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ABSTRACT 
We attach a feedback-control-loop infrastructure to an existing 
target system, to continually monitor and dynamically adapt its 
activities and performance. (This approach could also be applied 
to “new” systems, as an alternative to “building in” adaptation 
facilities, but we do not address that here.) Our infrastructure 
consists of multiple layers, with the objectives of 1. probing, 
measuring and reporting of activity and state during the execution 
of the target system among its components and connectors; 2. 
gauging, analysis and interpretation of the reported events; and 3. 
whenever necessary, feedback onto the probes and gauges, to 
focus them (e.g., drill deeper), or onto the running target system, 
to direct its automatic adjustment and reconfiguration. We report 
on our successful experience using this approach in the dynamic 
adaptation of a large-scale commercial application requiring both 
coarse and fine-grained modifications. 

Categories and Subject Descriptors 
D.3.3 D.2.4, D.2.5 [Software Engineering]: Software/Program 
Verification – reliability, validation; Testing and Debugging – 
diagnostics, error handling and recovery, monitors. 

General Terms 
Management, Performance, Reliability. 

Keywords 
Dynamic Adaptation, Dynamic Reconfiguration, Perpetual 
Testing, Distributed Systems, Software Process Enactment, 
Workflow, Coordination. 

1. INTRODUCTION 
Our approach to adaptation adds a feedback control loop outside 
and orthogonal to the legacy system’s main computation, control 
and communication. (Note that by legacy we mean any pre-
existing software, not necessarily truly ancient software, 
constructed in, say, COBOL or Fortran.) The only direct 
interaction with the target system is to insert (or wrap) probes that 
detect system events, and impose (in some target-specific manner) 

effectors that can make adjustments and reconfigurations in that 
system. System models must also be devised based on the target 
system’s functional and non-functional properties, protocols, 
architecture, domain model, etc., so that higher-level gauges can 
interpret probe emissions, and controllers can decide upon and 
enact system repairs and adaptations. Such system models can be 
developed piecemeal and incrementally, with respect to selected 
system views or substructures, so a priori full-scale analysis is 
unnecessary. 
Others have also proposed to control the behavior and 
performance of a running application, either as a generic 
coordination mechanism [1], or attacking specific aspects of 
dynamic adaptation: dynamic service composition and 
management [21], deployment [13], self-modification [8], 
“perpetual testing” [18]. The distinction of our approach is 
precisely the externalization of the dynamic adaptation 
infrastructure, which minimizes interdependencies with the 
systems that are subject to its control. We see this as a key to 
generality, with respect to the reach, granularity and kinds of 
dynamic adaptation that can be exerted. 

Previous papers [22][12][14] introduced our concepts, model and 
system – called Kinesthetics eXtreme (KX, pronounced “kicks”) - 
for applying dynamic adaptation facilities “from the outside” of a 
given target system. In this paper, we evaluate the model’s merits 
and limitations based on experience gained by putting it to test on 
a real-world, mass-market Internet service. 

2. THE KX INFRASTRUCTURE  
2.1 Overview 
Figure 1 shows an idealized view of our infrastructure. 
Initially, data is collected from the running target system. It is 
instrumented with non-invasive probes that report raw data to 
other layers via the Probe Bus. The data is then interpreted via a 
set of gauges that map the probe data into various models of the 
system. The gauges then report their findings to the Gauge Bus. 
Then the Decision and Control layer can analyze the implications 
of the interpreted data on overall system performance and make 
decisions on whether to: (1) introduce new gauges in the 
interpretation layer to analyze further, or disable some as 
superfluous; (2) deploy new probes to provide more detailed 
information to the remaining gauges, or turn some off to reduce 
“noise”; and/or (3) reconfigure the system itself, perhaps 
changing the running system’s structure by introducing new 
modules or modifying system or component parameters. The 
system reconfiguration would be carried out via 
deployment/activation of software effectors to reconfigure, tune 
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Figure 1: Externalized Dynamic Adaptation Infrastructure. 
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that the specific probes, gauges, controllers, effectors and models 
are themselves independent of the running system – they are not. 
The probes and effectors must often be specialized to the 
implementation technology; the gauges and decision mechanisms 
must be specialized to the problem domain and environmental 
context.  However, we anticipate that reuse should be 
commonplace, such as for probes and gauges geared towards 
availability, robustness, network QoS, etc. 

2.2 Monitoring 
Probing is a necessary prerequisite for mo
of a running system. W
can be guaranteed to have zero or negligible effect on the 
performance and reliability of the system. A probe here is an 
individual sensor attached to or associated with a running 
program – or a component or connector of a running program. A 
probe can sense some portion of the program's, or its 
environment's, execution and make that data available by issuing 
events. One focus of the DARPA DASADA program [19][10], 
under which KX has been developed to date, has been to agree 
upon a “standard” API for controlling probes. 
Most of our own work has focused on interoperable infrastructure, 
rather than the probe technology itself.  W
probes developed by outside sources as well as ourselves (e.g., the 
“probelet” in Figure 2, not discussed here), and can “drop in” any 
probe technology meeting the DASADA standard API [2]. For 
example, OBJS’ ProbeMeister [16] dynamically inserts probes 
into Java byte code, and Teknowledge’s “instrumented 
connectors” [3] replace Win32 DLLs with pre-instrumented 
libraries.   
We have proposed the “Smart Events” XML Schema [9] as a 
standard fo
unify the disparate ways in which the varied probe technologies 
describe observed events. This Schema includes extension points 
for inserting additional tag structures appropriate for specific 
probe and/or gauge technologies. We are aware that XML text is 
verbose, so we are investigating efficient “wire formats” for 
XML-based event notations – which would allow the wide base of 
XML processing tools to be employed at final destinations but 
incurring relatively little traffic penalty.  Our implementation also 

content-based messaging event buses like U. Colorado’s Siena 
[5]. 

2.3 Dynamic Analysis 
Gaug

Decision  

ute, and/or analyze measu
systems. In particular, they inte
models, to produce higher-level outputs: gauges can emit events 
just as can probes can. These events are typically at a higher level 
of abstraction, but the aforementioned Smart Events XML 
Schema has been defined to support both levels. As with probes, a 
major concern of the DASADA program has been defining a 
standard gauge API to allow interoperability [11]. 
Our own gauges operate within a framework consisting of two 
major components, Event Packager and Event Distiller, shown in 
Figure 2. The Event Packager transforms, when 
raw-data format of legacy probe output into Smart Events-
compatible event streams (using probe- or probe source-specific 
plugins). It also packages and logs these events in an SQL-based 
persistent store for possible replaying. The replay can be either 
“precisely timed” or “fast-forwarded”.   
The Event Distiller recognizes complex temporal event patterns 
from multiple probe sources (conceptually similar to Stanford’s 
Complex Event Processing [15]), and
measurements to reflect the system state represented by the 
events. The Event Distiller is “programmed” by a collection of 
condition/action rules, where the condition specifies the event 
pattern and the action specifies what to do when that pattern is 
recognized – typically generation of an appropriate higher-level 
event. These events interface with the decision layer and, 
optionally, gauge visualizers. 
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2.4 Feedback to Reconfiguration Effectors are the most target-specific aspect of our approach, and 
often must be handcrafted. Workflakes currently conducts an 
adaptation workflow by selecting, instantiating and dispatching 
Worklets mobile agents [22], and coordinating the activities of the 
deployed Worklets on the target system’s components and 
connectors. Worklets carry Java mobile code encased in “jackets” 
that determine conditional execution and repetition, timing, etc. 

Gauge outputs are input to a decision process that determines 
what course of action to take, if any.  The decision process may 
be supported by a variety of tools, including, e.g., an architecture 
transformation tool (such as CMU’s Tailor [20]) that reacts to 
gauges that detect differences between the running and the 
nominal architecture. Executing high-level repair action(s), e.g., 
to reconfigure the architecture, will often involve several 
activities at the effector (implementation) level. Some of these 
activities may be conditional or dependent on others, or may 
simply fail, so one needs to be able to express the adaptation 
process as a workflow rich enough to express contingency plans. 
This decision and control layer might also invoke the 
management actions of the probe and gauge layers on occasion, 
for example, to induce refined measurements before proceeding 
with adaptation. 

3. DYNAMICALLY ADAPTING AN 
INTERNET MASS-MARKET SERVICE 
Our case study concerns a multi-channel instant messaging (IM) 
service for personal communication, which operates on a variety 
of channels, such as the Web, PC-based Internet chat, Short 
Message Service (SMS), WAP, etc. The service is currently 
offered on a 24/7/365 basis as a value-added service to thousands 
of users. 

We use our Workflakes decentralized workflow system [23], as 
illustrated in Figure 3, to instantiate and coordinate all kinds of 
adaptations of the running system, from local actions to global 
topological changes. Workflakes is built on top of BBN’s 
Cougaar distributed agents architecture [10]. 

Our goals are twofold: We want to achieve service optimization, 
with respect to the overall QoS perceived by the end users, which 
can be achieved by adapting the functional and/or extra-functional 
characteristics of the various service components as well as their 
interactions. QoS requirements include on-the-fly architectural 
modification for scalability, in response to the detection of host- 
and component-specific load thresholds, as well as on-the-fly 
reconfiguration of the server farm hosting the service. We also 
aim to support dynamic monitoring and control of the running 
service, that is, simplify and resolve a number of concerns related 
to the continuous management of such a complex distributed 
application. These requirements include automated deployment of 
the service code; automated bootstrapping and configuration of 
the service; monitoring of database connectivity from within the 
service; monitoring of crashes and shutdowns of IM servers; 
monitoring of client load over time; and support for “hot” service 
staging via automated rollout of new versions and patches. 

Our case study is organized as a series of iterations, which aim at 
incrementally fulfilling requirements originating from needs 
discovered in the field by the service provisioning organization, 
and elicited from the application development and maintenance 
team. For each iteration, results are first evaluated in the lab; then 
new requirements are accepted for the next iteration, while the 
results produced are delivered and put to test on the field. We 
report hereby on the results of the first iteration. 

 
Figure 3. KX Feedback Loop Using Workflakes 

We do not yet employ a true workflow notation to describe these 
activities; the workflow is currently expressed as a set of coding 
patterns in Java, which are then dynamically loaded into and 
executed by the Workflakes engine. In the longer term, we will 
integrate a process workflow specification language, which must 
support the description of the actions to be applied to repair and 
adapt a system, including at which location(s) the changes should 
be applied. The language needs to specify both sequential and 
parallel execution of actions, and how to deal with unsuccessful 
actions, by retrying, attempting alternate actions, rolling back or 
compensating changes. 

The service runtime environment, as shown in Figure 4, consists 
of a typical three-tiered server farm: a load balancer provides the 
frontend of the service to all end-users and redirects all client 
traffic to several replicas of the IM components, which are 
installed and operate on a set of middle tier hosts. The various 
replicas of the IM server all share a relational database and a 
common runtime state repository, which make up the backend 
tier, and allow replicas to operate in an undifferentiated way as a 
collective service. Some of the IM servers provide additional 
facilities, which handle access to the service through specific 
channels, such as SMS or WAP, and interoperate with third-party 
components and resources that remain outside of the scope of the 
service, e.g., the gateways to the cell phone communication 
network. Those extra facilities wrap the core IM functionality in 
various ways.  Given this kind of modularity, it is possible to 
achieve continual validation of all of the service components in a 
server farm in a consistent way, by applying probing, gauging and 
repair in the first place on the core IM server components, and 

As with probes, effectors can be realized with various 
technologies. Effector actions range over a spectrum from simple 
adaptations – relatively low-level adjustments to a well-defined 
target system API, e.g., changing a process variable or calling a 
method – to potentially complex reconfiguration commands that 
cause structurally significant changes, possibly involving high-
level adjustments at the system/environmental level. The latter 
may involve, e.g., starting, migrating, restarting, or stopping one 
or more processes, and/or rearranging the connections among 
components. 

 



extending them as needed to validate any critical features of the 
additional wrapping components. 

Figure 4. The IM service architecture 

The case study addresses all of our requirements using a specific 
set of probes, gauges and repairs on top of the common facilities 
provided by the KX platform. Workflakes addresses the 
manageability requirements by taking responsibility to correctly 
initiate the service software via a completely automatic process, 
which replaces the original manual procedures and later scripts 
for the installation, deployment and bootstrapping of service 
components. This process is enabled by explicitly integrating 
knowledge about the service architecture and the runtime 
environment of the server farm into the logic and data loaded at 
startup onto the Workflakes engine. Furthermore, Workflakes 
addresses QoS requirements, responding to scalability needs with 
a reactive process that orchestrates new deployments of IM 
servers and opportune reconfiguration of the load balancer (IBM 
commercial software).  

After startup, Workflakes selects one of the hosts from its internal 
representation of the runtime environment of the server farm and 
sends out a Worklet mobile agent to it. This Worklet carries and 
executes bootstrapping code for the IM server and configures it 
with all the necessary parameters (such as the JDBC connection 
handle to the DBMS, the port numbers for connections by clients 
and other IM servers, etc.). Notice that not only the configuration 
information, but also the executable code of the IM server is 
deployed and loaded on demand from a code repository made 
available to the incoming Worklet. This exploits an advantage of 
a code-pulling feature of the Worklets agent platform, which 
allows one to do away with any preliminary installation of the 
application code on all machines taking part in the server farm - 
greatly simplifying the bootstrapping, staging and evolution of the 
service. (An analogous approach is followed in U. Colorado’s 
Software Dock [13].) 

When the Worklet instantiates an IM server, certain probes are 
activated to track its initialization. In the event of an unsuccessful 
initialization, the likely cause is inferred by KX on the basis of 
the probes’ output and reported to a dashboard GUI for the human 
management of the service, as well as to the Workflakes process.  
Workflakes may react by deciding to try to bootstrap an IM server 
on the same machine again, or on another one. Otherwise upon 

successful initialization, the process dispatches another Worklet 
onto the load balancer, to instruct it to accept traffic for the IM 
service and pass it to the initialized server at the right host address 
and port. 
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Following the initial bootstrapping phase, Workflakes takes a 
reactive role, while the KX platform starts monitoring the 
dynamics of service usage. Certain probes and gauges are 
activated to track user activity, such as logging in and out of the 
initialized server. IM servers have an associated load threshold, 
which in the case of this particular service is most simply 
expressed in terms of the number of concurrently active clients in 
relationship with the memory resources of their host. When that 
threshold is passed, the gauges notify Workflakes, which reacts 
by trying to scale up the service. It selects an unused machine still 
available in the server farm, and repeats the bootstrapping process 
fragment on that machine, including the update of the load 
balancer configuration. Of course, this scaling-up policy can be 
repeated as many times as the number of machines in the server 
farm allows.  

Notice that the Worklet bootstrapping a new IM server must carry 
an extra piece of configuration: an indication of some other alive 
IM server. This enables the new instance to sync up with the IM 
server pool and its shared state, and allows it to function as an 
undifferentiated replica. After a successful initialization of a 
subsequent IM server, client requests begin to arrive at that server 
via the reconfigured load balancer, achieving scalability and thus 
enhancing overall reliability and performance. Other conditions 
that can prompt new deployments and bootstrapping of IM 
servers include failures of some existing server replicas, which are 
inferred by gauges from specific sequences of probe events. 

Thus KX together with Workflakes effectively fulfills our 
deployment, bootstrapping and scalability requirements, 
supporting both the service monitoring/control and service 
optimization goals flexibly and dynamically. Minor changes to 
the bootstrapping process sketched above enable also service 
evolution campaigns to be expressed as a process with tasks that 
withdraw old server instances from the load balancer (thus 
disallowing new traffic to be assigned to them), shut them down 
when traffic is absent or minimal, and conversely start up, register 
on the load balancer, and make available to users other server 
instances with the new code release.  

4. THE BOTTOM LINE 
• The original manual deployment procedure required 2-3 

person-days from scratch on-site, i.e., on the premises of a 
server farm. Using scripts and assuming DBMS and web 
application servers already resident, that was reduced this to 
½-1 person-day on-site. With KX, that is reduced to a few 
minutes from a remote location – under the same 
assumptions. 

• The scripts consisted of about 500 lines of csh or other 
equivalent Unix shell. Using KX, this is reduced to around 
220 lines of Java code that runs on Win32 platforms as well 
as Unix. 

• The monitoring and maintenance effort originally required 1 
sysadmin on-site 24/7/365, monitoring the state of the 
service periodically and taking care of trouble tickets as they 
came, plus 1 technical team on call for further support. KX 

 



enables continuous remote monitoring of major service 
parameters, with automated alarms, and completely 
automated resolution of a set of well-known fault conditions. 

• Considering one such specific condition: KX recognizes that 
load threshold is passed in a matter of <1 second, and takes 
approximately 40 seconds to instantiate a new service 
instance and load-balance it. Previously, there was no way to 
detect an overload with direct evidence, and to scale up 
automatically in response. Performance degradation of IM 
server(s) was supposedly kept under control by the 
sysadmin, who would check the number of concurrent users 
on each server - which is periodically logged - and would 
manually start up an additional server before such number 
approached the overload threshold. Such manual inspection 
was potentially error-prone, risking that resource starvation 
(e.g., RAM shortage) could remain unnoticed until the server 
broke down and had to be restarted. 

5. FUTURE WORK 
Besides continuing to validate KX and Workflakes with this as 
well as other case studies in different application domains, we 
have identified a number of areas for improvement and further 
research that we intend to pursue. 
Our current feedback loop is admittedly relatively ad hoc, 
depending on manually constructed gauge rules that trigger 
“canned” workflows - albeit with fairly sophisticated instantiation 
parameters, including access to a “Worklet factory” - to perform 
reconfigurations. Moreover, when the results reported here were 
achieved, the decision component of our infrastructure was 
dispersed between the Event Distiller gauges and the Workflakes 
workflow engine  
We are evaluating workflow languages that can adequately 
express the coordination logic in Workflakes, and – to that end - 
we have been experimenting with U. Massachusetts’ Little-JIL 
workflow formalism [6]. We also want to understand and 
characterize precisely the kinds of the adaptation that can be 
successfully automated, possibly matching them to different 
workflow formalisms. 
We have also recently begun working with formalized 
architectural models (for instance, expressed with ADLs) as the 
base for adaptation decisions. Such architectural models for a 
given target system can be created a priori by hand (as in [7]), or 
generated based on analysis of probed event traffic (as 
investigated by [17]). We are experimenting integration with 
CMU’s Acme toolkit [4], and we can now build gauges that 
recognize structural changes based on its models, and enact repair 
processes that are decided upon by Tailor. 

6. ACKNOWLEDGMENTS 
KX is a team effort of Columbia’s Programming Systems Lab. 
KX components can be downloaded from 
http://www.psl.cs.columbia.edu/software.html. The general 
infrastructure model and concepts have been developed in 
collaboration with: Bob Balzer and Dave Wile, Teknowledge; 
Nathan Combs, BBN; David Garlan and Bradley Schmerl, CMU; 
George Heineman, WPI; David Wells, OBJS; and Lee Osterweil, 
UMass. Pier Giorgio Bosco, Mario Costamagna, Matteo 
Demichelis, Elio Paschetta, and Roberto Squarotti at TILAB 
contributed to the case study. The Programming Systems Lab is 

funded in part by Defense Advanced Research Project Agency 
under DARPA Order K503 monitored by Air Force Research 
Laboratory F30602-00-2-0611, by National Science Foundation 
grants CCR-9970790 and EIA-0071954, and by Microsoft 
Research. The work at TILAB is funded in part by EURESCOM 
project P-1108 (Olives). 

7. REFERENCES 
[1] Alonso, G., Workflow Assessment and Perspective, in 

International Process Technology Workshop, September 
1999.  

[2] Balzer, R., Probe Run-Time Infrastructure, Teknowledge, 
December 2001. http://schafercorp-
ballston.com/dasada/2001WinterPI/ProbeRun-
TimeInfrastructureDesign.ppt.  

[3] Balzer, R., Goldman, N.M., Mediating Connectors, in 
ICDCS Workshop on Electronic Commerce and Web-Based 
Applications, June 1999.  

[4] Carnegie Mellon University, Acme Web, The Acme 
Architectural Description Language. http://www-
2.cs.cmu.edu/~acme/.  

[5] Carzaniga, A., Rosenblum, D.S., Wolf, A.L., Design and 
Evaluation of a Wide-Area Event Notification Service, ACM 
Transactions on Computer Systems, 19(3):332-383, August 
2001.  

[6] Cass, A.G., Staudt Lerner, B., McCall, E.K., Osterweil, L.J., 
Sutton, S.M., Jr., Wise, A., Little-JIL/Juliette: A Process 
Definition Language and Interpreter, in 22nd International 
Conference on Software Engineering, June 2000.  

[7] Cheng, S.-W., Garlan, D., Schmerl, B., Sousa, J.P., 
Spitznagel, B., Steenkiste P., Using Architectural Style as a 
Basis for Self-repair, in Working IEEE/IFIP Conference on 
Software Architecture 2002, August 2002.  

[8] Cobleigh, J.M., Osterweil, L.J., Wise, A., Staudt Lerner, B., 
Containment Units: A Hierarchically Composable 
Architecture for Adaptive Systems, in 10th International 
Symposium on the Foundations of Software Engineering, 
November 2002.  

[9] Columbia University Programming Systems Lab, DASADA 
Probe Event Schema, January 2002. 
http://www.psl.cs.columbia.edu/kx/smartevent-schema.html.  

[10] Cougaar Home Page, Welcome to the Cognitive Agent 
Architecture (Cougaar) Open Source Website. 
http://www.cougaar.org.  

[11] Garlan, D., Schmerl, B., Chang, J., Using Gauges for 
Architecture-Based Monitoring and Adaptation, in Working 
Conference on Complex and Dynamic Systems Architecture, 
December 2001.  

[12] Gross, P.N., Gupta, S., Kaiser, G. E., Kc, G.S., Parekh, J.J., 
An Active Events Model for Systems Monitoring, in 
Working Conference on Complex and Dynamic Systems 
Architecture, December 2001.  

[13] Hall, R.S., Heimbigner, D., Wolf, A.L., A Cooperative 
Approach to Support Software Deployment Using the 

 



 

Software Dock, in 21st International Conference on Software 
Engineering, May 1999.  

[14] Kaiser, G., Gross, P., Kc, G.S., Parekh, J.J., Valetto, G., An 
Approach to Autonomizing Legacy Systems, in Workshop 
on Self-Healing, Adaptive and Self-MANaged Systems, June 
2002.  

[15] Luckham, D.C., Frasca, B., Complex Event Processing in 
Distributed Systems, Stanford University Technical Report 
CSL-TR-98-754, 1998.  

[16] Object Services & Consulting, Inc., ProbeMeister 2002. 
http://www.objs.com/DASADA/ProbeMeister.htm.  

[17] Object Services and Consulting, Inc., Software Surveyor 
Dynamically Deducing Componentware Configurations. 
http://www.objs.com/DASADA/.  

[18] Perpetual Testing. 
http://www1.ics.uci.edu/~djr/edcs/PerpTest.html.  

[19] Salasin, J., Dynamic Assembly for System Adaptability, 
Dependability, and Assurance (DASADA). 
http://www.darpa.mil/ipto/research/dasada/. 

[20] Schmerl, B., Garlan, D., Exploiting architectural design 
knowledge to support self-repairing systems, in 14th 
International Conference on Software Engineering and 
Knowledge Engineering, July 2002.  

[21] Shirvastava, S.K., Bellissard, L., Feliot, D., Herrmann, M., 
De Palma, N., Wheater, S.M., A Workflow and Agent based 
Platform for Service Provisioning, in 4th IEEE/OMG 
International Enterprise Distributed Object Computing 
Conference, September 2000.  

[22] Valetto, G., Kaiser, G., Kc, G.S., A Mobile Agent Approach 
to Process-based Dynamic Adaptation of Complex Software 
Systems, in 8th European Workshop on Software Process 
Technology, June 2001. 

[23] Valetto, G., Kaiser, G., Combining Mobile Agents and 
Process-based Coordination to Achieve Software Adaptation, 
Columbia University Department of Computer Science, 
CUCS-007-02, March 2002.  


	INTRODUCTION
	THE KX INFRASTRUCTURE
	Overview
	Monitoring
	Dynamic Analysis
	Feedback to Reconfiguration

	DYNAMICALLY ADAPTING AN INTERNET MASS-MARKET SERVICE
	THE BOTTOM LINE
	FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

