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Abstract 
 
We present a framework for communication between 

data-source probes and action-based gauges.  It is based 
on an intelligent event model known as Active Events (or 
ActEvents for short).  ActEvents build on conventional 
event concepts by augmenting raw and structural data 
with semantic information, thereby allowing recipients to 
be able to dynamically understand the content of new 
kinds of events.  Two submodels of ActEvents are 
proposed: SmartEvents, which are lightweight XML-
structured events containing references to their syntactic 
and semantic models, and Gaugents, which are heavier 
but more flexible mobile software agents.  ActEvents are 
also proposed as a communications framework for a 
number of other applications, including a distributed 
collaborative virtual environment (CVE) known as 
CHIME. 

 
 

1. Introduction and Motivation 
 
DARPA’s DASADA program has focused on 

developing standards for distributed systems to ease 
assembly and maintenance of systems that are composed 
of components “from anywhere” (e.g., COTS, GOTS, 
open source, etc.).  This program has focused on four 
areas: architecture description languages to describe the 
composed system, probes to gather information about the 
current system configuration and state, gauges to interpret 
this information, and adaptation engines that can 
reconfigure the system as necessary. 

This paper focuses on the interaction between probes 
and gauges, and proposes a standard for data interchange 
between them.  The control interfaces for both probes and 
gauges have been developed extensively, and standards 
have been proposed by others.  However, the format and 
transmission mechanism for data collected from probes is 
underdeveloped.  We examine the problem and suggest 
possible models and architectures, along with a 
description of our implementation and experience using it. 

Events, Probes, and Gauges 
 
For the purposes of this paper, we define an event as “a 

collection of data produced by a system component, and 
of interest to zero or more other system components.”  
Note that this description makes no assertions about 
formatting, routing, or transport. 

The University of Colorado at Boulder’s Siena event 
system [1] enables Internet-scale content-based event 
delivery.  Siena models events as an unordered, flat 
collection of attribute-value pairs. 

A probe is defined as “an individual sensor attached, 
either statically or dynamically, to a running program” [2].  
Probes emit events that describe some aspect of a 
program’s execution, either at a specific point in time or 
over some duration.  Probes usually: 

•  are integrated into or wrapped onto the application 
itself; 

•  communicate with the application via an API; or  
•  look at indirect measures such as operating system 

or network resource usage. 
The proposed control interface for probes consists of 

the following methods: Deploy, Install, Activate (and their 
inverses), Query-Sensed and Generate-Sensed to 
enumerate the events that a probe can send, and the 
Sensed method to publish an event.  The newer Focus 
interface allows additional probes to be activated for 
detailed examination of a problem.  The DASADA 
standard assumes that probe data will be emitted in the 
form of Siena events. 

Gauges [3] are defined as “software entities that 
gather, aggregate compute, analyze, disseminate and/or 
visualize measurement information about software 
systems.”  Gauges support a simple configuration 
interface.  The proposed DASADA gauge standard 
includes the concept of a “Gauge Reporting Bus,” which 
is specifically for communicating gauge reports to 
consumers (who might, e.g., authorize repairs). 
Consumers supply callbacks to the reporting bus, which 
are called when an event of interest occurs, allowing them 
to respond to the event.  



Probe-Gauge Interaction 
 
Probes use system-specific techniques to extract data 

from the target system.  Gauges use the Gauge Reporting 
Bus interface to report to higher-level components.  While 
the proposed APIs for Probes and Gauges are clearly 
specified, there is no proposed standard for formatting 
probe data and sending it to the appropriate gauges.  Since 
one cannot assume that probes and gauges will be located 
on the same machine, some form of networked 
interprocess communication (IPC) is necessary.  Since the 
machines may be of heterogeneous type, the format for 
probe data should be as portable as possible. 

 
2. The Problem 

 
There are three aspects of the probe-gauge relationship 

that make the problem of connection difficult: the 
dynamic nature of individual probes, the dynamic 
topology of the various components, and the 
heterogeneous nature of the systems involved. 

Individual probes may be frequently added and 
removed from the system.  Probes may be 
heterogeneously sourced, with possibly different 
semantics for similar-looking data; simply labeling the 
type of data elements within the event, as in traditional 
attribute/value pairs, is insufficient.  Instead, the semantic 
information required for proper interpretation of the probe 
data must be associated with the event. 

Probes and gauges may be frequently activated and 
deactivated.  Some components (especially probes) may 
be running on constrained devices; thus requiring every 
component to maintain a complete network topology is 
not feasible.  Further, since the main tasks for most probes 
are straightforward, requiring all of them to add the data 
and logic necessary to manage bidirectional RPC with 
gauges in a changing environment would increase their 
complexity considerably.  Detailed knowledge of event 
routing and dispatch should ideally be removed from most 
probes and gauges.  While more advanced systems such as 
CORBA can help with component discovery, probes will 
typically have many consumers for a single event, which 
is not handled efficiently under the synchronous CORBA 
model nor under analogous RPC extensions. 

The systems involved may be completely 
heterogeneous with different byte-ordering, operating 
systems, architectures, etc.  Message formatting should be 
completely architecture independent, and leverage 
industry standards to the degree possible. 

 
3. Previous Work 

 
In the commercial world, a number of event-based 

systems have been developed for monitoring network and 
application status, e.g. TIBCO’s TIB/HAWK [4] and 

Tivoli Distributed Monitoring [5].  These are usually 
oriented towards predefined SNMP events and 
infrastructure management. 

There have been a number of proposed generic event 
standards from operating system, language, and 
middleware developers, such as Sun’s ToolTalk [6], the 
OMG’s CORBA Event Service [7], and Sun’s Java 
Messaging Service [8].  The first two mechanisms have 
fairly limited specifications.  JMS is an extensive 
specification, but custom event semantics are only directly 
supported through messages composed of serialized Java 
objects. 

The most elaborate work is the Rapide/CEP system [9] 
which provides a full architecture for complex distributed 
event processing.  Rapide/CEP provides for event pattern 
recognition based on temporal and causal relationships 
among events.  Our work has emphasized maximal 
runtime reconfigurability and interoperability, specifically 
the use of XML and runtime language discovery, at the 
expense of the large feature set provided by Rapide/CEP. 

 
4. ActEvents Model Overview 

 
We propose that probe information should be 

encapsulated under an “Active Events” model.  This 
model associates structural and semantic information with 
the event data.  This information is then used by data 
consumers to determine appropriate processing.  This 
approach has some resemblances to the work on Active 
Networks in the networking community, in which data 
packets have additional information or code.  We hope to 
leverage some of that experience while avoiding the 
mistakes.  In particular, the experience of the networking 
community has shown that models requiring all mobile 
data items to be intelligent executable code results in 
unacceptable performance. 

Adding some intelligence to events involves balancing 
two competing constraints.  For maximum flexibility and 
intelligence, one wants lots of information (e.g. network 
topology maps) and sophisticated processing (e.g. 
execution of mobile code at every routing node).  
However, many probes will be producing large amounts of 
very simple data.  In that case, the overhead associated 
with large events and extensive processing is 
unacceptable. 

We propose two separate submodels that together can 
support most application needs: a lightweight submodel 
for frequent, similar events and a more sophisticated 
submodel for more significant events. Both models solve 
the various problems outlined in the previous section, as 
described below. 

We call the lightweight model SmartEvents.  These are 
XML-structured events that contain references to their 
syntactic and semantic models.  The bulk of the 
sophistication in this model is in a separate parsing and 



discovery engine, leaving the events themselves simple 
and lightweight. 

We call the sophisticated model Gaugents.  These are 
intelligent mobile software agents, capable of transporting 
themselves around the network and executing code at each 
location they visit. 

The first problem involves the dynamic nature of 
individual probes and the difficulty in identifying the 
correct semantic model for interpretation.  SmartEvents 
are interpreted by a special parsing engine that maintains a 
mapping of grammar to semantics. Gaugents carry the 
code necessary for correct interpretation. 

The second problem is the dynamic topology of the 
components.  SmartEvents uses the Siena system to 
transport events where they need to go, pushing the 
routing problem to the distributed middleware component.  
Gaugents can dynamically determine their own routing as 
they move from node to node. 

The third problem is the heterogeneous nature of the 
involved systems.  SmartEvents are structured as XML 
and thus completely architecture independent.  Gaugents 
use system-independent mobile code and require a “host 
adapter” to be present at each participating node for 
Gaugents transportation and execution. 

 
SmartEvent Model 

 
For frequent simple events, the most efficient 

technique is to have events contain a reference to their 
syntactic and semantic model.  For these types of events, 
the event consists of a tagged document where the tags are 
used not just to indicate the structure of the text but the 
semantic model under which they should be interpreted. 

The parsing engine identifies the “semantic 
subcomponents” of the event and processes them 
appropriately.  Unfamiliar subcomponents are handled 
intelligently by sending requests to the lookup engine. 

The lookup engine, or oracle, maps unparsable tags to 
syntactic and semantic information, and delivers this 
information back to the parsing engine.  This component 
functions as a sort of primitive ontology server. 

Once semantic subcomponents have been identified, 
the lookup engine applies appropriate transformations to 
the events to make them as digestible as possible for later 
high-level processing.  Transformations may include 
augmenting, deleting or rewriting parts of the 
subcomponent, as well as filtering it entirely. 

 
Gaugents Model  

 
Gaugents may be constructed or parameterized on the 

fly by a human or a program, then transmitted from host to 
host using a dynamically determined routing pattern 
reactive to the latest host's circumstances and 

surroundings as well as past and planned trajectories. No 
workflow is required for Gaugents-based ActEvents.  

Gaugents can travel between distributed components 
using their own transportation mechanism. Target system 
components are equipped with receptacle sockets to 
enable them to properly receive and execute incoming 
Gaugents, as well as send them off along their routes. For 
added dynamism, two important concepts are 
implemented: execution scheduling of Gaugents at 
receptacle sockets and route re-configuration.  

Execution of Gaugents at receptacle sockets can be 
specified and controlled precisely; entry and exit 
conditions can be defined, satisfaction of which is required 
for Gaugents execution to commence, halt, etc. Other 
factors like the number of execution iterations can also be 
preset.  

Gaugents’ routes are reconfigurable – capable of being 
modified at any intermediate step. This is useful 
particularly because it is difficult for the creator of the 
Gaugent to predict all target components interested in its 
existence.  A solution is to have these target components 
express their interest indirectly through those components 
that the Gaugent are likely to visit.  Then, the Gaugent can 
be rerouted to travel to these other components, either 
through unicast or multicast channels.  There are two ways 
to achieve this: clone the Gaugent by the receptacle socket 
and retransmit it to the newer target components, or 
modify the Gaugent’s trajectory so as to cover these newer 
components. The overall effect is advancement towards a 
pub/sub model for Gaugents. 

 
Realization of SmartEvents: FleXML 

 
Events are structured as XML messages.  We 

considered using Siena’s native datatype of flat, unordered 
sets of attribute-value pairs, but decided that it was 
inadequate for describing common probe results.  For 
example, a simple form of probing is to instrument 
method calls.  The data from such an event should list the 
class, object, method, return value, return type, and a 
variable-length list of parameter type-value pairs, in order 
to capture the full function call.  Attempting to recover 
such structured, hierarchical, variable-length data from an 
unordered set of attribute-value pairs is needlessly 
complicated, while XML provided a natural fit. 

Typical SmartEvents will be composed of at least two 
subcomponents: an outer “envelope” of metadata and a 
“payload” of specific probe results.  The envelope 
contains standard information about the probe data that 
can be used for routing and tracing, and is generally 
common across all SmartEvents.  The payload will vary 
depending on the source probe. 

The Siena Internet-scale event network handles event 
routing purely based on event content, freeing both probes 
and gauges from the need to manage network topology.  



Issues in translating between XML-structured 
SmartEvents and flat Siena events are discussed in the 
implementation section below. 

To support legacy probes that are unable to generate 
XML-formatted data, the Event Packager component can 
construct SmartEvents from primitive probe events using 
custom plug-ins. 

The Metaparser does a high-level examination of the 
event to determine the appropriate subcomponents.  Each 
subcomponent is independently validated, with grammar 
looked up from the Oracle (lookup engine) if necessary.  If 
valid, the appropriate TagProcessor (possibly also 
retrieved from the Oracle) applies transformations to the 
SmartEvent and the result is published. 

The Oracle maintains mappings of grammar elements 
to particular syntactic/semantic pairs (e.g., XML schema 
and tag processor control files).  When the Metaparser 
encounters an unfamiliar tag, it sends the XPath to the 
Oracle.  The Oracle matches the XPath and returns the 
appropriate schema and control files. 

The tag processor performs domain-specific 
processing on the message.  This may involve adding, 
deleting, or rewriting portions of the event, or filtering it 
entirely.  The goal is to present homogenous, simplified 
events for later processing stages. 

 
Realization of the Gaugents Model: Worklets 

 
Worklets can be defined as self-contained mobile 

software agents that are deployed on a programmable 
route of distributed components of a target system, with 
the purpose of dynamic reconfiguration. The fact that 
Worklets are self-contained is limited only to the 
computation that it is performing at the hop in its route; 
however, in general, the context in which the Worklet 
executes is actually defined by the local adapter. What this 
means is that the local adapter provides the missing links 
required for the sub-general Worklet to execute in the 
context of the local target system component. The Worklet 
is therefore contextualized by the target system component 
it is dealing with. 

The Worklet Virtual Machine (WVM) is an execution 
environment for incoming Worklets. It also provides the 
transportation mechanism that enables the Worklets to 
travel between successive hops. A host-specific Worklet 
adaptor must be constructed for each anticipated host 
system or component, and is attached to that host.  In this 
example, the source of the Worklet is Site 0 with later 
hops being Site 1 and Site 2. The Worklet travels to Site 1, 
where the corresponding Worklet junction is scheduled for 
execution by the local WVM. After execution, the 
Worklet uses the local WVM to propagate to the following 
hop in its route. 

A separate computation, or Worklet junction, is 
defined for each step along the Worklet's predetermined 

route. However, this route can be dynamic since it is 
modifiable on the fly by other Worklets or target systems 
en route. For non-trivial cases, a Worklet Jacket for the 

current junction determines the customizable scheduling 
for the Worklet such as pre- and post-execution 
conditions. The Jacket can also be engineered to let the 
Worklet continue on its route as soon as it deposits the 
Worklet Junction instead of waiting for it to complete 
execution. As mentioned above, the trajectory of the 
Worklet can be modified dynamically at intermediate 
WVMs. The Worklet Jacket regulates the extent to which 
this information, along with other data in the Worklet, is 
accessed/modified from outside the Worklet. 

 
5. SmartEvent Implementation 

 
Because particular probes will presumably be updated 

more frequently than basic metadata, our implementation 
uses a technology we developed called “FleXML” to 
allow the description of events through several composed 
schema fragments.  The schemas for Envelope and 
Payload can thus be managed independently. 

The standard metadata envelope for a SmartEvent 
contains information that will be of interest for all probe 
events: 

•  A locally unique identifier; 
•  The IP address and port of the generating probe; 
•  A timestamp. 

The AIDE system [10] generates information about 
method calls.  Its payload includes: 

•  Object; 
•  Class; 
•  Method; 
•  A list of type-value pairs for the parameters. 

 
Metaparser 

 
One of our reasons for choosing an XML-based 

structure for our messages was the rich set of standard 
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tools available for working with XML.  We wanted our 
parser to leverage existing work as much as possible.  
However, the APIs of existing parsers are inadequate to 
handle the style of processing (i.e., use of multiple 
schemas for a single message) required for the Metaparser. 

The fundamental problem of working with composed 
schemas was solved by constructing an elaborate front end 
for the processor, which could send different portions of a 
message to different XML processor instances.  To 
increase performance, we also modified the XML 
processor to allow caching of parsed schemas. 

The Metaparser has a three-layer system for parsing 
incoming messages according to composed schemas.  
When a new message arrives, a separate parsing thread 
begins to examine it.  If a tag matches a known semantic 
subcomponent, a validator is started to handle that 
subcomponent and pointed at the correct schema.  Each 
validator, in turn, is a wrapper around an Apache project 
Xerces XML parser/validator.  Validators allow particular 
information to be selectively passed through to underlying 
parsers.  The top-level parsing thread informs the 
validators which parts of the message are relevant to their 
schema.  Validators pass appropriate data through to their 
parsers that do the actual XML schema validation. 

Some additional complications arise.  For instance, the 
Xerces parser expects complete messages for validation, 
not fragments.  Therefore, extra information is added to 
the data stream so that the fragments appear to be 
complete messages to the validating parsers. 

Since there will be many messages, most of which will 
be based on only a small number of schemas, efficient 
caching of schema information is key to performance.  
Unfortunately, the current Xerces implementation is rather 
inefficient, requiring the schema to be read and parsed for 
each message.  We modified the Xerces API to make 
parsed schemas a first-class data object, similar to the 
corresponding Oracle implementation.  Schemas can now 
be parsed once, and then repeatedly applied to messages. 

 
Oracle 

 
The Oracle component uses an SQL database to map 

XPaths and tags to associated files.  It supports both 
XPaths anchored at the root and “free-floating” context-
independent tags.  The Oracle waits for request events to 
arrive, and attempts to match the unknown XPath or tag.  
If a match is found, a success event is published, and a 
Worklet is dispatched containing the associated files.  
Otherwise, a failure event is published. 

To load the database, the Oracle provides a graphical 
interface.  The user specifies an XML schema file.   The 
Oracle then parses this file, identifying unique tags.  These 
are then presented as the first column of a table.  In the 
other columns, the user can specify the files that should be 
sent if this tag is queried. 

 
Tag processor 

 
The TagProcessor applies domain-specific processing 

to the message.  The primary mechanism for doing so is 
an engine that is controlled by two XML-formatted files. 

The first file is a standard XSLT template file that 
allows arbitrary transformation of the message.  Based on 
analysis purely local to this message, tags can be added, 
removed, or rewritten. 

The second file allows some context-based 
adjustments to the message.  The Metaparser has the 
option of passing an “environment” symbol table to the 
TagProcessor.  The message can be conditionally 
modified based on values in the table, and new or 
modified values can be written to it.  This allows one to 
e.g. maintain a count of a certain type of event. 

 
Siena 

 
The Siena system has a number of features that make it 

well-suited to the needs of the SmartEvent system.  Most 
importantly, it has a scalable implementation of content-
based addressing.  This is tremendously valuable for the 
SmartEvent model, as otherwise gauges and probes would 
be orders of magnitude more complex.  Additionally it has 
a simple, well-documented interface.  The system is also 
lightweight enough to make integration of wireless 
handheld devices feasible. 

There are a number of problems as well, however.  
Siena does one-time best-effort delivery.  There are 
situations where store-and-forward at an intermediate 
node might make the system more robust, as well as 
enabling intermittently-connected devices to participate. 

More significantly, we had to find a system for 
mapping our XML-formatted messages to Siena attribute-
value pairs.  We considered flattening the XML, with each 
attribute consisting of the full XPath to the associated tag.  
We rejected this as unwieldy. 

The currently implemented solution is to put the entire 
XML message into a single value, and “promote” some of 
the envelope metadata to the attribute-value level for 
content-based routing purposes. 
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6. Gaugent/Worklet Implementation 
 
Worklets can implement the local aspect of 

decentralized workflow [11]; however, we only discuss 
Worklets with respect to ActEvents here. Worklets 
provide computational intelligence to ActEvents. In the 
SmartEvent version of ActEvents, the pub/sub 
transportation mechanism is suited for general, frequent 
event notifications. However, there are other cases where 
bi-directional streaming of data-only notification events is 
not effective, e.g., for those relatively infrequent 
circumstances where processes need to run at the 
recipients of the events.  

Consider a scenario where the KX system is 
monitoring a mission critical system, e.g., a manufacturing 
control system. If one of the probes detects a critical 
condition, it could send out “executable” SmartEvent-
based ActEvents to notify KX of the problem, and KX 
would eventually send a fix into the target system.  

A better solution is to have the probe issue a Worklet-
based ActEvent that can directly carry out remedial tasks 
immediately without waiting for KX. This allows 
emergency reactions to execute immediately without 
waiting for the higher-latency KX to identify the problem, 
determine a response, and dispatch a Worklet.  

This can be interpreted as being complementary to 
standard RPC-style communication, with all callbacks 
being handled not by the sender of the ActEvent, but by its 
mobile proxy (the ActEvent itself). Also, the fact that the 
Worklet is autonomous and its execution is asynchronous 
means that it requires less bandwidth than synchronous 
RPC.  

The WVM, or Worklet Virtual Machine, is the 
execution environment and transportation mechanism for 
Worklets. The host adapter is the link between the WVM 
and the system component, which is essential for Worklet 
arrival, execution and dispatch. The WVM is a 
multithreaded system that can accept incoming Worklets 
from peer WVMs through either Java RMI or a direct 
socket connection.  

Incoming Worklets will have one Worklet junction 
intended for the local WVM, responsible for encapsulating 
the complete execution to be performed at that local 
WVM.  There is also an optional Worklet jacket to specify 
control information for the Worklet junction. Such control 
information determines the overall behavior of the 
Worklet junction, such as the number of repeated 
executions, exit constraints, or initiation conditions. 
Worklet junctions tend to be newer than the target systems 
that they are looking to configure.  This might necessitate 
automatic and dynamic bytecode download to allow for 
the assembly of the Worklet junction instance when it 
arrives at the target system.  

Our solution involves a web server at every WVM, 
enabling it to serve up class bytecode for emitted 

Worklets. At the receiving end, a customized class loader 
downloads the bytecode of those classes that are not 
available locally from the most recent hops, or the origin 
WVM of the Worklet. To enhance survivability and 
improve efficiency, each WVM caches all transmitted and 
received bytecodes so that the bytecodes can be served up 
to any other WVM that might require it.  

A further level of efficiency is achieved by using the 
Workgroup Cache [12] system to enable automatic 
bytecode-sharing among the WVMs along a Worklet's 
route. Since this mechanism allows WVMs to pre-fetch 
bytecode before the Worklet even arrives, it eliminates the 
need for explicit bytecode downloading at each WVM 
upon arrival of the Worklet. 

 
7. Applications and Examples 
 
KX 

 
The KX event monitoring system is the primary 

application of our SmartEvents work.  It is designed for 
the automated monitoring and reconfiguration of complex 
distributed systems.  Probe data is processed by the Event 
Packager and Metaparser, and the resulting data is fed into 
the XML Universal Event System (XUES), an event-
oriented rule engine.  This looks for high-level and time-
based situations.  If XUES detects a condition that 
requires action, it issues a “high-level” event that is picked 
up by an Event Notifier (EN) component.   

The EN determines the appropriate response and 
launches an appropriate handler, such as a Worklet-
enhanced Cougaar [13] workflow (“Workflake”).  The 
Workflake is capable of highly complex reconfiguration 
tasks. 

 
GeoWorlds 

 
Our primary demonstration example was the 

GeoWorlds system from ISI [14]. GeoWorlds is an 
information management system integrating a digital 
library and a GIS.  GeoWorlds makes extensive use of 
service components that may be either local or remote.  
The GeoWorlds’ SystemJobTable data structure keeps 
track of all service requests.  Failure of remote services is 
not handled gracefully in the current implementation. 

Using the AIDE system from WPI, we instrumented 
GeoWorlds’ AbstractJobTable class to send out a 
SmartEvent every time the job table was modified.  The 
Metaparser extracts just the job ID and status information, 
and filters irrelevant status messages.  XUES looks for 
remote events that appear to be hanging.  If one is found, a 
Workflake is dispatched that notifies the user and uses a 
Worklet to clean up the job table. 

 



CHIME 
 
The Columbia Hypermedia IMmersion Environment is 

a collaborative virtual environment being developed by 
PSL [15]. CHIME represents heterogeneous data in a 
homogenized “theme world”. Using the 3D client, human 
users (avatars) can walk around the 3D world reflecting 
the infospace of interest, and interact with each other and 
with its data contents.   

The CHIME server can dynamically import any 
available backend data source.  For example, given a 
website URL, a component called FRAX (explained later) 
produces SmartEvents (FleXML-enriched Siena events) 
with metadata representing content from that data source.  
These SmartEvents are subscribed to by the Data Server 
(via Siena) and cataloged in an SQL database. 

The Data Server then calls the Virtual Environment 
Modeler (VEM) to assign 3D objects to new elements in 
the database. The virtual world seen by 3D clients is then 
populated with the new data via the CHIME World 
Manager.  

The File Recognize and XMLify component (FRAX) 
uses a URI to connect to a specified backend data source.  
FRAX recognizes the kinds of files or objects it is dealing 
with, and invokes the appropriate specialized plug written 
for that file/object type to extract metadata from the data 
source. The plug further instructs FRAX how to convert 
this rich metadata to an XML format (which is then 
packaged up into a SmartEvent). 

ActEvents allow FRAX to dynamically accept new 
plugs with new semantics.  We chose FleXML 
SmartEvents over Worklets because FRAX extracts and 
publishes structured metadata, fitting the XML-based 
model.  This enables the CHIME Data Server to be able to 
dynamically handle new tags and associated content 
originated from new FRAX plugs. 

Future work with respect to CHIME includes 
deployment of Worklets technology to allow more flexible 
KX-based monitoring of the CHIME subsystem.  Such 
applications include 3D interpolation of backend changes 
via the use of KX-style gauges to analyze the actual 
change over time. 

 
InfiniTe 

 
Dr. Kenneth Anderson and his group at the University 

of Colorado are developing an “information integration 
environment”, or InfiniTe, to aid software developers in 
performing complex information management tasks. In 
particular, they are focusing on supporting those tasks that 
involve creating, finding, maintaining, and evolving the 
relationships between software artifacts.  Since InfiniTe is 
based on a model similar to FRAX for XML information 
exchange, SmartEvents are valuable for interaction 
between the InfiniTe’s components and recipients. In 

addition, SmartEvents would aid in preserving 
relationships found between related artifacts. 

 
AI2TV 

 
AI2TV [16] is a virtual collaborative environment for 

group study, distance learning, conference calls and video 
lectures in development under an NSF grant.  A portion of 
the project involves a cache management system that 
controls the client’s cache where video can be downloaded 
or prefetched. The entire system, including variables like 
bandwidth, is monitored by KX.  Based on inputs from 
probes, KX can determine, for example, whether the 
client’s cache controller should fetch a higher or lower 
compression quality stream from the Video Server. 

Since AI2TV uses CHIME as its virtual collaborative 
environment, ActEvents’ benefits are inherited by AI2TV. 
Further integration utilizing ActEvents is planned, 
including client scaling, proxy management and 
reconfiguration, and user management. 

 
8. Related Work 

 
Many of the research topics described earlier in this 

paper have been examined in systems research, event 
infrastructures, active networks, and information 
management, besides those listed above under “Previous 
Work.”  We briefly discuss some of this related work here. 

Our work on Worklets in ActEvent-based architectures 
closely parallels research done in active networks – 
“packets” serve as an abstraction for code-embedded 
ActEvents, and the idea of code injection is native to 
Worklets.  Weatherall [17] abstracts away IP packets for a 
more generic code-embedded supertype, known as 
“capsules”, and demonstrate how their model, using Java 
bytecode as their code mechanism, improves active 
network performance.  Hicks, et. al. [18] instead define a 
restricted language for packet-based active networks.  
Such restricted languages are especially useful when 
performance during large volumes becomes a significant 
issue.  While Worklets utilizes Java bytecode, any 
sufficiently flexible language can be used, given a set of 
WVM bindings for that language.  Chin, et. al. [19] 
discuss utilizing active network technologies, including 
code injection, for connection rerouting.  They discuss 
hierarchical topologies and dynamic connection rerouting; 
much of the same can be done, albeit at a higher level, 
with Worklets.   

Event-based agents, like Worklets, are also used for 
increased autonomy.  Das, et. al. [20] discuss an event 
description language, called MDL, to facilitate modeling 
by associating events with objects and attributes, to allow 
real-world scenarios.  Such object- and attribute-enriched 
events also can be supported by ActEvents. 



Rifkin and Kohare [21] summarize general event-
based notification infrastructures. Utilizing such event-
based architectures for debugging complex applications is 
not new.  Bates [22] defines Event-Based Behavioral 
Abstraction (EBBA), which is concerned with developing 
models of complex, distributed systems, and simulating 
operation to speed debugging; ActEvents are similar, but 
often intended for run-time debugging.  Page and Tufarolo 
[23] examine a particular case study of event-based 
Verification, Validation, and Accreditation (VV&A) under 
the auspices of the DoD, in both virtual (simulated) and 
run-time systems.  Hilbert and Redmiles [24] utilize 
events within monitoring infrastructures, similar to the 
EBBA approach, for software engineering applications.  
Yemini [25] describes the SMARTS system, which uses 
an innovative Codebook Correlation engine for identifying 
network events in a noisy environment.  

Event-based architectures can apply to more than just 
debugging systems.  Sarin, et. al. [26] develop an event-
based, object-oriented process model and system for 
generalized collaborative work around units of “work”.  
Sateesh [27] discusses the application of time-bound 
event-driven models for real-time systems.  Magee and 
Kramer [28] discuss event mechanisms within the 
framework of dynamic architecture description languages 
(ADL’s).  Finally, Cugola et. al. [29] discuss their JEDI 
event-based infrastructure for complex systems. 

 
9. Conclusion 

 
We have been able to develop two models and 

corresponding implementations of the Active Event 
framework.  Both of these models, SmartEvents and 
Gaugents, gain power and flexibility by associating 
semantics along with the structure of the data.  We have 
created implementations of both, and used them to solve 
real-world problems. 
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