

An Active Events Model for Systems Monitoring

Philip N. Gross, Suhit Gupta, Gail E. Kaiser, Gaurav S. Kc, Janak J. Parekh
{phil, suhit, kaiser, gskc, janak}@cs.columbia.edu

Programming Systems Lab, Department of Computer Science, Columbia University
http://www.psl.cs.columbia.edu

Abstract

We present a framework for communication between

data-source probes and action-based gauges. It is based
on an intelligent event model known as Active Events (or
ActEvents for short). ActEvents build on conventional
event concepts by augmenting raw and structural data
with semantic information, thereby allowing recipients to
be able to dynamically understand the content of new
kinds of events. Two submodels of ActEvents are
proposed: SmartEvents, which are lightweight XML-
structured events containing references to their syntactic
and semantic models, and Gaugents, which are heavier
but more flexible mobile software agents. ActEvents are
also proposed as a communications framework for a
number of other applications, including a distributed
collaborative virtual environment (CVE) known as
CHIME.

1. Introduction and Motivation

DARPA’s DASADA program has focused on

developing standards for distributed systems to ease
assembly and maintenance of systems that are composed
of components “from anywhere” (e.g., COTS, GOTS,
open source, etc.). This program has focused on four
areas: architecture description languages to describe the
composed system, probes to gather information about the
current system configuration and state, gauges to interpret
this information, and adaptation engines that can
reconfigure the system as necessary.

This paper focuses on the interaction between probes
and gauges, and proposes a standard for data interchange
between them. The control interfaces for both probes and
gauges have been developed extensively, and standards
have been proposed by others. However, the format and
transmission mechanism for data collected from probes is
underdeveloped. We examine the problem and suggest
possible models and architectures, along with a
description of our implementation and experience using it.

Events, Probes, and Gauges

For the purposes of this paper, we define an event as “a

collection of data produced by a system component, and
of interest to zero or more other system components.”
Note that this description makes no assertions about
formatting, routing, or transport.

The University of Colorado at Boulder’s Siena event
system [1] enables Internet-scale content-based event
delivery. Siena models events as an unordered, flat
collection of attribute-value pairs.

A probe is defined as “an individual sensor attached,
either statically or dynamically, to a running program” [2].
Probes emit events that describe some aspect of a
program’s execution, either at a specific point in time or
over some duration. Probes usually:

• are integrated into or wrapped onto the application
itself;

• communicate with the application via an API; or
• look at indirect measures such as operating system

or network resource usage.
The proposed control interface for probes consists of

the following methods: Deploy, Install, Activate (and their
inverses), Query-Sensed and Generate-Sensed to
enumerate the events that a probe can send, and the
Sensed method to publish an event. The newer Focus
interface allows additional probes to be activated for
detailed examination of a problem. The DASADA
standard assumes that probe data will be emitted in the
form of Siena events.

Gauges [3] are defined as “software entities that
gather, aggregate compute, analyze, disseminate and/or
visualize measurement information about software
systems.” Gauges support a simple configuration
interface. The proposed DASADA gauge standard
includes the concept of a “Gauge Reporting Bus,” which
is specifically for communicating gauge reports to
consumers (who might, e.g., authorize repairs).
Consumers supply callbacks to the reporting bus, which
are called when an event of interest occurs, allowing them
to respond to the event.

Probe-Gauge Interaction

Probes use system-specific techniques to extract data

from the target system. Gauges use the Gauge Reporting
Bus interface to report to higher-level components. While
the proposed APIs for Probes and Gauges are clearly
specified, there is no proposed standard for formatting
probe data and sending it to the appropriate gauges. Since
one cannot assume that probes and gauges will be located
on the same machine, some form of networked
interprocess communication (IPC) is necessary. Since the
machines may be of heterogeneous type, the format for
probe data should be as portable as possible.

2. The Problem

There are three aspects of the probe-gauge relationship

that make the problem of connection difficult: the
dynamic nature of individual probes, the dynamic
topology of the various components, and the
heterogeneous nature of the systems involved.

Individual probes may be frequently added and
removed from the system. Probes may be
heterogeneously sourced, with possibly different
semantics for similar-looking data; simply labeling the
type of data elements within the event, as in traditional
attribute/value pairs, is insufficient. Instead, the semantic
information required for proper interpretation of the probe
data must be associated with the event.

Probes and gauges may be frequently activated and
deactivated. Some components (especially probes) may
be running on constrained devices; thus requiring every
component to maintain a complete network topology is
not feasible. Further, since the main tasks for most probes
are straightforward, requiring all of them to add the data
and logic necessary to manage bidirectional RPC with
gauges in a changing environment would increase their
complexity considerably. Detailed knowledge of event
routing and dispatch should ideally be removed from most
probes and gauges. While more advanced systems such as
CORBA can help with component discovery, probes will
typically have many consumers for a single event, which
is not handled efficiently under the synchronous CORBA
model nor under analogous RPC extensions.

The systems involved may be completely
heterogeneous with different byte-ordering, operating
systems, architectures, etc. Message formatting should be
completely architecture independent, and leverage
industry standards to the degree possible.

3. Previous Work

In the commercial world, a number of event-based

systems have been developed for monitoring network and
application status, e.g. TIBCO’s TIB/HAWK [4] and

Tivoli Distributed Monitoring [5]. These are usually
oriented towards predefined SNMP events and
infrastructure management.

There have been a number of proposed generic event
standards from operating system, language, and
middleware developers, such as Sun’s ToolTalk [6], the
OMG’s CORBA Event Service [7], and Sun’s Java
Messaging Service [8]. The first two mechanisms have
fairly limited specifications. JMS is an extensive
specification, but custom event semantics are only directly
supported through messages composed of serialized Java
objects.

The most elaborate work is the Rapide/CEP system [9]
which provides a full architecture for complex distributed
event processing. Rapide/CEP provides for event pattern
recognition based on temporal and causal relationships
among events. Our work has emphasized maximal
runtime reconfigurability and interoperability, specifically
the use of XML and runtime language discovery, at the
expense of the large feature set provided by Rapide/CEP.

4. ActEvents Model Overview

We propose that probe information should be

encapsulated under an “Active Events” model. This
model associates structural and semantic information with
the event data. This information is then used by data
consumers to determine appropriate processing. This
approach has some resemblances to the work on Active
Networks in the networking community, in which data
packets have additional information or code. We hope to
leverage some of that experience while avoiding the
mistakes. In particular, the experience of the networking
community has shown that models requiring all mobile
data items to be intelligent executable code results in
unacceptable performance.

Adding some intelligence to events involves balancing
two competing constraints. For maximum flexibility and
intelligence, one wants lots of information (e.g. network
topology maps) and sophisticated processing (e.g.
execution of mobile code at every routing node).
However, many probes will be producing large amounts of
very simple data. In that case, the overhead associated
with large events and extensive processing is
unacceptable.

We propose two separate submodels that together can
support most application needs: a lightweight submodel
for frequent, similar events and a more sophisticated
submodel for more significant events. Both models solve
the various problems outlined in the previous section, as
described below.

We call the lightweight model SmartEvents. These are
XML-structured events that contain references to their
syntactic and semantic models. The bulk of the
sophistication in this model is in a separate parsing and

discovery engine, leaving the events themselves simple
and lightweight.

We call the sophisticated model Gaugents. These are
intelligent mobile software agents, capable of transporting
themselves around the network and executing code at each
location they visit.

The first problem involves the dynamic nature of
individual probes and the difficulty in identifying the
correct semantic model for interpretation. SmartEvents
are interpreted by a special parsing engine that maintains a
mapping of grammar to semantics. Gaugents carry the
code necessary for correct interpretation.

The second problem is the dynamic topology of the
components. SmartEvents uses the Siena system to
transport events where they need to go, pushing the
routing problem to the distributed middleware component.
Gaugents can dynamically determine their own routing as
they move from node to node.

The third problem is the heterogeneous nature of the
involved systems. SmartEvents are structured as XML
and thus completely architecture independent. Gaugents
use system-independent mobile code and require a “host
adapter” to be present at each participating node for
Gaugents transportation and execution.

SmartEvent Model

For frequent simple events, the most efficient

technique is to have events contain a reference to their
syntactic and semantic model. For these types of events,
the event consists of a tagged document where the tags are
used not just to indicate the structure of the text but the
semantic model under which they should be interpreted.

The parsing engine identifies the “semantic
subcomponents” of the event and processes them
appropriately. Unfamiliar subcomponents are handled
intelligently by sending requests to the lookup engine.

The lookup engine, or oracle, maps unparsable tags to
syntactic and semantic information, and delivers this
information back to the parsing engine. This component
functions as a sort of primitive ontology server.

Once semantic subcomponents have been identified,
the lookup engine applies appropriate transformations to
the events to make them as digestible as possible for later
high-level processing. Transformations may include
augmenting, deleting or rewriting parts of the
subcomponent, as well as filtering it entirely.

Gaugents Model

Gaugents may be constructed or parameterized on the

fly by a human or a program, then transmitted from host to
host using a dynamically determined routing pattern
reactive to the latest host's circumstances and

surroundings as well as past and planned trajectories. No
workflow is required for Gaugents-based ActEvents.

Gaugents can travel between distributed components
using their own transportation mechanism. Target system
components are equipped with receptacle sockets to
enable them to properly receive and execute incoming
Gaugents, as well as send them off along their routes. For
added dynamism, two important concepts are
implemented: execution scheduling of Gaugents at
receptacle sockets and route re-configuration.

Execution of Gaugents at receptacle sockets can be
specified and controlled precisely; entry and exit
conditions can be defined, satisfaction of which is required
for Gaugents execution to commence, halt, etc. Other
factors like the number of execution iterations can also be
preset.

Gaugents’ routes are reconfigurable – capable of being
modified at any intermediate step. This is useful
particularly because it is difficult for the creator of the
Gaugent to predict all target components interested in its
existence. A solution is to have these target components
express their interest indirectly through those components
that the Gaugent are likely to visit. Then, the Gaugent can
be rerouted to travel to these other components, either
through unicast or multicast channels. There are two ways
to achieve this: clone the Gaugent by the receptacle socket
and retransmit it to the newer target components, or
modify the Gaugent’s trajectory so as to cover these newer
components. The overall effect is advancement towards a
pub/sub model for Gaugents.

Realization of SmartEvents: FleXML

Events are structured as XML messages. We

considered using Siena’s native datatype of flat, unordered
sets of attribute-value pairs, but decided that it was
inadequate for describing common probe results. For
example, a simple form of probing is to instrument
method calls. The data from such an event should list the
class, object, method, return value, return type, and a
variable-length list of parameter type-value pairs, in order
to capture the full function call. Attempting to recover
such structured, hierarchical, variable-length data from an
unordered set of attribute-value pairs is needlessly
complicated, while XML provided a natural fit.

Typical SmartEvents will be composed of at least two
subcomponents: an outer “envelope” of metadata and a
“payload” of specific probe results. The envelope
contains standard information about the probe data that
can be used for routing and tracing, and is generally
common across all SmartEvents. The payload will vary
depending on the source probe.

The Siena Internet-scale event network handles event
routing purely based on event content, freeing both probes
and gauges from the need to manage network topology.

Issues in translating between XML-structured
SmartEvents and flat Siena events are discussed in the
implementation section below.

To support legacy probes that are unable to generate
XML-formatted data, the Event Packager component can
construct SmartEvents from primitive probe events using
custom plug-ins.

The Metaparser does a high-level examination of the
event to determine the appropriate subcomponents. Each
subcomponent is independently validated, with grammar
looked up from the Oracle (lookup engine) if necessary. If
valid, the appropriate TagProcessor (possibly also
retrieved from the Oracle) applies transformations to the
SmartEvent and the result is published.

The Oracle maintains mappings of grammar elements
to particular syntactic/semantic pairs (e.g., XML schema
and tag processor control files). When the Metaparser
encounters an unfamiliar tag, it sends the XPath to the
Oracle. The Oracle matches the XPath and returns the
appropriate schema and control files.

The tag processor performs domain-specific
processing on the message. This may involve adding,
deleting, or rewriting portions of the event, or filtering it
entirely. The goal is to present homogenous, simplified
events for later processing stages.

Realization of the Gaugents Model: Worklets

Worklets can be defined as self-contained mobile

software agents that are deployed on a programmable
route of distributed components of a target system, with
the purpose of dynamic reconfiguration. The fact that
Worklets are self-contained is limited only to the
computation that it is performing at the hop in its route;
however, in general, the context in which the Worklet
executes is actually defined by the local adapter. What this
means is that the local adapter provides the missing links
required for the sub-general Worklet to execute in the
context of the local target system component. The Worklet
is therefore contextualized by the target system component
it is dealing with.

The Worklet Virtual Machine (WVM) is an execution
environment for incoming Worklets. It also provides the
transportation mechanism that enables the Worklets to
travel between successive hops. A host-specific Worklet
adaptor must be constructed for each anticipated host
system or component, and is attached to that host. In this
example, the source of the Worklet is Site 0 with later
hops being Site 1 and Site 2. The Worklet travels to Site 1,
where the corresponding Worklet junction is scheduled for
execution by the local WVM. After execution, the
Worklet uses the local WVM to propagate to the following
hop in its route.

A separate computation, or Worklet junction, is
defined for each step along the Worklet's predetermined

route. However, this route can be dynamic since it is
modifiable on the fly by other Worklets or target systems
en route. For non-trivial cases, a Worklet Jacket for the

current junction determines the customizable scheduling
for the Worklet such as pre- and post-execution
conditions. The Jacket can also be engineered to let the
Worklet continue on its route as soon as it deposits the
Worklet Junction instead of waiting for it to complete
execution. As mentioned above, the trajectory of the
Worklet can be modified dynamically at intermediate
WVMs. The Worklet Jacket regulates the extent to which
this information, along with other data in the Worklet, is
accessed/modified from outside the Worklet.

5. SmartEvent Implementation

Because particular probes will presumably be updated

more frequently than basic metadata, our implementation
uses a technology we developed called “FleXML” to
allow the description of events through several composed
schema fragments. The schemas for Envelope and
Payload can thus be managed independently.

The standard metadata envelope for a SmartEvent
contains information that will be of interest for all probe
events:

• A locally unique identifier;
• The IP address and port of the generating probe;
• A timestamp.

The AIDE system [10] generates information about
method calls. Its payload includes:

• Object;
• Class;
• Method;
• A list of type-value pairs for the parameters.

Metaparser

One of our reasons for choosing an XML-based

structure for our messages was the rich set of standard

WVM01WVM01

WVM 1 WVM 1

WVM2 WVM2

Site 0

Site 1

Site 2

A
D
A
P
T
O
R

T
A
R
G
E
T

A
D
A
P
T
O
R

A
D
A
P
T
O
R

T
A
R
G
E
T

A
D
A
P
T
O
R

T
A
R
G
E
TJ2

J1

Worklet Transport

Worklet Transport

Worklet

HTTP
Class
Server

Step 1

Step 2

GET J1

GET J2

Worklet Flow

tools available for working with XML. We wanted our
parser to leverage existing work as much as possible.
However, the APIs of existing parsers are inadequate to
handle the style of processing (i.e., use of multiple
schemas for a single message) required for the Metaparser.

The fundamental problem of working with composed
schemas was solved by constructing an elaborate front end
for the processor, which could send different portions of a
message to different XML processor instances. To
increase performance, we also modified the XML
processor to allow caching of parsed schemas.

The Metaparser has a three-layer system for parsing
incoming messages according to composed schemas.
When a new message arrives, a separate parsing thread
begins to examine it. If a tag matches a known semantic
subcomponent, a validator is started to handle that
subcomponent and pointed at the correct schema. Each
validator, in turn, is a wrapper around an Apache project
Xerces XML parser/validator. Validators allow particular
information to be selectively passed through to underlying
parsers. The top-level parsing thread informs the
validators which parts of the message are relevant to their
schema. Validators pass appropriate data through to their
parsers that do the actual XML schema validation.

Some additional complications arise. For instance, the
Xerces parser expects complete messages for validation,
not fragments. Therefore, extra information is added to
the data stream so that the fragments appear to be
complete messages to the validating parsers.

Since there will be many messages, most of which will
be based on only a small number of schemas, efficient
caching of schema information is key to performance.
Unfortunately, the current Xerces implementation is rather
inefficient, requiring the schema to be read and parsed for
each message. We modified the Xerces API to make
parsed schemas a first-class data object, similar to the
corresponding Oracle implementation. Schemas can now
be parsed once, and then repeatedly applied to messages.

Oracle

The Oracle component uses an SQL database to map

XPaths and tags to associated files. It supports both
XPaths anchored at the root and “free-floating” context-
independent tags. The Oracle waits for request events to
arrive, and attempts to match the unknown XPath or tag.
If a match is found, a success event is published, and a
Worklet is dispatched containing the associated files.
Otherwise, a failure event is published.

To load the database, the Oracle provides a graphical
interface. The user specifies an XML schema file. The
Oracle then parses this file, identifying unique tags. These
are then presented as the first column of a table. In the
other columns, the user can specify the files that should be
sent if this tag is queried.

Tag processor

The TagProcessor applies domain-specific processing

to the message. The primary mechanism for doing so is
an engine that is controlled by two XML-formatted files.

The first file is a standard XSLT template file that
allows arbitrary transformation of the message. Based on
analysis purely local to this message, tags can be added,
removed, or rewritten.

The second file allows some context-based
adjustments to the message. The Metaparser has the
option of passing an “environment” symbol table to the
TagProcessor. The message can be conditionally
modified based on values in the table, and new or
modified values can be written to it. This allows one to
e.g. maintain a count of a certain type of event.

Siena

The Siena system has a number of features that make it

well-suited to the needs of the SmartEvent system. Most
importantly, it has a scalable implementation of content-
based addressing. This is tremendously valuable for the
SmartEvent model, as otherwise gauges and probes would
be orders of magnitude more complex. Additionally it has
a simple, well-documented interface. The system is also
lightweight enough to make integration of wireless
handheld devices feasible.

There are a number of problems as well, however.
Siena does one-time best-effort delivery. There are
situations where store-and-forward at an intermediate
node might make the system more robust, as well as
enabling intermittently-connected devices to participate.

More significantly, we had to find a system for
mapping our XML-formatted messages to Siena attribute-
value pairs. We considered flattening the XML, with each
attribute consisting of the full XPath to the associated tag.
We rejected this as unwieldy.

The currently implemented solution is to put the entire
XML message into a single value, and “promote” some of
the envelope metadata to the attribute-value level for
content-based routing purposes.

Legacy System

Legacy System

Legacy System
Packager

DB

Metaparser
tag

processor

OracleDB

Distiller

worklet worklet

workflakes

KX Structure

6. Gaugent/Worklet Implementation

Worklets can implement the local aspect of

decentralized workflow [11]; however, we only discuss
Worklets with respect to ActEvents here. Worklets
provide computational intelligence to ActEvents. In the
SmartEvent version of ActEvents, the pub/sub
transportation mechanism is suited for general, frequent
event notifications. However, there are other cases where
bi-directional streaming of data-only notification events is
not effective, e.g., for those relatively infrequent
circumstances where processes need to run at the
recipients of the events.

Consider a scenario where the KX system is
monitoring a mission critical system, e.g., a manufacturing
control system. If one of the probes detects a critical
condition, it could send out “executable” SmartEvent-
based ActEvents to notify KX of the problem, and KX
would eventually send a fix into the target system.

A better solution is to have the probe issue a Worklet-
based ActEvent that can directly carry out remedial tasks
immediately without waiting for KX. This allows
emergency reactions to execute immediately without
waiting for the higher-latency KX to identify the problem,
determine a response, and dispatch a Worklet.

This can be interpreted as being complementary to
standard RPC-style communication, with all callbacks
being handled not by the sender of the ActEvent, but by its
mobile proxy (the ActEvent itself). Also, the fact that the
Worklet is autonomous and its execution is asynchronous
means that it requires less bandwidth than synchronous
RPC.

The WVM, or Worklet Virtual Machine, is the
execution environment and transportation mechanism for
Worklets. The host adapter is the link between the WVM
and the system component, which is essential for Worklet
arrival, execution and dispatch. The WVM is a
multithreaded system that can accept incoming Worklets
from peer WVMs through either Java RMI or a direct
socket connection.

Incoming Worklets will have one Worklet junction
intended for the local WVM, responsible for encapsulating
the complete execution to be performed at that local
WVM. There is also an optional Worklet jacket to specify
control information for the Worklet junction. Such control
information determines the overall behavior of the
Worklet junction, such as the number of repeated
executions, exit constraints, or initiation conditions.
Worklet junctions tend to be newer than the target systems
that they are looking to configure. This might necessitate
automatic and dynamic bytecode download to allow for
the assembly of the Worklet junction instance when it
arrives at the target system.

Our solution involves a web server at every WVM,
enabling it to serve up class bytecode for emitted

Worklets. At the receiving end, a customized class loader
downloads the bytecode of those classes that are not
available locally from the most recent hops, or the origin
WVM of the Worklet. To enhance survivability and
improve efficiency, each WVM caches all transmitted and
received bytecodes so that the bytecodes can be served up
to any other WVM that might require it.

A further level of efficiency is achieved by using the
Workgroup Cache [12] system to enable automatic
bytecode-sharing among the WVMs along a Worklet's
route. Since this mechanism allows WVMs to pre-fetch
bytecode before the Worklet even arrives, it eliminates the
need for explicit bytecode downloading at each WVM
upon arrival of the Worklet.

7. Applications and Examples

KX

The KX event monitoring system is the primary

application of our SmartEvents work. It is designed for
the automated monitoring and reconfiguration of complex
distributed systems. Probe data is processed by the Event
Packager and Metaparser, and the resulting data is fed into
the XML Universal Event System (XUES), an event-
oriented rule engine. This looks for high-level and time-
based situations. If XUES detects a condition that
requires action, it issues a “high-level” event that is picked
up by an Event Notifier (EN) component.

The EN determines the appropriate response and
launches an appropriate handler, such as a Worklet-
enhanced Cougaar [13] workflow (“Workflake”). The
Workflake is capable of highly complex reconfiguration
tasks.

GeoWorlds

Our primary demonstration example was the

GeoWorlds system from ISI [14]. GeoWorlds is an
information management system integrating a digital
library and a GIS. GeoWorlds makes extensive use of
service components that may be either local or remote.
The GeoWorlds’ SystemJobTable data structure keeps
track of all service requests. Failure of remote services is
not handled gracefully in the current implementation.

Using the AIDE system from WPI, we instrumented
GeoWorlds’ AbstractJobTable class to send out a
SmartEvent every time the job table was modified. The
Metaparser extracts just the job ID and status information,
and filters irrelevant status messages. XUES looks for
remote events that appear to be hanging. If one is found, a
Workflake is dispatched that notifies the user and uses a
Worklet to clean up the job table.

CHIME

The Columbia Hypermedia IMmersion Environment is

a collaborative virtual environment being developed by
PSL [15]. CHIME represents heterogeneous data in a
homogenized “theme world”. Using the 3D client, human
users (avatars) can walk around the 3D world reflecting
the infospace of interest, and interact with each other and
with its data contents.

The CHIME server can dynamically import any
available backend data source. For example, given a
website URL, a component called FRAX (explained later)
produces SmartEvents (FleXML-enriched Siena events)
with metadata representing content from that data source.
These SmartEvents are subscribed to by the Data Server
(via Siena) and cataloged in an SQL database.

The Data Server then calls the Virtual Environment
Modeler (VEM) to assign 3D objects to new elements in
the database. The virtual world seen by 3D clients is then
populated with the new data via the CHIME World
Manager.

The File Recognize and XMLify component (FRAX)
uses a URI to connect to a specified backend data source.
FRAX recognizes the kinds of files or objects it is dealing
with, and invokes the appropriate specialized plug written
for that file/object type to extract metadata from the data
source. The plug further instructs FRAX how to convert
this rich metadata to an XML format (which is then
packaged up into a SmartEvent).

ActEvents allow FRAX to dynamically accept new
plugs with new semantics. We chose FleXML
SmartEvents over Worklets because FRAX extracts and
publishes structured metadata, fitting the XML-based
model. This enables the CHIME Data Server to be able to
dynamically handle new tags and associated content
originated from new FRAX plugs.

Future work with respect to CHIME includes
deployment of Worklets technology to allow more flexible
KX-based monitoring of the CHIME subsystem. Such
applications include 3D interpolation of backend changes
via the use of KX-style gauges to analyze the actual
change over time.

InfiniTe

Dr. Kenneth Anderson and his group at the University

of Colorado are developing an “information integration
environment”, or InfiniTe, to aid software developers in
performing complex information management tasks. In
particular, they are focusing on supporting those tasks that
involve creating, finding, maintaining, and evolving the
relationships between software artifacts. Since InfiniTe is
based on a model similar to FRAX for XML information
exchange, SmartEvents are valuable for interaction
between the InfiniTe’s components and recipients. In

addition, SmartEvents would aid in preserving
relationships found between related artifacts.

AI2TV

AI2TV [16] is a virtual collaborative environment for

group study, distance learning, conference calls and video
lectures in development under an NSF grant. A portion of
the project involves a cache management system that
controls the client’s cache where video can be downloaded
or prefetched. The entire system, including variables like
bandwidth, is monitored by KX. Based on inputs from
probes, KX can determine, for example, whether the
client’s cache controller should fetch a higher or lower
compression quality stream from the Video Server.

Since AI2TV uses CHIME as its virtual collaborative
environment, ActEvents’ benefits are inherited by AI2TV.
Further integration utilizing ActEvents is planned,
including client scaling, proxy management and
reconfiguration, and user management.

8. Related Work

Many of the research topics described earlier in this

paper have been examined in systems research, event
infrastructures, active networks, and information
management, besides those listed above under “Previous
Work.” We briefly discuss some of this related work here.

Our work on Worklets in ActEvent-based architectures
closely parallels research done in active networks –
“packets” serve as an abstraction for code-embedded
ActEvents, and the idea of code injection is native to
Worklets. Weatherall [17] abstracts away IP packets for a
more generic code-embedded supertype, known as
“capsules”, and demonstrate how their model, using Java
bytecode as their code mechanism, improves active
network performance. Hicks, et. al. [18] instead define a
restricted language for packet-based active networks.
Such restricted languages are especially useful when
performance during large volumes becomes a significant
issue. While Worklets utilizes Java bytecode, any
sufficiently flexible language can be used, given a set of
WVM bindings for that language. Chin, et. al. [19]
discuss utilizing active network technologies, including
code injection, for connection rerouting. They discuss
hierarchical topologies and dynamic connection rerouting;
much of the same can be done, albeit at a higher level,
with Worklets.

Event-based agents, like Worklets, are also used for
increased autonomy. Das, et. al. [20] discuss an event
description language, called MDL, to facilitate modeling
by associating events with objects and attributes, to allow
real-world scenarios. Such object- and attribute-enriched
events also can be supported by ActEvents.

Rifkin and Kohare [21] summarize general event-
based notification infrastructures. Utilizing such event-
based architectures for debugging complex applications is
not new. Bates [22] defines Event-Based Behavioral
Abstraction (EBBA), which is concerned with developing
models of complex, distributed systems, and simulating
operation to speed debugging; ActEvents are similar, but
often intended for run-time debugging. Page and Tufarolo
[23] examine a particular case study of event-based
Verification, Validation, and Accreditation (VV&A) under
the auspices of the DoD, in both virtual (simulated) and
run-time systems. Hilbert and Redmiles [24] utilize
events within monitoring infrastructures, similar to the
EBBA approach, for software engineering applications.
Yemini [25] describes the SMARTS system, which uses
an innovative Codebook Correlation engine for identifying
network events in a noisy environment.

Event-based architectures can apply to more than just
debugging systems. Sarin, et. al. [26] develop an event-
based, object-oriented process model and system for
generalized collaborative work around units of “work”.
Sateesh [27] discusses the application of time-bound
event-driven models for real-time systems. Magee and
Kramer [28] discuss event mechanisms within the
framework of dynamic architecture description languages
(ADL’s). Finally, Cugola et. al. [29] discuss their JEDI
event-based infrastructure for complex systems.

9. Conclusion

We have been able to develop two models and

corresponding implementations of the Active Event
framework. Both of these models, SmartEvents and
Gaugents, gain power and flexibility by associating
semantics along with the structure of the data. We have
created implementations of both, and used them to solve
real-world problems.

10. Acknowledgements

We’d like to acknowledge John Salasin of DARPA for

his help in developing the DASADA project and for
numerous suggestions throughout this research. We’d
also like to thank Ken Anderson, Antonio Carzaniga and
Alexander Wolf of the University of Colorado for their
advice for InfiniTe and Siena; Nathan Combs of BBN for
help with Cougaar; Bob Neches, Ke-Thia Yao, and In-
Young Ko of ISI for providing GeoWorlds as a useful
target platform; David Garlan and Bradley Schmerl of
CMU for their work on the Gauge API; and Bob Balzer of
Teknowledge for work with run-time infrastructure
standards

We thank George Heineman and Peter Gill for their
work on the AIDE probe architecture. Finally, we’d also
like to acknowledge PSL members who had a hand in this

research, including Denis Abramov, Rose Alappat, Enrico
Buonanno, Peter Davis, Joanna Gilberti, Shen Li, Kanan
Naik, Michael Novich, Alpa Shah, Navdeep Tinna,
Giuseppe Valetto, Simin Wang, and James Wu.

11. References

1 Carzaniga, A. and Wolf, A. Siena: Scalable Internet Event
Noficiation Architectures.
<http://www.cs.colorado.edu/~carzanig/siena> 2001.

2 Balzer, Robert. bbalzer@teknowledge.com. Private
communication.

3 Schmerl, Bradley. bschmerl@cs.cmu.edu. Private
communication.

4 TIBCO Software Inc. “TIB/HAWK”.
<http://www.tibco.com/products/pdf/hawk_data.pdf> 2000.

5 Tivoli Systems Inc. “Tivoli Distributed Monitoring.”
<http://www.tivoli.com/products/documents/datasheets/dist
mon.pdf> 2000.

6 SunSoft Staff. “The ToolTalk Service: An Inter-Operability
Solution.” Prentice Hall PTR, 1993.

7 OMG. “Event Service Specification.”
<ftp://ftp.omg.org/pub/docs/formal/01-03-01.pdf> 2001.

8 Sun Microsystems Inc. “Java Messaging Specification 1.0.2b.”
<http://java.sun.com/products/jms/docs.html> 2001.

9 Luckham, David C. and Frasca, Brian. Complex Event
Processing in Distributed Systems. Stanford University
Technical Report CSL-TR-98-754, 1998.

10 Heineman, George. A Model for Designing Adaptable
Software Components. 22nd Annual international
Computer Science and Application Conference
(COMPSAC-98). Pages 121-127, August 1998. Vienna,
Austria.

11 G. Valetto, G. E. Kaiser, G. S. Kc, "A Mobile Agent
Approach to Process-based Dynamic Adaptation of
Complex Software Systems." Proceedings of the 8th
European Workshop on Software Process Technology
(EWSPT-8), Written (Germany), June 19-21, 2001, Lecture
Notes in Computer Science n. 2077, pp. 102 ff., Springer-
Verlag, Heidelberg (Germany).

12 Kaiser, Gail, Christopher Vaill and Stephen Dossick. "A
Workgroup Model for Smart Pushing and Pulling." 8th
IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, June 1999.

13 Combs, Nathan. ncombs@bbn.com. Private communication.
14 Neches, Robert, Ke-Thia Yao, and In-Young Ko. GeoWorlds:

Integrated Digital Libraries and Geographic Information
Systems. <http://www.isi.edu/geoworlds/publications.htm>
May 2001.

15 Dossick, Stephen E. and Gail E. Kaiser. "Distributed
Software Development with CHIME." ICSE-99 2nd
Workshop on Software Engineering over the Internet, May
1999.

16 Kaiser, Gail and Giuseppe Valetto. "Ravages of Time:
Synchronized Multimedia for Internet-Wide Process-
Centered Software Engineering Environments". 3rd ICSE
Workshop on Software Engineering over the Internet, June
2000.

17 Weatherall, David. “Active network vision and reality:
lessons from a capsule-based system. Proceedings of the
17th ACM symposium on Operating systems principles.
ACM, Charleston, 1999, pp. 64-79.

18 Hicks, Michael, et. al. “PLAN: a packet language for active
networks.” Proceedings of the third ACM SIGPLAN
international conference on Functional programming.
ACM, Baltimore, 1998, pp. 86-93.

19 Chin, Kwan Wu, et. al. “A model for enhancing connection
rerouting using active networks.” Proceedings of the 2nd
ACM international workshop on Modeling, analysis, and
simulation of wireless and mobile systems. ACM, Seattle,
1999, pp. 77-86.

20 Das, S., Caglayan, A. and Gonsalves, P. “Increasing Agent
Autonomy in Dynamic Environments”. Proceedings of the
second internal conference on Autonomous Agents,
Minneapolis, 1998, pp. 309-316.

21 Rifkin, Adam, and Kohare, Rohit. “The Evolution of
Internet-Scale Event Notification Services: Past, Present
and Future.” KnowNow, Inc., 2000,
http://www.knownow.com.

22 Bates, Peter. “Debugging heterogeneous distributed systems
using event-based models of behavior.” Proceedings of the
ACM SIGPLAN and SIGOPS Workshop on Parallel and
distributed debugging. ACM, Madison, 1988, pp. 11-22.

23 Page, Ernest H., et. al. “A case study of verification,
validation, and accreditation for advanced distributed
simulation.” ACM Transactions on Modeling and
Computer Simulation, Vol. 7, Issue 3. ACM, 1997, pp. 393-
424.

24 Hilbert, David M. and Miles, David F. “An Approach to
Large-Scale Collection of Usage Data Over The Internet.”
Proceedings of the 1998 internal conference on Software
Engineering, IEEE, Kyoto, Japan, 1998, pp. 136-145.

25 Yemini, Yechiam et. al. “SMARTS: High Speed & Robust
Event Correlation.”
<http://www.smarts.com/code_wpapers_highspeed.pdf>,
1998

26 Sarin, Sunil K., et. al. “A Process Model and System for
Supporting Collaborative Work.” Conference proceedings
on Organizational computing systems. ACM, Atlanta,
1991, pp. 213-224.

27 Sateesh, T.K. “Conceptual Model of Real-Time Systems: A
Perspective.” Proceedings of the 1995 ACM symposium on
Applied computing, ACM, Nashville, 1995, pp. 206-209.

28 Magee, J. and Kramer, J. “Dynamic Structure in Software
Architectures.” Proceedings of the fourth ACM SIGSOFT
symposium on Foundations of software engineering, ACM,
San Francisco, 1996, pp. 3-14.

29 Cugola, G., et. al. “Exploiting an event-based infrastructure
to develop complex distributed systems.” Proceedings of
the 1998 internal conference on Software engeineering.
IEEE, Kyoto, Japan, 1998, pp. 261-270.

