
A Mobile Agent Approach to Process-based Dynamic 
Adaptation of Complex Software Systems  

Giuseppe Valetto1,2, Gail Kaiser1, and Gaurav S. Kc1. 

1Columbia University, Department of Computer Science, 1214 Amsterdam Avenue, Mail 
Code 0401, New York, NY, 10027, United States 

{valetto, kaiser, gskc}@cs.columbia.edu
2Telecom Italia Lab, Via Guglielmo Reiss Romoli, 274, 10148, Torino, Italy 

Giuseppe.Valetto@tilab.it

Abstract. We describe an approach based upon software process technology to 
on-the-fly monitoring, redeployment, reconfiguration, and in general dynamic 
adaptation of distributed software applications. We choose the term dynamic 
adaptation to refer to modifications in structure and behavior that can be made 
to individual components, as well as sets thereof, or the overall target system 
configuration, such as adding, removing or substituting components, while the 
system is running and without bringing it down. The goal of dynamic 
adaptation is manifold: supporting run-time software composition, enforcing 
adherence to requirements, ensuring uptime and quality of service of mission-
critical systems, recovering from and preventing faults, seamless system 
upgrading, etc. Our approach involves dispatching and coordinating software 
agents - named Worklets – via a process engine, since successful dynamic 
adaptation of a complex distributed software system often requires the 
concerted action of multiple agents on multiple components. The dynamic 
adaptation process must incorporate and decide upon knowledge about the 
specifications and architecture of the target software, as well as Worklets 
capabilities. Dynamic adaptation is correlated to a variety of other software 
processes - such as configuration management, deployment, validation and 
evolution - and allows addressing at run time a number of related concerns that 
are normally dealt with only at development time. 

1 Motivation 

Distributed software systems are becoming increasingly large and difficult to 
understand, build and evolve. The trend towards integrating legacy/COTS 
heterogeneous components and facilities of varying granularity into “systems of 
systems” can often aggravate the problem, by introducing dependencies that are hard 
to analyze and track and can cause unexpected effects on the overall system 
functioning and performance. 

A number of best software engineering practices attack this challenge, such as 
component-based frameworks, Architectural Description Languages (ADLs), Aspect-
Oriented Programming (AOP), etc. They mainly operate on the specification of the 
software at some level, aiming at better describing, understanding and validating 



software artifacts and their interrelationships. Those practices must be incorporated 
into and enacted by the development process in order to enable the creation and 
maintenance of quality systems, and in general result in new iterations of the lifecycle 
spiral when any corrective, adaptive and perfective needs arise. 

A complementary avenue for addressing the aforementioned complexity is 
represented by the introduction of run-time automated facilities that enable some form 
of monitoring, control and adaptation of the software behavior – including re-
deployment and reconfiguration of components without bringing the system down. 
Such dynamic adaptation assumes that systems can gauge their own “health” (i.e. run-
time quality parameters) and take action to preserve or recover it, by rapidly 
performing suitable integration and reconfiguration actions. 

The scope of dynamic adaptation is necessarily limited with respect to full-fledged 
re-engineering, but it can still alleviate or resolve at lesser costs a wide range of 
maintenance, evolution and operation problems, such as supporting run-time software 
composition, enforcing adherence to requirements, ensuring uptime and quality of 
service of mission-critical systems, recovering from and preventing faults, seamless 
system upgrading, etc. 

Numerous research initiatives are active on these themes. The DARPA DASADA 
program [14] – for instance - has recently promoted a large number of efforts aimed at 
achieving and maintaining high levels of assurance, dependability and adaptability of 
complex, component-based software at all phases of the system’s life cycle: before, 
during and after system assembly time, including provisions for on-the-fly re-
assembly and adaptation. The ESPRIT project C3DS [6] similarly tackles dynamic 
composition, (re)configuration and execution control of componentized services. Also 
other research efforts address various facets of the same challenge, such as automatic 
software configuration and deployment (SoftwareDock [18]), rapid composition of 
heterogeneous software with federations (PIE [13.]) or workflow-aware middleware 
(Opera [2]), dynamic layout (re)programming for distributed systems (FarGo[20]), 
and many others. 

Successful dynamic adaptation requires a considerable knowledge of the 
specifications and architecture of the system, in order to detect inconsistent or 
undesired structure/behavior and decide what to do. Hence, it builds upon approaches 
that encourage the formalization of such knowledge during development, but aims at 
extending their usefulness to the realm of software operation. Moreover, automating 
the dynamic adaptation of a non-trivial system requires the presence of a sophisticated 
process engine to handle the intricacies and dependencies of adaptation procedures. 
Hence, we present an approach to dynamic adaptation that is based upon process and 
agent technologies. On the one hand, it proposes to exploit distributed process 
technology to efficiently build and operate reliable and robust software products. On 
the other hand, it is positioned at the intersection between software processes such as 
evolution, configuration management, deployment, and validation, and allows 
addressing several of their concerns not only at development time but also at run time. 



2 Approach 

We envision an approach that explicitly takes advantage of process technology to 
automate the dynamic adaptation process with a community of software agents, 
whose activities are orchestrated by a distributed process engine. 

We employ Worklets [22] as our dynamic adaptation agents: Worklets carry self-
contained mobile code that can act upon target components and follow directives 
indicating their route and operation parameters. Worklets were originally conceived 
as a means for flexible software (re)configuration, with effects local to the target 
component. Each Worklet would work with the component needing configuration, 
deciding what to do on the basis of the component state and its own capabilities. 
Moreover, a Worklet could “hop” from a component to another, carrying out at each 
location a portion of a predetermined multi-step configuration sequence. A very 
simple example of this kind of reconfiguration would be dispatching a Worklet to 
modify the ports used for inter-communication by two components of the target 
system: the Worklet would carry information about the various port numbers and 
code to activate new ports and deactivate old ones. 

The careful reader may notice that even this simplistic scenario actually calls for 
some degree of coordination, since the Worklet must be instructed to avoid disrupting 
any outstanding communications (or enable their recovery), and the switch to new 
ports must happen at both sites in an “atomic” way, to preserve at all times the 
correctness of the inter-component interaction. 

In Section 3.3, we propose a more comprehensive scenario that exemplifies the 
kind of problems that any dynamic adaptation mechanism must resolve and 
technically clarifies our approach. However it is clear that when the target system 
becomes substantially large and complex, with various interwoven aspects of 
adaptation that involve a multiplicity of components, individual Worklets cannot 
simply go off and do their job autonomously, neither the subtleties of that job can be 
practically hardcoded or scripted into them a priori. Successful dynamic adaptation 
demands that a number of interdependent actions be performed in a concerted and 
timely way: some kind of “guiding hand” is necessary, which in our belief can 
conveniently take the form of a process enactment engine.  

Process- and agent-based dynamic adaptation derives from considerations 
advocating the separation of concerns between coordination and computation in 
distributed programming [7]. On the one hand, Worklets deliver the computational 
units that carry out the mechanics of modifying the system behavior. Such 
computational code can be written in principle in any conventional programming 
language that allows Worklets to interact with the target components: we currently 
employ Java because Java as a platform inherently offers considerable mileage with 
respect to the kind of mobile distributed computation that we envision. On the other 
hand, the dynamic adaptation process provides the coordination context: it does not 
deal with the local operation of a Worklet on a target component, but rather with 
enacting cooperative reactive and proactive dynamic adaptation procedures, 
scheduling and committing the overall work of cooperating Worklets, handling 
contingencies and exceptional courses of action, etc. 

Dynamic adaptation processes are defined by codifying multi-faceted predefined 
and/or accumulated knowledge about the system (e.g. requirements, composability, 



architecture, configuration, distribution, operation) and their intended variation in an 
enactable process language, which becomes the coordination “programming” 
language for the Worklets community. 

Notice that at this stage we are not overly concerned about evaluating or producing 
process modeling and enacting formalisms particularly suited for dynamic adaptation. 
Rather, we focus on how an “ideal” or “generic” process technology can be employed 
to implement systems with the specific kind of process awareness [33] required for 
dynamic adaptation. 

The target system must be process-aware in the sense that its components and 
connectors must be able to accommodate dynamic adaptation agents and expose to 
them appropriate internal reconfiguration functionality. However, they do not need to 
incorporate any process enactment capabilities, nor know anything about the dynamic 
adaptation process: process-awareness is provided for them by a completely external 
and separate process enactment engine. 

Such process engine must be decentralized in many senses, since scalability, 
responsiveness and fault tolerance are crucial for effective dynamic adaptation. 
Therefore, we envision a set of distributed task processors - typically co-located with 
major target system components - that coordinately take up “local” fragments of the 
overall dynamic adaptation process and orchestrate worklets accordingly; moreover, 
they contribute to maintaining a distributed process state and handle a variety of 
widely dispersed resources and artifacts. 

Additionally, it is critical that the process engine distribution architecture can 
change in correspondence to changes in the target system, such as dynamism and 
mobility of components as well as data, which can increasingly occur in today’s 
distributed applications and services. For instance, a task processor with local process 
information might need to migrate to a new location, in response to a run-time re-
configuration of some target system component (notice that such a re-configuration 
may be the effect of a previous dynamic adaptation activity). 

Ideal requirements for the process engine can therefore be summed up as multi-
dimensional distribution (including distribution of the process definition, resources, 
enactment data and enactment architecture), and temporal variability of those 
distribution dimensions. 

Software process, workflow and agent coordination research have produced a 
number of advanced results in decentralized process technology: among them, multi-
agent engines, either peer-to-peer (Juliette [8], Serendipity-II [17], Cougaar [11]), or 
hierarchical (OPSS [12]); multi-server Web-centered (WebWork [26], Endeavors [4]) 
or database-centered systems (Opera [2]); federation systems, such as APEL [34] and 
OzWeb [21]. Those systems and their typologies comply with our requirements at 
various degrees. An in-depth discussion of those requirements and a synopsis of 
several process engines in that respect can be found in [32]. 

3 Technical Description 

We are building an infrastructure named KX (Kinesthetics eXtreme) to enable the 
Continual Validation of complex distributed software systems, in the context of 



DARPA’s DASADA program [10]. Continual Validation operates on a running 
system to ensure that critical functioning and assurance factors are constantly 
preserved, by rapidly and properly adapting the system whenever the modification of 
field conditions demand it. 

KX aims to achieve continual validation by superimposing a minimally intrusive 
controlling meta-architecture on top of the target system. Such meta-architecture is in 
charge to introduce an adaptation feedback and feedforward control loop onto the 
target system, detecting and responding to the occurrence of certain conditions. 
Generally, such conditions would indicate errors and failures of some sort, or at least 
undesirable behavior such as degrading performance, and can arise within 
components, or at inter-components boundaries (i.e., on the connectors of the target 
architecture). 

 

 

Fig. 1. KX meta-architecture 

Compared to the fine-grained level of internal diagnostics and remedies that can be 
sometimes performed in isolation by a self-assured, fault-tolerant component, the KX 
meta-architecture aims to handle more global situations, perhaps involving 
heterogeneous components obtained from multiple sources where it would be difficult 
if not impossible to retrofit self-assurance. For instance, by monitoring conditions in 
architectural connectors and correlating them to conditions arising in dependent 
components, it can correctly interpret and detect mishaps like functional and 
performance mismatches, breaches of interface contracts and others, which may have 
far-reaching, domino effects on systems that are built out of a variety of COTS and 
proprietary components. Notice that, in order to avoid interference to or unnecessary 
overriding of any self-assurance facilities present within single components, KX must 
be enabled to reason about some specifications of what those facilities are likely to do 
under externally observable circumstances. 

The major conceptual elements of KX are shown in Fig.1:  

• A set of probes, registering and reporting relevant information on the behavior of 
the target system. An approach to automatically inserting probes into the source 



code of a target system via active interfaces is found in [19]; another approach is to 
replace dynamic link libraries [3]. 

• A distributed asynchronous event bus for receiving target system events, including 
manufactured events such as “heartbeats”, from the probes and directing them 
through packaging, filtering and notification facilities; 

• A set of gauges to describe and measure the progress of the target system (and also 
the work done “behind the scenes” by the meta-architecture. Gauges in their raw 
form are machine-readable data packets carrying significant monitoring 
information that is synthesized from the event traffic in the bus via proper 
matching and filtering. KX renders gauges either as user-friendly visual or textual 
panels of Web-based consoles dedicated to human system operators and 
administrators, or directly as data feeds into automated decision support;  

• Decision support systems and agents, to respond to the conditions indicated 
through the gauges by determining appropriate target system adaptations; 

• Actuation facilities for the delivery and execution of any adaptation measures 
decided upon on the basis of gauge readings. As outlined in Section 2, our platform 
of choice is agent-based and employs Worklets as its actuators. 

In the KX context, the process engine coordinating dynamic adaptation is one 
possible implementation of the decision support component. It can be seen as either 
complementary or altogether alternative to any decision facilities devoted to the 
monitoring and administration of the running system on the part of humans. Process- 
and agent-based dynamic adaptation allows KX to automatically implement a tighter 
closed control loop compared to human decision-making supports, which typically 
have longer reaction and response times, and lean towards open loop control. (See for 
example the DASADA MesoMorph [29] project, which relies on a wealth of design 
time - architecture, requirements - and run time information - gauge readings - to 
enable a human role – the Change Administrator – to take informed decisions on 
software variation and reconfiguration.) Furthermore, our approach suggests and 
supports the codification, materialization, and enforcement of sophisticated and 
explicit dynamic adaptation processes, which set it apart from other reactive 
architectures, such as that proposed in [9], in which any process remains implicit. 

3.1 Monitoring and Triggering 

The enactment of a fragment of the dynamic adaptation process is triggered by the 
occurrence of significant conditions within the target system, which are detected and 
reported by the monitoring part of the meta-architecture. Conditions can be simple: 
for instance, a single event might be sufficient to indicate the raising of a critical 
exception by a target system component, and require the recovery of the failed 
computation. Many times, however, conditions are complex, i.e., defined in terms of 
partially ordered sets - posets – of events For instance, only a sequence of events can 
hint at the progressive degradation of some service parameter, demanding the 
preventive replication of some bottleneck target system component in order to 
preserve QoS. Or, the (likely) crash of some other component – calling for its re-
instantiation and re-initialization - can be detected by composing timeout events for 



requests directed to that component, and possibly the lack of a periodic “heartbeat” 
event originating from the same component.  

A subscription mechanism is a convenient way to declare what posets the dynamic 
adaptation process is interested into, i.e., what kind of conditions arising in the target 
system it can handle and what information is sought about them. In practice, however, 
poset subscription may be complicated or impractical. Therefore, the componentized 
KX event bus provides distillers, which subscribe to those individual events that 
might appear in a poset, keep notice of what has been seen so far (e.g., via Finite State 
Automata), and report poset occurrences to notifiers. Notifiers then compile other, 
higher-level events on the basis of the content of the poset, and report them in 
meaningful forms to the process engine and/or any gauges.  

3.2 Instantiation and Dispatching of Dynamic Adaptation Agents 

With respect to the monitoring subsystem, the process engine behaves in a completely 
reactive way. Once it is notified about a condition, the engine may dynamically 
initiate a complex set of interrelated adaptation operations, which typically require the 
instantiation of one or more Worklets, their initialization, and finally their 
dispatching. 

Each Worklet can contain one or more mobile code snippets (in our terminology, 
worklet junctions) that are suitable for actuating the required adaptation of the target 
system. Junctions’ data structures can be initialized with data, typically coming from 
the task definition, the process context, and the information contained in the event(s) 
that represents the triggering condition. Furthermore, any process-related 
configuration of Worklets is accounted for by worklet jackets, which allow scripting 
of certain aspects of Worklet behavior in the course of its route. Among them, pre-
conditions and timing for junction delivery and activation, repetition of junction 
execution, exit conditions for the junction’s work, directives to supersede, suspend, 
and reactivate a junction upon delivery of another one, and so on. 

One important consideration is that the definition of the dynamic adaptation 
process must enable the engine to reason about which worklet junctions are applicable 
to what target components under which conditions. Hence, substantial formalized 
knowledge about the specifications of the requirements, architecture and dynamics of 
the target system must be made available to the process. Also, knowledge about the 
available worklet junctions (or tailorable templates) and their dynamic adaptation 
capabilities must be characterized accordingly. Formal specifications languages or 
Architecture Description Languages (ADLs) that allow expressing architectural 
events and behavior– as well as properties and constraints – may be suitable means to 
reach these ends. For example, the ABLE project [1] proposes to exploit Acme [15] to 
define a rule-base that associates “repair strategies” to events (and posets) in the 
system that signal the violation architectural constraints and properties. Such a rule 
base can represent a valid basis for defining a dynamic adaptation process. Other 
languages, like Rapide [23] and Darwin [24], may be equally suitable. (Further 
discussion of requirements and merits of these and other approaches is out of the 
scope of this short paper.) 



On the basis of the aforementioned knowledge, the process engine requests 
junctions for the dynamic adaptation task at hand from a Worklet Factory, which has 
access to a categorized semantic catalogue of junction classes and instantiates them 
on its behalf. Interfaces exposed by junctions in the catalogue must be matched to the 
kind of capabilities that are necessary for the task and to descriptions of the target 
components subject to dynamic adaptation. 

Once a Worklet gets to a target component, the interaction between the junction(s) 
it carries and that component is mediated by a host adaptor, which semantically 
resolves any impedance mismatch between the interface of a junction and that of the 
component (see Fig. 2). The original purpose of the host adaptor was to provide each 
worklet junction with a consistent abstract interface to a variety of component types, 
including COTS or legacy components, that can be subject to forms of dynamic 
adaptation that are semantically equivalent from the worklet junction’s perspective. 
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Fig. 2. Selecting junctions and shipping Worklets. 

There is a tradeoff, however, between the complexity of the host adaptor and the 
complexity of the worklet junctions its supports.  Our first realization of Worklets 
used JPython scripts for the entire worklet body, which allowed very simple worklets 
but required a very heavyweight host adaptor (including, among other facilities, the 
entire JPython interpreter) – which made it unsuitable for the constrained-resource 
devices (e.g., PalmOS or PocketPC PDAs) we target for some applications. Requiring 
the identical abstraction on such devices as on, say, conventional website servers was 
prohibitive. The current implementation instead uses Java code augmented by our 
own peculiar jacket scripting, which allows for lightweight/subset JVM 
implementations (e.g., WABA, see http://www.wabasoft.com/) and relaxed 
requirements on host adaptors, e.g., in the simplest case to directly expose the local 



API “as is” - but of course requires more specialized knowledge and advanced 
capabilities on the part of individual worklet junctions. 

The transport services, as well as the worklet junction execution context and the 
interpretation of jacket scripts, are provided by a generic Worklet Virtual Machine 
(WVM) located at each target component intended to host worklets (generally 
integrated into the host adaptor). For each dynamic adaptation task, the process 
engine typically schedules the shipping of multiple Worklets. Each Worklet may 
traverse various hosts in its route, installing junctions in the corresponding WVMs. 
Execution of the procedural code of the junctions is (optionally) governed by jackets 
and carries out adaptation of the target component through the programmatic interface 
provided by the adaptor. Junctions’ data structures may be modified as a result of 
those operations. At the end of its route, the Worklet may go back to its origin, for 
any reporting and housekeeping needs, which are performed by a specialized origin 
junction. 

Each stop on a Worklet’s route represents thence the finest unit of process 
granularity, and the traversal of the whole route can be seen in itself as a micro-
workflow; in turn, that is only a single schedulable step in the context of a multi-
Worklet dynamic adaptation process fragment. 

3.3 Process-based Dynamic Adaptation: a Practical Example 

To solidify our technical discussion, we now consider the case of a mission-critical 
component-based application, which relies on and integrates a number of external 
third-party data sources to provide its services. 

Of course, modifications to one or more data sources may significantly disrupt our 
application. Imagine that the provider of a data source has decided to extend its 
reachability, to be able to service greater data volumes to more clients. The primary 
source has changed its network location, while the original location is still in use, but 
as a secondary mirror with somewhat inferior service level. Furthermore, during the 
upgrade the provider has partially modified the data definition schema, to 
accommodate a new wealth of information for its new clients. However, the data 
source provider has devised and negotiated with its clients a mechanism to handle this 
kind of upgrading situation, and a converter (e.g., between the old and new XML 
Schema, assuming XML-codified data) is made available for download. 

This scenario can be resolved on-the-fly by a community of Worklets with 
appropriate capabilities that execute a well-planned dynamic adaptation process. Our 
mission-critical application is faced with a composite situation: degradation of service 
from the original data source site, coupled with partial or total inability to make 
proper use of that data. Those two conditions can be recognized at different levels: 
respectively, analysis of network traffic from/to the data source, and alarms raised by 
the parsing/processing application component that “wraps” the data source. Notice 
that there is a process granularity issue here: those conditions can either each trigger 
an autonomous dynamic adaptation reaction, aiming at overcoming that individual 
situation, or may be recognized (and responded to) together as the signature of a 
major data source upgrade (perhaps on the basis of accumulated experience and 
incremental process improvement). In the former case, two process fragments will be 



enacted autonomously, which will variously overlap and interact. In the latter case, 
the overall dynamic adaptation plan will integrate both fragments and will schedule 
them in order, as a single complex dynamic adaptation operation. Below, we take this 
option for simplicity sake. 

At first, bots-like Worklets can be dispatched in parallel by the dynamic adaptation 
process, with appropriate instructions to retrieve the network location of the new 
primary data source site and the converter that allows migration to the new data 
interface. This task – which may be a complex sub-process in itself - represents a pre-
requisite for any actual dynamic adaptation of the system, given the necessity to 
incorporate and employ the retrieved knowledge. The process can then proceed by 
sending out a Worklet with the converter to the component in charge of wrapping the 
data source, which will execute it in order to be able to correctly process information 
again. Once this adaptation is performed and proves correct, another Worklet can be 
dispatched to the same component, in order to reconfigure its connection to the data 
source to point to the new primary site. In addition, if the communication 
performance still remains below the service level that must be assured, another 
Worklet can instantiate a new component, i.e., a load-balancing proxy for the two 
mirrors, perhaps with on-board cache; in that case, the connection needs to be again 
reconfigured to take advantage of the proxy. 

3.4 Levels of Application of Dynamic Adaptation 

Dynamic adaptation can be carried out at various stages in the life of a target 
application, from installation (e.g., remedies in case the installation script fails 
because a component executable is missing), to deployment (e.g., identify alternative 
hosts for components that fail to deploy on the default host), operation (e.g. maintain 
critical quality parameters in a desired range), and upgrade (e.g. substitute 
components on-the-fly with new versions). 

Notice also that, in KX, dynamic adaptation can happen not only on the target 
system but also on the meta-architecture itself, thus enabling flexible monitoring and 
control modalities that adapt KX functioning parameters to changes in the target. We 
have identified three major contexts in KX in which dynamic adaptation applies1: 

• Dynamic adaptation of the target system: this is essential to implement the 
actuating part of the feedback/feed forward loop of KX; 

• Dynamic adaptation of probes and the filtering and pattern matching mechanisms 
as well as rules: this allows to vary the kind of system information that is sought 
and exploited by KX, in response to the dynamics of the target system operation;  

• Dynamic adaptation of the notification and gauging facilities: this allows to vary 
the amount and type of information that is reported about the target system, as well 
as the ways in which it is made available to the decision support components. 

                                                           
1 Additionally, dynamic adaptation of the (process-based) decision support component can be 

seen as a form of rapid process evolution at enactment time - similar for example to the 
TCCS approach of C3DS (see the relevant discussion in Section 4). This is for now outside 
the scope of our work. 



4 Related Work 

Adaptation of software can be carried out at many degrees: at one extreme, macro-
adaptation can be achieved only by extensively re-engineering the system; at the 
other, micro-adaptation consists of fine-tuning of running software. Examples of the 
latter are often found in software (such as drivers) that manages system resources that 
may have multiple operation modes, and can be optimized on demand or 
automatically. A more sophisticated flavor of micro-adaptation is implemented in 
fault-tolerant software by internal application-specific diagnostic code that triggers 
changes involving a single or a few components. 

Dynamic adaptation operates at an intermediate level - meso-adaptation [25] - and 
as an external facility. Limited, specialized forms of dynamic adaptation are enabled 
by technologies that are in everyday use. Examples are plug-ins for the 
reconfiguration and enhancement of WWW browsers and other Internet applications; 
or software update utilities that operate with mixed push/pull modalities over the 
Internet to propose, install or upgrade software packages, and negotiate any 
installation and configuration issues, typically with user supervision. 

We are interested in investigating more general-purpose and complex dynamic 
adaptation scenarios, involving a multiplicity of heterogeneous components and a 
variety of interwoven adaptation procedures. Similar software adaptation granularity 
is being pursued by a number of other approaches. We focus here – for the sake of 
brevity – on process and agent-based efforts and their enabling technologies. 

Run-time dynamic adaptation can be seen as a specialized case of distributed 
systems coordination. Research on coordination languages for distributed and more 
specifically agent-based software has produced a large number of competing 
approaches and results [5] [28]. Recently, the use of processes as a means for agent 
coordination has grabbed the attention of researchers [16]. In fact, process formalisms 
allow describing coordination explicitly and abstractly at the same time. Moreover, 
they usually combine declarative and imperative connotations; thus, they are feasible 
for reasoning about the coordination model, as well as implementing it over the 
distributed software system. Therefore, a number of proposals to employ process 
enactment facilities as the coordinating core of a distributed system have been put 
forward. 

Coordinating agent applications is one of the goals of Juliette [8]. Juliette is a peer-
to-peer distributed process engine, whose agents carry out an overall coordination 
plan formally defined in the little-JIL visual process language [31], which follows a 
top-down hierarchical coordination model. Juliette could be seen as an enabler of our 
dynamic adaptation approach: it can provide “pure” coordination semantics to the 
dynamic adaptation process – encoded in Little-JIL - and distribute them to its 
multiple decentralized task processors. The computational mechanics associated to 
those dynamic adaptation tasks must be however distributed separately, for example, 
via Worklets that would be pulled as needed by the task processors and would actuate 
dynamic adaptation procedures onto the target system components. This way, no 
adaptation functionality needs to be hardcoded into the target system components, nor 
into the task processors.  

Another system that could be similarly employed is Cougaar [11]. Cougaar is a 
platform for the creation and management of large-scale agent applications, whose 



centerpiece is a distributed process planning and execution engine. Cougaar’s resident 
process formalism owes much to the domain of military logistics. The timely delivery 
of the mobile code actuating dynamic adaptation could be approached in this case as a 
logistics problem, which would allow exploiting some interesting Cougaar features, 
such as real-time monitoring of the process execution, evaluation of deviations and 
alternative plans, and selective re-planning. Furthermore, Cougaar supports a plug-in 
mechanism for the substitution of the default process formalism with others, and 
composition of applications via process federation. This could lead to process re-use, 
since fragments of pre-existing software processes dealing with configuration, 
deployment, validation, etc., could be composed into the dynamic adaptation process. 

Our initial experiments with dynamic adaptation indeed regarded the integration of 
worklets with Juliette. We used our own mockup of the decentralized process 
enactment facilities of Juliette2 to request worklets to a worklet factory, dispatch them 
to Juliette agendas responsible for task scheduling and execution onto target 
components, and study interaction of worklets with the Little-JIL process paradigm. 
Our next experiments intend to investigate the use of Cougaar. 

While systems like Cougaar and Juliette can be employed for orchestrating a 
community of agents, which in turn exert control on the target application, other work 
uses a process engine as a sort of dynamic middleware that directly regulates the 
intended behavior of the target system. Such an approach aims at defining and 
enforcing all inter-component interactions as a process. This can enable dynamic 
adaptation to a certain degree, as far as intended modifications to the system’s 
behavior can be described, either a priori as alternative process courses, or by 
evolving the process at enactment time. 

For example, the TCCS platform delivered by the C3DS project [30] supports on-
the-fly composition and reconfiguration of distributed applications. All the operations 
made available by the interface of each component are described as process tasks. The 
TCCS process engine defines and automates a composed service by sequencing and 
scheduling some of those operations. The transactionality of the process engine is 
exploited for run-time evolution of the process, enabling dynamic re-deployment and 
reconfiguration of the composed service. However, finer-grained dynamic adaptation 
that affects the internal computational logic of one component, or multiple 
components in a concerted way, remains inaccessible to this approach. PIE [13.] takes 
a similar stance, aiming at supporting and managing federations of (mostly) COTS 
components, which together must provide some complex service. PIE provides a 
middleware, which adds control facilities on top of a range of communication 
facilities. The control layer implements any process guidance via handlers that react 
to and manipulate the communications exchanged by federation components. 
Handlers can be dynamically plugged in the control layer; hence, a specific dynamic 
adaptation task can be carried out by plugging in an appropriate handler. The 
granularity of dynamic adaptation is somewhat finer than that of TCCS, since besides 
influencing inter-component interactions, PIE can also modify on-the-fly the 
semantics of those interactions. 
                                                           
2 We were unable to obtain the real Juliette from U. Massachusetts at that time due to licensing 

difficulties, which are currently being resolved. 



Finally, we consider the Software Dock [18], which combines process and agents 
technologies in a way similar to our approach, but limited to the automation of 
distributed deployment activities. An effort aimed at enabling self-adapting software 
[27] is now under way, which in part builds upon the experience of the Software 
Dock. It outlines a variety of agent roles for enacting adaptation processes, a 
contribution that may be relevant to our work, in order to precisely characterize 
Worklet types for specific levels of dynamic adaptation (see Section 3.4). 
Furthermore, it recognizes the need for an “abstract” coordination service to 
orchestrate those agents, which we propose to implement by exploiting process 
technology. 

5 Conclusions 

Dynamic adaptation of complex distributed software systems at run-time is both an 
opportunity and a challenge. It can benefit development, evolution and operation of 
software (particularly component-based software) in terms of quality and costs; 
however, it poses various serious difficulties. It demands considerable formal 
knowledge about the specifications of the system, and ways to express, reason about 
and exploit that knowledge to come up with appropriate adaptation procedures. It 
requires facilities to coordinate the actuation upon system components of those – 
possibly sophisticated - procedures. It must provide computational mechanisms for 
interfacing to system components and modifying their functionality on the fly. 

We propose a dynamic adaptation approach that incorporates facets of essential 
software processes such as configuration management, deployment, evolution and 
validation in an integrated dynamic adaptation process. Such a process allows to 
explicitly codifying adaptation procedures to be carried out in response to a variety of 
conditions. 

We have conceived a platform based upon decentralized process and software 
agent technologies for the support and enactment of dynamic adaptation processes. 
The process engine serves as the coordinator of those agents, which in turn are the 
actuators of adaptation procedures upon components of the distributed system subject 
to dynamic adaptation. This approach permits to attack separately the coordination 
and computational aspects of dynamic adaptation. 

The first and second generations of the worklets system have already been released 
to some external users. We are currently developing the first release of our dynamic 
adaptation platform, which must integrate our worklets mobile agents with a 
decentralized process engine. We have carried out experiments with some engines, 
and are now implementing advanced features such as the worklet factory and jackets 
(see Section 3.2). 

Finally, we are in the process of applying dynamic adaptation to various targets, as 
diverse as a multimedia-enabled educational groupware platform, a crisis operation 
planning application, and mobile localization telecommunications services. This 
variety of case studies is likely to provide us with considerable insights on the 
feasibility of our approach, and on a set of questions that remain open at this stage. 
Among them: the level of accuracy and detail of the target system specifications 



necessary to the dynamic adaptation process; the most appropriate process paradigms 
and any extensions to them that may be needed for specific dynamic adaptation 
processes; architectural constraints on the monitoring and control meta-architecture; 
efficiency issues; responsiveness and real-time requirements. 
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