowledge about the service architecture and the runtime
environment of the server farm into the logic and data loaded at
startup onto the Workflakes engine. Furthermore, Workflakes
addresses QoS requirements, responding to scalability needs with
a reactive process that orchestrates new deployments of IM
servers and opportune reconfiguration of the load balancer (IBM
commercial software).

After startup, Workflakes selects one of the hosts from its internal
representation of the runtime environment of the server farm and
sends out a Worklet mobile agent to it. This Worklet carries and
executes bootstrapping code for the IM server and configures it
with all the necessary parameters (such as the JDBC connection
handle to the DBMS, the port numbers for connections by clients
and other IM servers, etc.). Notice that not only the configuration
information, but also the executable code of the IM server is
deployed and loaded on demand from a code repository made
available to the incoming Worklet. This exploits an advantage of
a code-pulling feature of the Worklets agent platform, which
allows one to do away with any preliminary installation of the
application code on all machines taking part in the server farm -
greatly simplifying the bootstrapping, staging and evolution of the
service. (An analogous approach is followed in U. Colorado’s
Software Dock [13].)

When the Worklet instantiates an IM server, certain probes are
activated to track its initialization. In the event of an unsuccessful
initialization, the likely cause is inferred by KX on the basis of
the probes’ output and reported to a dashboard GUI for the human
management of the service, as well as to the Workflakes process.
Workflakes may react by deciding to try to bootstrap an IM server
on the same machine again, or on another one. Otherwise upon

successful initialization, the process dispatches another Worklet
onto the load balancer, to instruct it to accept traffic for the IM
service and pass it to the initialized server at the right host address
and port.

Mobile
NTW

Mobile
NTW

Clientsbrowserbrowser

Load Balancing

SMS-C

IM

Server

WAP Gateway
Web Appl.

IM

Server
Web Appl.

IM

Server
SMS Gateway

IM

Server
SMS Gateway

IM

Server

R-DBMS

Server
Farm

Web Appl.

IM

Server
Web Appl.

IM

Server

PC Client

Shared state

PC Client

Web Appl.

IM

Server
Web Appl.

IM

Server

Following the initial bootstrapping phase, Workflakes takes a
reactive role, while the KX platform starts monitoring the
dynamics of service usage. Certain probes and gauges are
activated to track user activity, such as logging in and out of the
initialized server. IM servers have an associated load threshold,
which in the case of this particular service is most simply
expressed in terms of the number of concurrently active clients in
relationship with the memory resources of their host. When that
threshold is passed, the gauges notify Workflakes, which reacts
by trying to scale up the service. It selects an unused machine still
available in the server farm, and repeats the bootstrapping process
fragment on that machine, including the update of the load
balancer configuration. Of course, this scaling-up policy can be
repeated as many times as the number of machines in the server
farm allows.

Notice that the Worklet bootstrapping a new IM server must carry
an extra piece of configuration: an indication of some other alive
IM server. This enables the new instance to sync up with the IM
server pool and its shared state, and allows it to function as an
undifferentiated replica. After a successful initialization of a
subsequent IM server, client requests begin to arrive at that server
via the reconfigured load balancer, achieving scalability and thus
enhancing overall reliability and performance. Other conditions
that can prompt new deployments and bootstrapping of IM
servers include failures of some existing server replicas, which are
inferred by gauges from specific sequences of probe events.

Thus KX together with Workflakes effectively fulfills our
deployment, bootstrapping and scalability requirements,
supporting both the service monitoring/control and service
optimization goals flexibly and dynamically. Minor changes to
the bootstrapping process sketched above enable also service
evolution campaigns to be expressed as a process with tasks that
withdraw old server instances from the load balancer (thus
disallowing new traffic to be assigned to them), shut them down
when traffic is absent or minimal, and conversely start up, register
on the load balancer, and make available to users other server
instances with the new code release.

4. THE BOTTOM LINE
• The original manual deployment procedure required 2-3

person-days from scratch on-site, i.e., on the premises of a
server farm. Using scripts and assuming DBMS and web
application servers already resident, that was reduced this to
½-1 person-day on-site. With KX, that is reduced to a few
minutes from a remote location – under the same
assumptions.

• The scripts consisted of about 500 lines of csh or other
equivalent Unix shell. Using KX, this is reduced to around
220 lines of Java code that runs on Win32 platforms as well
as Unix.

• The monitoring and maintenance effort originally required 1
sysadmin on-site 24/7/365, monitoring the state of the
service periodically and taking care of trouble tickets as they
came, plus 1 technical team on call for further support. KX

enables continuous remote monitoring of major service
parameters, with automated alarms, and completely
automated resolution of a set of well-known fault conditions.

• Considering one such specific condition: KX recognizes that
load threshold is passed in a matter of <1 second, and takes
approximately 40 seconds to instantiate a new service
instance and load-balance it. Previously, there was no way to
detect an overload with direct evidence, and to scale up
automatically in response. Performance degradation of IM
server(s) was supposedly kept under control by the
sysadmin, who would check the number of concurrent users
on each server - which is periodically logged - and would
manually start up an additional server before such number
approached the overload threshold. Such manual inspection
was potentially error-prone, risking that resource starvation
(e.g., RAM shortage) could remain unnoticed until the server
broke down and had to be restarted.

5. FUTURE WORK
Besides continuing to validate KX and Workflakes with this as
well as other case studies in different application domains, we
have identified a number of areas for improvement and further
research that we intend to pursue.
Our current feedback loop is admittedly relatively ad hoc,
depending on manually constructed gauge rules that trigger
“canned” workflows - albeit with fairly sophisticated instantiation
parameters, including access to a “Worklet factory” - to perform
reconfigurations. Moreover, when the results reported here were
achieved, the decision component of our infrastructure was
dispersed between the Event Distiller gauges and the Workflakes
workflow engine
We are evaluating workflow languages that can adequately
express the coordination logic in Workflakes, and – to that end -
we have been experimenting with U. Massachusetts’ Little-JIL
workflow formalism [6]. We also want to understand and
characterize precisely the kinds of the adaptation that can be
successfully automated, possibly matching them to different
workflow formalisms.
We have also recently begun working with formalized
architectural models (for instance, expressed with ADLs) as the
base for adaptation decisions. Such architectural models for a
given target system can be created a priori by hand (as in [7]), or
generated based on analysis of probed event traffic (as
investigated by [17]). We are experimenting integration with
CMU’s Acme toolkit [4], and we can now build gauges that
recognize structural changes based on its models, and enact repair
processes that are decided upon by Tailor.

6. ACKNOWLEDGMENTS
KX is a team effort of Columbia’s Programming Systems Lab.
KX components can be downloaded from
http://www.psl.cs.columbia.edu/software.html. The general
infrastructure model and concepts have been developed in
collaboration with: Bob Balzer and Dave Wile, Teknowledge;
Nathan Combs, BBN; David Garlan and Bradley Schmerl, CMU;
George Heineman, WPI; David Wells, OBJS; and Lee Osterweil,
UMass. Pier Giorgio Bosco, Mario Costamagna, Matteo
Demichelis, Elio Paschetta, and Roberto Squarotti at TILAB
contributed to the case study. The Programming Systems Lab is

funded in part by Defense Advanced Research Project Agency
under DARPA Order K503 monitored by Air Force Research
Laboratory F30602-00-2-0611, by National Science Foundation
grants CCR-9970790 and EIA-0071954, and by Microsoft
Research. The work at TILAB is funded in part by EURESCOM
project P-1108 (Olives).

7. REFERENCES
[1] Alonso, G., Workflow Assessment and Perspective, in

International Process Technology Workshop, September
1999.

[2] Balzer, R., Probe Run-Time Infrastructure, Teknowledge,
December 2001. http://schafercorp-
ballston.com/dasada/2001WinterPI/ProbeRun-
TimeInfrastructureDesign.ppt.

[3] Balzer, R., Goldman, N.M., Mediating Connectors, in
ICDCS Workshop on Electronic Commerce and Web-Based
Applications, June 1999.

[4] Carnegie Mellon University, Acme Web, The Acme
Architectural Description Language. http://www-
2.cs.cmu.edu/~acme/.

[5] Carzaniga, A., Rosenblum, D.S., Wolf, A.L., Design and
Evaluation of a Wide-Area Event Notification Service, ACM
Transactions on Computer Systems, 19(3):332-383, August
2001.

[6] Cass, A.G., Staudt Lerner, B., McCall, E.K., Osterweil, L.J.,
Sutton, S.M., Jr., Wise, A., Little-JIL/Juliette: A Process
Definition Language and Interpreter, in 22nd International
Conference on Software Engineering, June 2000.

[7] Cheng, S.-W., Garlan, D., Schmerl, B., Sousa, J.P.,
Spitznagel, B., Steenkiste P., Using Architectural Style as a
Basis for Self-repair, in Working IEEE/IFIP Conference on
Software Architecture 2002, August 2002.

[8] Cobleigh, J.M., Osterweil, L.J., Wise, A., Staudt Lerner, B.,
Containment Units: A Hierarchically Composable
Architecture for Adaptive Systems, in 10th International
Symposium on the Foundations of Software Engineering,
November 2002.

[9] Columbia University Programming Systems Lab, DASADA
Probe Event Schema, January 2002.
http://www.psl.cs.columbia.edu/kx/smartevent-schema.html.

[10] Cougaar Home Page, Welcome to the Cognitive Agent
Architecture (Cougaar) Open Source Website.
http://www.cougaar.org.

[11] Garlan, D., Schmerl, B., Chang, J., Using Gauges for
Architecture-Based Monitoring and Adaptation, in Working
Conference on Complex and Dynamic Systems Architecture,
December 2001.

[12] Gross, P.N., Gupta, S., Kaiser, G. E., Kc, G.S., Parekh, J.J.,
An Active Events Model for Systems Monitoring, in
Working Conference on Complex and Dynamic Systems
Architecture, December 2001.

[13] Hall, R.S., Heimbigner, D., Wolf, A.L., A Cooperative
Approach to Support Software Deployment Using the

Software Dock, in 21st International Conference on Software
Engineering, May 1999.

[14] Kaiser, G., Gross, P., Kc, G.S., Parekh, J.J., Valetto, G., An
Approach to Autonomizing Legacy Systems, in Workshop
on Self-Healing, Adaptive and Self-MANaged Systems, June
2002.

[15] Luckham, D.C., Frasca, B., Complex Event Processing in
Distributed Systems, Stanford University Technical Report
CSL-TR-98-754, 1998.

[16] Object Services & Consulting, Inc., ProbeMeister 2002.
http://www.objs.com/DASADA/ProbeMeister.htm.

[17] Object Services and Consulting, Inc., Software Surveyor
Dynamically Deducing Componentware Configurations.
http://www.objs.com/DASADA/.

[18] Perpetual Testing.
http://www1.ics.uci.edu/~djr/edcs/PerpTest.html.

[19] Salasin, J., Dynamic Assembly for System Adaptability,
Dependability, and Assurance (DASADA).
http://www.darpa.mil/ipto/research/dasada/.

[20] Schmerl, B., Garlan, D., Exploiting architectural design
knowledge to support self-repairing systems, in 14th
International Conference on Software Engineering and
Knowledge Engineering, July 2002.

[21] Shirvastava, S.K., Bellissard, L., Feliot, D., Herrmann, M.,
De Palma, N., Wheater, S.M., A Workflow and Agent based
Platform for Service Provisioning, in 4th IEEE/OMG
International Enterprise Distributed Object Computing
Conference, September 2000.

[22] Valetto, G., Kaiser, G., Kc, G.S., A Mobile Agent Approach
to Process-based Dynamic Adaptation of Complex Software
Systems, in 8th European Workshop on Software Process
Technology, June 2001.

[23] Valetto, G., Kaiser, G., Combining Mobile Agents and
Process-based Coordination to Achieve Software Adaptation,
Columbia University Department of Computer Science,
CUCS-007-02, March 2002.

	INTRODUCTION
	THE KX INFRASTRUCTURE
	Overview
	Monitoring
	Dynamic Analysis
	Feedback to Reconfiguration

	DYNAMICALLY ADAPTING AN INTERNET MASS-MARKET SERVICE
	THE BOTTOM LINE
	FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

