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1 Introduction 
As the Internet turns into an essential business and production infrastructure, networked business and work 
in general become more and more common; for instance, virtual enterprises emerge as an innovative way to 
launch, organize and carry out initiatives, either within a large, global corporation, or as dynamic joint 
ventures between geographically dispersed organizations. 
In such a context, the significance of distributed workflow (WF in the remainder) technology is steadily 
increasing. WF aims at the support of complex collaborative processes, composed of activities, in which 
the synchronization and coordination of the activities and the people having a part in them (the stakeholders 
of the process) is an essential characteristic. WF is based on the concept of a process model, describing the 
process to be followed, and on facilities (collectively termed the process enactment engine) for supporting 
and guiding the work of stakeholders according to that model. Distributed WF nowadays provides many of 
the necessary paradigms, techniques and tools that support the management of complex, dynamic and 
decentralized business practices, their stakeholders, and their processes. 
There are a number of dimensions concurring to WF distribution, which interact - and sometimes conflict - 
with one other in various, complex ways, such as distribution of the WF information, the WF actors, tools 
employed to carry out the work, and the work itself. Distributed Workflow Management Systems (WFMSs 
in the remainder) deal with those dimensions in different ways, operating on and privileging some of the 
dimensions rather than others, depending on the paradigm and technology of choice, and complete 
decentralization of WF along all of its distribution dimensions is still a challenge. 
On the other hand, approaches and techniques that have been established for and have become typical of 
distributed WF show great potential for more general applicability besides the classic application domain of 
WF, i.e. the support and guidance of decentralized business practices. There are a number of problems 
regarding the coordination of complex distributed systems and applications that require the execution of 
some kind of process, although the level of explicit process awareness held by the system components 
and/or stakeholders, and embedded in the overall system, may greatly vary. For these problems, concepts 
and techniques lifted from distributed WF and leveraging on its understanding and representation of 
coordination as a process can be fruitfully exploited. 
Some of these problems are of great relevance for and recur often in state-of-the-art distributed systems. 
Two important, wide domains for coordination are the run-time monitoring and control of functional and 
non-functional properties of the components of a distributed system, and the dynamically determined 
cooperation within a group of software agents towards some common goal (for instance, the retrieval or 
production of some piece of information). 
In fact, increasing convergence between the disciplines studying agent-based systems, distributed WF and 
coordination of component-based systems can be clearly detected, as discussed in more depth in Section 0, 
with ample overlapping of concerns and opportunity for synergy. The coordination of agent-based and 
component-based systems involves only marginally or not at all humans and collaboration between them, 
which is traditionally a major focus of WF. Therefore, those kinds of coordination can be considered as 
reference problems to assess the possibility to extend WF-like coordination techniques to distributed SW 
systems at large, and allow to clearly position the potential of distributed WF in that context. 



The coordination of such systems provides a test bench for WF-based coordination techniques, which is at 
least as challenging and demanding as the domain of decentralized business processes, although with a very 
different focus. They present peculiarities that are not commonly specifically addressed by current WFMSs, 
e.g. completely automated process enactment. WFMSs, however, offer in principle adequate and important 
capabilities that are only partially present in other coordination techniques, such as high-level coordination 
models founded on the concept of an explicit process, and formalisms with both declarative and imperative 
connotations, which accommodate abstract analysis and reasoning as well as enforcement and guidance of 
the coordination model. 
We intend to investigate the specific characteristics of the reference coordination problems mentioned 
above and how they can be tackled with and satisfied by some different models of distributed WF and the 
corresponding techniques, with any necessary adjustments and extensions. Given the nature and properties 
of the problems, the proposed distributed WF-based techniques for each of them may be very different, and 
also the definition of WF may vary, or be even somewhat stretched in some cases. A WF-based solution 
that aims to cover as much as possible all of the reference problems must necessarily be composite, and 
must operate over most (or even all) of the distribution dimensions of WF. Therefore, it can provide 
precious insights on those dimensions and their criticality and impact on the reference problems. 
The final objective to evaluate the potential of distributed WF technology to handle the chosen reference 
coordination problems, and coordination of distributed SW in general: this includes not only identifying 
common traits and principles that can lead to a unified WF-based framework for the coordination of 
distributed systems, but also recognizing any outstanding idiosyncrasies that cannot be reconciled in such a 
framework, and either must be tackled with ad hoc solutions, or even stand out as open questions for 
research. 
We intend to carry out our investigation in the light of a distributed systems case study, in which the 
reference coordination problems and business processes can coexist at different levels, i.e., coordination 
within a distributed collaborative application that is explicitly WF-aware, coordinated control of the 
functionality of that distributed application by a separate monitoring infrastructure, and coordinated 
interaction among the various components/agents that concur to the monitoring infrastructure itself. The 
case study is directed towards process-aware provision of multimedia services and information to groups of 
dispersed users carrying out teamwork, and includes the management of an advanced architecture for 
broadcasting and streaming video and audio, on the basis of available network and system resources. The 
case study can be also seen as a particular example within a more generic distributed system scenario, i.e. 
the continual validation of generic distributed applications. 
The scale of distribution we intend to address is that of global dispersion of processes, SW components, 
stakeholders, and data. Thus, we are going to experiment with a set of techniques and mechanisms, which 
address those aspects at the global networking scale, and whose integration within a globally decentralized 
WFMS will help reconciling the various distributed dimensions of WF, as well as resolving the diverse 
distributed coordination reference problems. 
In the remainder of this document, the many facets of this work are analyzed in further depth. In Section 2, 
we discuss WF distribution dimensions. In Section 3, we describe the set of distributed coordination 
reference problems and outline the WF-based techniques that can be exploited for their solution. In Section 
4, we describe the continual validation scenario, underline the relevance of the various reference problems 
in that context, and propose our case study. In Section 5, we describe a set of mechanisms that we plan to 
employ to address the complexities inherent to the distribution coordination reference problems, via an 
enhanced distribution of WF along its various dimensions. In Section 0, we compare and contrast some 
distributed WFMS available as research prototypes and/or products, and we discuss how their 
characteristics could be exploited for our purposes. In Section 7, we discuss appropriate ways and 
principles for the evaluation of the potential of distributed WF paradigms and technologies with respect to 
the reference problems and coordination of SW distributed systems in general. In Section 8, we provide an 
outline of the various research issues that will be tackled in this work, with a tentative schedule. 

2 Dimensions of distribution for decentralized WF 
“Classic” centralized WFMSs, such as [56] [57] [58] [59] , adopt some variant of the client/server 
architecture, in which all WF data are persistently kept in a database of some sort, which usually sits with 
(physically or logically) and is administered by the server. This paradigm – which was in fact effective only 



for WFMSs running on LANs and having a limited number of relatively clustered users and computer 
hosts, has been progressively challenged and is finally being broken due to the emergence of more 
decentralized computing frameworks, distributed information infrastructures and dispersed organizational 
and work structures, which took to utilizing the Internet as a commodity and the WWW as a paradigm. 
Distributed WF services numerous scenarios and needs beyond the scope of centralized workflow –virtual 
enterprises, or (semi-)autonomous enactment of WF fragments at separate sites, or widely distributed large-
scale projects, such as Open Source software development, to name a few – but is also way more 
challenging in terms of the organization and availability of dispersed data/resources, as well as in the 
coordination of activities taking place at multiple remote sites. In a widely distributed WFMS, the various 
WF agents in charge of tasks can be either human or computerized, and must cooperate and gather data and 
resources from potentially any point in the network. This can lead to various problems, especially on large-
scale and heterogeneous networks, such as poor performance or even breakdown of the workflow or the 
workflow management system, depending on the availability of data and resources in given network 
conditions. 
Those problems –among other things - break the assumption that all data and resources necessary to enact 
the WF are always readily and timely available to the enactment engine and/or its clients. That assumption 
has been inherited by centralized WFMSs and has not undergone yet any substantial revision. Due to the 
unpredictable QoS of the Internet and the load and complexity of the information exchanges involved, it 
hardly stands up already for most commercial state-of-the-art WFMSs, which provide to dispersed users 
Web-enabled clients connecting to a centralized server, and it is certainly even less valid for a multi-server 
or a truly decentralized WFMS that wants to operate at a truly global scale. In such systems, WF data and 
resources are potentially much more widely dispersed and the WFMS knows in the most favorable case 
only their location, via a pointer - e.g. a URL - but rarely owns them exclusively. 
Some of the facets of WF distribution are: being able to fetch information as needed at the various stages of 
WF enactment, from locations far away or disconnected with respect to the location where the enactment 
takes place; publishing and making effectively available to the overall WFMS new data created by a WF 
task as its by-product; discovering, acquiring, or otherwise retrieving information that is available on the 
network at large and useful for the WF enactment but is not initially contemplated by the WF database (e.g. 
a set of documents resulting from a WF task performing an Internet search); managing in a coherent way 
all of this information, providing it with both a unified structure and different levels of presentation.  
All in all, a number of interrelated distributions dimensions can be abstracted out from the list of issues 
above, and must be properly coherently and addressed. Two basic aspects are: how and where data is 
located, and how and where the architectural components of the WFMS (i.e. the WF agents) are deployed 
and activated. On top of these two major issues, another issue is how work is distributed (i.e. assigned) to 
the WF agents active on the network. 
In the remainder of this Section we discuss in depth the issues regarding WF data distribution, WF 
architecture distribution and work distribution, and we will recognize the various separate dimensions of 
distribution within each of them. A visualization of the dimensions is provided in Table 1 in Appendix A. 
Before that, however, we take some time to define more precisely the global networking scenario we 
envision as our reference distribution framework. 

2.1 Global networking distribution 
We intend to address the problem space of WF distribution in the context of networks that are global and 
heterogeneous. As for globality, the model of reference is the Internet, which represents for today’s 
technological endeavors both a challenge (first of all, in term of scalability of the architecture) and an 
opportunity (for example, providing commodity almost ubiquitous communication protocols and data 
exchange/storage facilities). However, it is necessary to underline that we do not intend to bind (and hence 
limit) ourselves to any Internet dominant protocols (e.g. HTTP) and paradigms (e.g. the WWW). In fact, in 
addition to the above distributed WFMSs must also operate upon and take in account a variety of protocols 
and facilities, such as various middleware platforms (see Section 6.3.3), which may be layered on top of the 
Internet, but represent in themselves high-level communication and distribution infrastructures. Therefore, 
it is not possible to assume and leverage homogeneous networking scenario for the distribution of WF data, 
agents and work items, which must me able to reside, relocate and communicate in a variety of network 
environments. For instance, a global network may incorporate some portions of the WWW, but also a 



corporate Intranet, a distributed computing environment running some distributed application, a set of 
mobile terminals connected through different media. To ensure distribution of a WF across all of these and 
other network “fragments”, interoperability mechanisms and “bridges” among them constitute a key issue. 
The heterogeneity of a global networking environment is further emphasized these days by phenomena like 
spontaneous and active networking. Technologies like Bluetooth [76] will make portable networked 
computing and communication devices increasingly powerful and common, with the ability to host non-
trivial application and to establish among those applications network connections on-the-fly. Active 
networks [104] will enable dynamic adaptation of the properties and protocols of nodes and connections on 
the network. Advancements of this kind are going to have a major influence upon any state-of-the-art 
distributed system, its architecture, and of course also its coordination. They also apply to distributed 
WFMSs and pervades all WF distribution dimensions, adding a whole level of complexity to them: not 
only the data, code, queries and computations of the WF may be distributed and move around a network 
infrastructure that is stable, but also the network itself may change, with nodes that appear, disappear and 
change their location, and connections that modify their characteristics in a dynamic way. 
In this document, we consistently refer to the term global network to characterize a networking 
environment as the one sketched above, and to indicate the reference distribution framework for our work. 

2.2 Distribution of WF information 
A WFMS necessarily relies on a wealth of different kinds of information. The following loose 
categorization highlights two major kinds of WF data, i.e. data concerned with the specification of WF 
(design data) and data concerned with the enactment of the specified WF (runtime data): 
• WF design data: 

• WF declaration: it represents the layout of the WF, in terms of plans, tasks, relationships among 
tasks, etc. For tasks, valid states and state transitions are specified, as well as the types of their 
inputs, outputs and resources; the relationships among tasks contribute to the control as well as the 
data flow. The WF declaration may be more or less explicit, depending on the formalism 
employed to express it; however, a minimal WF design unit must be explicitly present in any 
formalism, to allow for process construction and reasoning (e.g. task, action, speech act etc.). 

• WF definition: it is the behavior - i.e. the set of actions - associated with, each of the various WF 
tasks, or given task state transitions, or given transitions from task to task. Actions can be 
expressed in various ways, for instance with procedural code of some sort. Actions typically 
manipulate the task input (possibly via the invocation of some tool), produce the task output, 
change the state of the task, cause the enactment of other tasks, etc. 
Together, the WF declaration and the WF definition provide the WF specification. 

• artifact and resource types: they provide a model of the information domain on which the WF 
operates. The type system can be very sophisticated or very straightforward, depending on the 
WFMS and the application. Usually, artifact and resource types are associated with their own state 
information and with other metadata that is intended as a descriptor for the artifacts or resources of 
that type (i.e. ID, location, ownership, etc.). Types can also be sometimes created on the fly and 
added to the type system, or the type information may be embedded in the instances, achieving 
self-descriptive artifact/resources. 

• roles: categories of WF agents (either human or computerized). Tasks are assigned to agents on 
the basis of role; therefore roles can be seen as categories of resources in many ways. 

• WF runtime data: 
• artifacts: documents or other information content manipulated by instantiated tasks. They comply 

with the artifact type system and follow the data flow of the WF. Each artifact is seen as an 
instance of an artifact type, therefore is associated by the WFMS to the appropriate metadata. 

• resources: in order to enact a task, the WFMS may have to secure a pool of resources. Resource 
availability is therefore a kind of task precondition. A resource can be any kind of entity that has a 
part in the work represented by the task and has some value or cost, normally because of its 
limited supply: typically, WF stakeholders, HW, SW tools, time, etc. Like for artifacts, resources 
are instances of resource types. 



The problem of resource acquisition and availability acquires a particular relevance for a largely 
decentralized WF. In such cases, it is often impossible for the WFMS to have at start-up a 
complete mapping of its whole information and resource space. Some of the resources may not be 
under the direct ownership and control of the WFMS from the beginning, and must be looked 
after, discovered, retrieved and secured at various stages during the WF enactment, in order to 
carry out some tasks. Any WF-related element not known and owned by the WFMS at startup 
takes the role of a precious – although impromptu - resource, and its availability may heavily 
influence the data flow of the WF. Sometimes the WFMS may even have to produce new 
instances of impromptu resources – although they do not themselves take part in the WF 
objectives - in order to proceed with some task. 
The acquisition of impromptu resources can be seen as a WF task itself, although perhaps as an 
ancillary, implicit, or “sideways” task with respect to the “main” WF. 
This situation also contributes to somewhat blur the distinction between artifacts and resources. In 
fact, a prominent example of impromptu resources are information impromptu resources. They are 
data that are relevant to the WF at some point, but are not initially elements in the artifact 
repository, although they might be incorporated in it once acquired. Information impromptu 
resources are typically a significant issue for distributed WFMS of global scale, either because 
their goal is the production of information or knowledge out of and over the global network, or 
because they are superimposed on back-end dispersed computational environments that manage 
and publish over the network substantial amounts of information on their own, i.e., outside the 
control of the WF. Typical information impromptu resources are the result of an Internet search 
performed on the behalf of a WF agent (either human or computerized). 
Among the categories of information impromptu resources there are: 

o data whose location is not known, and must be looked after 
o data that is not immediately publicly available for some reason, for which access must be 

granted. 
o subsets/supersets of available WF data, because of their particular relevance to some of 

the workflow steps 
o expensive/heavy remote data (in terms of bandwidth, access time, duration or other 

considerations) 
The more the WF is decentralized, the more impromptu resources can be dispersed – even at the 
same scale as the global network- and the issue of securing them to enable enactment becomes 
particularly critical. 
Notice that the impromptu resource concept can be generalized with respect to the task and 
process states, in case they are decentralized and a WF agent needs to retrieve an unknown 
fragment of the process state located somewhere remotely. That piece of information can be seen 
as a special kind of resource, which enables the control flow of the WF, rather than the data flow. 

• task state: at any moment during the WF enactment, each instantiated task is in one of the possible 
valid states specified in its declaration. The task state evolves over time, on the basis of the work 
carried out in the task and other correlate tasks. 

• process state: it can be either expressed as the combination of the states of all instantiated tasks in 
the WF at a given moment, or as a separate concept of state, representing in some way the “big 
picture” for the overall WF (e.g. level of completion, reach of intermediate or final goals, etc.)  

All of the above information must be located, identified and organized appropriately; it also must be made 
timely available to the agents carrying out distributed WF, according to what specific WF data they need at 
any given enactment stage. One issue here is to circumscribe the amount of data that must be provided to 
each agent in the most effective way. 
Distribution of WF information - as described above - defines at least three distribution dimensions: 

• distribution of the WF specification – both declaration and definition (design data); 
• distribution of WF state (enactment data); 



• distribution of WF artifact and resources, including impromptu resources, according to their type 
(both design and enactment data). 

When all of the three dimensions above are completely supported, in principle each type and each piece of 
data may be remotely distributed with respect to any other. For instance, the declaration of a WF fragment 
and the action definitions for the same fragment can be kept separated: the task declaration can for example 
be stored on a WWW server, while the corresponding action can reside somewhere else, perhaps even 
being a computation transported over the network by a mobile SW agent. 
To handle this wealth of dispersed information an approach that consistently characterizes and organizes all 
the various kinds of information relevant to WF is needed. In Section 5.1, we will propose a solution that is 
based on the WWW as the common infrastructure for storing and making available the information. 

2.3 Distribution of workflow enactment agents 
A decentralized WFMS must support the enactment of WF fragments by a set of WF agents residing on 
different and potentially very dispersed nodes of the network. Besides the distribution of data, decentralized 
WFMSs must also address the deployment of WF agents. 
We employ the term WF agent to indicate a computer application that enables interaction with other parts 
of the WFMS, with the purpose of enacting the WF. WF agents can act on behalf of WF actors, i.e., human 
stakeholders of the process; in the centralized WF model, WF agents represent clients to the WF enactment 
engine, and human stakeholders are their end users. For a decentralized WFMS, a rigid distinction between 
a server accommodating the WF enactment engine and the WF agents as its clients hardly exists anymore. 
Depending on the degree of decentralization, some or even all of the WF agents may be provided with WF 
enactment capabilities such as lightweight enactment engines, enhancing their autonomy. Thus, agents may 
be able to execute WF fragments on their own and exploit whatever communication infrastructure is 
available for the necessary notifications and coordination with other agents: for instance, an agent may 
fetch a task declaration from the location where it is stored, initiate its enactment, fetch and execute the 
corresponding action(s), in the meanwhile acquiring and employing any necessary artifacts and resources. 
In a decentralized WFMS scenario, a WF agent could be at the same time a server and a client for other 
agents. This also allows to accommodate particularly well the concept of purely computerized WF agents 
that enact WF fragments without human supervision. Notice that computerized agents can also be present 
in the centralized case, although this implies a master/slave relationship between the enactment engine and 
those agents; in a decentralized WFMS, they can be instead largely autonomous. 
The architectural distribution of WF agents has in the first place a static dimension, reflecting the 
deployment of the WFMS at the time of WF enactment; that dimension is supplemented by a dynamic 
dimension reflecting modifications of the initial architecture, due to the instantiation of new agents, or the 
migration of existing ones to new hosts in the network, etc. 
As far as the static architecture is concerned, a typical paramount factor is the allocation of WF agents to 
any existing human actors, which effectively enables remote cooperation among (groups of) human users. 
The role of these components, even in a decentralized WFMS, is still mainly to provide users with an 
interface to the WFMS functionality, similar to clients in traditional client/server centralized WFMS, but 
without that kind of architectural constraints. Some computerized WF agents can be opportunistically 
deployed at enactment time, for instance to enable the enactment of WF steps at relevant network locations 
that are remote with respect to all the existing stakeholders; they thus take part in the static distribution 
dimension, in the same way of other components of the distributed WFMS designed to provide some 
services or utilities to agents and the overall system. 
Computerized WF agents take also a major part in the dynamic dimension of the architectural distribution 
of a WFMS, since they can be deployed on the fly as needed. Even more so in case computerized agents 
are also mobile software [75], which enables them to physically follow the control and/or data flow through 
multiple WF steps that are enacted on different hosts, and execute them. Mobility is also of interest for WF 
agents allocated to human users, in case disconnected operation is supported by the WFMS. 
The presence of a dynamic architectural dimension of WF demands for means to express the directives that 
modify the layout of the WF agents either by deployment of new agents or mobilization of existing ones. 
These directives are necessarily correlated with the state of the WF being enacted and implement an 
internal coordination mechanism for the decentralized WFMS. 



2.4 Distribution of WF enactment 
The distribution of WF enactment (i.e. task instances) to WF agents is an issue that must be addressed by 
any WFMS, either centralized or decentralized; the main difference in decentralized case is once again due 
to the fact that there is no clear-cut distinction between those components of the WFMS in charge of 
distributing the work and those that receive work. 
WF enactment is distributed to WF agents according to two basic modalities: tasks are either pushed to or 
pulled by any of the various distributed agents. Hybrid modalities, such as a state server that works as a 
shared blackboard – like in ProcessWall [60] - work essentially as intermediaries, decoupling the 
components of the WFMS that push tasks and those that pull them. 
The pull modality is the one typically employed by WF agents allocated to human users, since it implies the 
voluntary selection and uptake of one of the various possible tasks that can be legally enacted at any given 
moment. Task pulling may also occur on the part of computerized WF agents, for instance when an agent is 
in charge of a WF fragment that includes a number of tasks, and tries to execute all of them in sequence. 
With the pull modality, the WFMS assumes a reactive behavior. 
Pushing of WF tasks occurs due to either automation or delegation. Delegation occurs on an agent-to-agent 
basis, either because of the decision of a knowledgeable human user, or because of some suitable automatic 
delegation policy. Automation takes place on the basis of changes in the state of the WF and can be 
directed to any agent (human or computerized) that can be requested to enact a given task. The push 
modality – and automation especially - provides the WFMS with proactive behavior, in addition to reactive 
[112]. 
The balance between the reactive and proactive dimensions of WF enactment distribution depends on the 
WF paradigm, the features of the WFMS and the characteristics of the process to be enacted. 

2.4.1 Task pushing 
Task pushing implies that the work is assigned to the WF agent by some other external component of the 
WFMS, which – by delegation or automation - indicates the receiving agent and binds data and resources to 
the task on its behalf. In a centralized WFMS, tasks are simply pushed to suitable clients by the server – 
which runs the WF enactment engine and therefore holds all the necessary knowledge. In a decentralized 
WFMS, instead, task pushing schemes are necessarily more complex, since some or even all WF agents can 
act both as an enactment engine and a client. In the case of maximum decentralization, which implies non-
hierarchical and peer-to-peer relationships between the WF agents, any of the dispersed WF agents can in 
principle push a task to any other. Various coordination schemes can be borrowed from models for 
organizing communities of generic SW agents - such as organizational structuring, contracting, multi-agent 
planning, or dynamic negotiation [81] - and used for task pushing in a decentralized WFMS. 
The proactive dimension of work distribution is the most dependent upon considerations about data and 
architecture distribution. In the ideal conditions, a task is always pushed to an agent that is available and 
capable to carry it out, and can easily fetch all the information and resources necessary to lead to the 
completion of the task. In practice, it can happen that the access to the needed information and resources is 
extremely costly or difficult, or even impossible depending on the configuration of the architecture and the 
dispersion of the data and resources. In this case, the proactive capabilities of a WFMS could become a 
source of inefficiency for the WF. To overcome this problem it may be necessary to modify either the 
distribution of the WF agents (by deploying/instantiating/migrating an agent to a host more convenient for 
the purpose of carrying out the task), or the distribution of data, thus making available (i.e. 
transferring/copying) to some existing agent the necessary data and resources. 
Since both solutions can be themselves costly and complex, it would be extremely important to be able to 
predict when adjustments to the data and/or architecture distribution are likely to be needed, in order to 
preempt those situations by “working behind the scenes” in preparation for them. To do this, a task 
forecasting mechanism must be associated with the proactive facilities of the WFMS. The importance of 
task forecasting coupled with proactivity is that it enables “smart” policies that are data/resource-aware for 
agent instantiation or migration, as well as for enhanced availability of data and resources to agents. This 
can lead to improved efficiency in the distribution of work and be a big help in resolving the complexities 
caused by wide dispersion of the WF along the data and architecture dimensions. 



2.4.2 Task pulling 
As for the reactive dimension of work distribution, when an agent chooses to pull a task, the WFMS reacts 
by providing it with all the necessary specification information about that task. Again, while in centralized 
WF reactivity is achieved simply by having the server responding to client requests, in decentralized WF 
reactivity is subtler since any WF agent may take up the double role of ”server” and “client”: for example, 
a WF agent can even react (implicitly) to some WF enactment request raised by itself. Also, task pulling 
among a group of computerized WF agents typically involves an appropriate model of ineter-agent 
coordination that must be adequately embodied by the WFMS. 
The binding of input artifacts and resources of the right types to a pulled task is part of the reactive 
behavior and can happen in various ways: for example, it may be explicitly specified by the agent when 
pulling the task, or may be implicitly resolved depending on the state of the task, the overall WF and the 
artifact/resource pool, etc. 
Bound artifacts and resources are either local or remote with respect to the WF agent in charge of the task. 
Remote fetching can be carried out in various ways, such as obtaining a remote lock (as in WebDAV [29]) 
or by making local work copies that must be reconciled with the remote master copy at the end of the task, 
according to some consistency model embraced by the WFMS (such as extended transaction models [108], 
divergence control [114], etc.). Once the binding process is complete, any action corresponding to the task 
must be also fetched and executed. 
The reactive dimension of work distribution does not particularly interfere with the data and architecture 
distribution dimensions, unless the request of pulling a task by a WF agent is hindered by the relative 
location and availability of the agent and the WF data: the only possible workaround is to redistribute the 
WF data in a more efficient way. Again, task forecasting capabilities would allow to prepare for the 
occurrence of these situations and enhance the availability of WF data to agents that may need it. 

2.5 A synopsis of WF distribution characteristics 
We propose hereby a way to schematically identify the various characteristics of a decentralized WF, in 
particular with respect to distribution. While the categorization of the distribution dimensions - as it has 
been discussed earlier in this Section -is sufficiently systematic and clearly disjoint to allow for this kind of 
schematics, it is certainly more difficult to come up with scales for those dimensions. In fact, we maintain 
that an attempt to elaborate anything like an orderly sequence of distinct “values” within some spectrum, to 
indicate degrees of distribution along one or more distribution dimensions, would be quite artificial and 
thus hold little value. For this reason, the dimensions are going to be described by a scattered set of concise 
attributes/phrases referring to the characteristics recognizable in the coordination problems under our 
scrutiny and their corresponding WF. The attribute sets are therefore not decided a priori at this stage, but 
will emerge as a result of the discussion about the various coordination problems of interest. The attributes 
will help positioning each WF along each dimension, but first of all with respect to each other. 
In Table 1 in Appendix A, we show the schematics of the synopsis, leaving a certain number of empty 
spaces that will be filled by attributes of the various kinds of WF addressing the coordination problems. 
Notice that, for the sake of completeness, we also intend to include in the synopsis some other prominent 
properties of each WF, which are not directly related to distribution, but are helpful to characterize it (e.g. 
the explicitness of the process, its repeatability, etc.). 
The synoptic tables and the complete prospect that follows the analysis of the coordination problem we 
mean to address, are found in Appendix A. 

3 WF-based techniques for some complex distributed 
coordination problems 

In this Section we analyze separately the peculiarities of the distributed coordination problems of ,, i.e. how 
to control at run-time a generic external target system, and how to orchestrate the cooperation of a 
community of SW agents in an agent-based system. For each of them, we then discuss the characteristics of 
their inherent coordination processes, and how they fit with respect to the various distribution dimensions 
of WF. While doing this, we identify what kind of WF techniques can be suitable to provide a WF-based 
solution to the coordination problem. 



3.1 Coordination problem 1: run-time control of a distributed 
system 

In run-time control of distributed systems, the coordination problem consists in carrying out the adaptation 
and re-configuration of the structure and behavior of the system to be controlled, in response to conditions 
that occur within the target system, or over the network, or whatever other communication and 
computational infrastructure the system relies upon. 
In this coordination problem, humans may be completely absent from the controlled system, or – if present 
- may simply cover simple and punctual (although potentially critical) decisional or authorization roles. 
Therefore, the coordination model does not need to account for support and guidance of the intensive, 
creative, open-ended and long-lived activities typically associated to human work. It rather enables the 
execution of automated imperative directives, with the purpose to modify the functioning parameters of the 
target system. 
The elements participating in the coordination are primarily or exclusively software components, such as: 

• the components of the system that must be controlled; 
• probes, which check for some conditions to occur in the target system and report those 

occurrences 
• events/notifications that represent the conditions reported by the probes; single events in 

themselves may or may not carry enough relevant information to enable the exertion of control 
directives; meaningful notifications might emerge only from the occurrence of certain partially 
ordered sets - posets - of events, composed by means of appropriate posets recognition 
mechanism, such as those in [54] [55]. For the sake of brevity, however, when in the remainder we 
use the generic term “event”, we indicate some notification (possibly composed out of a poset) 
that already holds meaning for the control of the target system. 

• active components that actually provide some form of control onto the original system, directly or 
via external programs, tools, or components. 

An informal view of how the elements above interrelate is provided in Figure 1 (see Appendix A). 
Probes and active components must be deployed in such a way to conveniently superimpose a complete 
control infrastructure over the architecture of the target system. This implies that the architectural 
distribution of the WFMS carrying out the control WF is influenced by the architecture of the target 
system, and in general the architectural styles of the two must somehow match, or even strictly correspond. 
Purely reactive WF techniques can be effectively used in the control WF context to integrate the 
components of the original system that must be controlled, the probes and the active components in a 
relatively tightly coupled fashion. Both the data and control flows originate in the form of events from the 
probing components and are processed by the active components, which constitute the actual enactment 
engines for the control WF: whenever some event recognizable by any of the active components is 
reported, a reaction is fired, which produces some consequences on the target system, such as modifications 
of its structure or behavior. Such a reaction can have effects that are distributed over a multiplicity of 
components of the target system. The WF specification in such a case is very fragmented, and consists 
simply of the description of the set of monitored conditions and the definition of corresponding reactions. 
From the conceptual point of view, the specification of a purely reactive WF of this kind - independently 
from the actual WF description formalism supported by the WFMS enacting it- can be seen as a set of 
Event-Action rules, or some variation thereof. In fact, the Event-Action paradigm is based on rules whose 
left-hand side (the Event) is a declarative description of a pattern that defines a situation of interest, while 
the right-hand side (the Action) is an imperative program to be performed when that situation occurs. 
Actions can have side effects with respect to the WF, that is, cause the emission of other events. This 
matches perfectly well the purely reactive behavior described above. 
The Event-Action paradigm can be augmented in various ways: for instance, the basic paradigm is 
practically stateless, but it is possible to introduce some notion of state in the reactive system, and move 
towards an Event-Condition-Action (ECA) [77] [78] rules paradigm. Conditions are predicates over the 
state of the system – as well as the content of the received event - which must be somehow available and 
known to components that receive events and execute actions: only if the condition attached to a matching 
rule is verified, the corresponding action gets fired. Another enhancement is to add Alternative Actions, 



moving from the ECA to the ECAA rules paradigm, which allows defining actions that are fired in case the 
condition of a matching rule is NOT satisfied. 
For a purely reactive WF that embraces the Event-Action paradigm, it may be difficult to lay out a priori a 
process model. However, the kind of coordination required for controlling a complex distributed system 
can in general be achieved only through orderly sequences of concatenated reactive steps. Therefore, the 
WF specification may be constructed in a bottom-up fashion, as reaction patterns and chains that make up 
WF fragments, possibly carried out by multiple dispersed active components. Or the overall process is even 
recognized and derived only a posteriori, by analyzing activity logs of the control agents (like in the 
approach of Balboa [110]). In fact, since the set of conditions that enable the firing of reactions is limited, 
also the kinds of control loops provided by those reactions into the target system are bound to be similar 
over time, resulting therefore in a highly repeatable - although rather implicit – process, which can be 
analyzed and extracted from practice, perhaps to achieve incremental process improvement, via tuning of 
the various rules. 
The specifications of the control WF, be it in the form of Event-Action rules or in some appropriate other 
formalism that captures its essentially reactive nature, may be distributed in any way among the active 
control components, which are sensitive to notifications by the probes and are the computerized WF agents. 
Each WF agent may own any subset of the overall set, i.e. any portion of the complete WF specification. 
In case the control system needs to keep track of some form of state in order to exert control over the target 
system (i.e. the chosen formalism is equivalent to ECA or even ECAA rules), such WF state must be made 
available to all the WF agents, via either full duplication at all the agent locations, or full distribution of the 
state information over the network, in a way that guarantees its complete accessibility as needs be. 
Notice that this distributed coordination problem is not in general particularly involved with the 
manipulation of artifacts. Artifacts are not a major concern of the WF and the extent to which artifacts take 
part in the control process varies substantially, depending on the nature of the target system, and the kind 
and means of control employed by the controlling system. Resources are much more crucial than artifacts 
in this kind of WF: in fact, the resources for the WF are in the first place the components of the target 
system, plus any kind of external tool or SW component that is used by the WF to implement any necessary 
control procedure onto the target system. Normally, impromptu resources are not crucial, since the process 
is not particularly open-ended, nor varied in its activities, and (as for information impromptu resources) the 
production or manipulation of large amounts of information is not the primary goal of the WF, although it 
might well be that of the controlled system. In a way, however, the complex notifications composed from 
raw probe events may be seen as information impromptu resources. 

3.1.1 Relevant distribution dimensions 
The relevant entities that are to be distributed in the reactive control WF are the following: 
• WF data 

• Design data 
• WF specification 

• Declarations of events of interest and associated reactions can be unified and colocated: a 
number of rule1 repositories (rule hosts) can be dispersed over the network and pointers 
(e.g. URLs) to the various rules are provided to WF agents in charge of them. 

• Definitions of the imperative programs implementing the WF-guided reactions can be 
placed remotely with respect to the rules. They can be hosted on hosts different from rule 
hosts, as mobile code that can be downloaded and plugged into the control agents 
whenever a rule is enacted. Pointers from the rule declaration on a rule host to the 
corresponding coding of the action must be provided. 

                                                           
1 For lack of a better concise term, we call them rules in the remainder of this Section; the reader should 
however be warned that the term rule does not imply here any exclusive endorsement of the Event-Action 
rules paradigm or some of its variations as the way to express the reactive distributed control WF. 



• Artifact, resource and role types: the type system can be stored in one or more type 
repositories which can be accessed by the WF agents whenever feasible. 

• Run-time data 
• WF state 

• task state: an enacted task corresponds to a reaction whose imperative program is being 
executed; therefore, the state of a task is expressed as the information about the 
corresponding rule and is owned and maintained by the agent in charge of that rule. 

• process state: the state of the overall WF is in this case more than simply the composition 
of the states of all the tasks in execution. It also includes the set of events circulating at 
any given moment. It is possible to maintain the events persistent via an event repository, 
which intercept and log all events for the sake of state inspection, history and recovery. 
Also event repositories can be distributed. Moreover, – in case a global state for the 
system is maintained and can be predicated upon by rules (as in the ECA paradigm)-, a 
suitable representation of state variables must be stored in one or more state servers and 
queries by agents evaluating rules’ conditions must be directed to them in the most 
convenient way, with mechanisms that maximize availability and response performance. 

• Artifacts: artifacts of interest to the control WF are likely to be a by-product of the data (or 
control) flow of the target system, which need to be consulted by the WF for some reason. 
Therefore, they tend to be as distributed at least as much the target system.  

• Resources: they also tend to be as distributed at least as much the target system. Its 
components can themselves be seen as resources for the WF, as are configuration programs, 
SW utilities and other facilities whose main purpose is operating on the target system in 
support to the WF agents exerting control upon it. In some cases, resources may also be 
downloaded or operated from other hosts, which are remote to the WF architecture as well as 
to the target system architecture. 

• WF architecture 
• Static architecture: the decentralized WFMS must provide a control infrastructure (i.e. probes plus 

active controllers) overlaying the architecture of the target system. Hence, the distribution WFMS 
architecture is strongly correlated to that of the controlled components of the target system. 

• Dynamic architecture: in general, the dynamic modification of the WF architecture is required 
only as a consequence of a variation in the architecture of the target system. For example, in case 
target system’s components are instantiated or shut down on the fly, or due to component 
mobility, or in case the network hosting the target components changes its own topology, as in the 
case of spontaneous networking. 

• WF enactment 
• Reactive enactment: as remarked earlier, the control WF is purely reactive, on the basis of event 

recognition. One issue here is how to assign responsibility for the various WF fragments to the 
control WF agents, i.e., which agents must be sensitive and respond to what events. A spectrum of 
options is available, from strict separation of concerns among the various agents (which implies 
specialization of each agent towards certain tasks) to complete replication of the set of interesting 
events among all the agents (which implies complete non-determinism in the matching and 
“consuming” of events and in the consequential execution of rules). Whatever is the choice, notice 
that, in order to respond to the stimuli provided by the target system via the probes, agents must be 
aware of assigned rules and in particular of their event profiles in advance with respect to their 
enactment. The only part of the WF specification that can be actually pulled on the fly are the 
reaction pograms, e.g. in the form of plug-in code to be executed by the WF agents. 

• Proactive enactment: it is mostly irrelevant, given the pure reactive nature of the control WF 
Figure 2 shows in a rather informal fashion a hypothetical scenario for the distribution of the control WF 
and its corresponding WFMS, according to the various distribution issues discussed above. The approach 
taken in drawing the scenario is that of maximum distribution along all of the relevant dimensions. Such an 
approach is intended purely as a device for theoretical discussion about the decentralization of this kind of 
coordination process, and does not hint to or endorse any particular architectural decision. In fact, less 



decentralized approaches – which are subsumed by the presented scenario - are also possible and may be 
even more feasible and efficient, depending on many factors, such as application-dependent considerations. 
A synopsis related to the system control WF is provided in Table 2 (see Appendix A). 

3.2 Coordination Problem 2: dynamic coordination of 
distributed cooperative computations 

Many state-of-the-art distributed systems are organized and operate as a group (or community) of semi-
autonomous distributed objects or components, generically referred to as SW agents. Each agent has its 
own properties and makes available to the group a set of computational capabilities, which may be very 
different from those of other agents. Agent communities carry out distributed computations by establishing 
at run time cooperation between the various agents in order to achieve some overall result or goal. Among 
the typical goals of agent-based systems, there are the retrieval or the production of some complex piece of 
information, decision support, etc. Goals of the agent community and ways to reach them can be expressed 
in many ways. Generally speaking, the cooperation among the agents towards their goal is carried out via a 
series of agent-to-agent interactions, with agents requiring services to each other on the basis of their 
current knowledge about the other agents’ capabilities, their state and the state of the distributed 
computation that must be carried out. 
Strategies (or plans) to reach the final goal are – depending on the underlying coordination model - either 
superimposed a priori over the agent community by some external “master coordinator”, or decided among 
the agents, according to some self-organizing scheme of the community [81]. Inter-agent cooperation 
schemes are often described declaratively, or through some form of script. WF is another possibility, since 
it provides several means to organize and control the cooperative work of a group of largely independent 
entities: it expresses plans for reaching the goal as an explicit multi-participant process, indicates in a 
proactive way what work stages must be executed at a given moment, and handles in a reactive way events 
and situations (including unexpected ones) that occur in the course of the cooperative work. The 
specification of an agent coordination WF often takes the form of a plan towards a goal, which can be 
decomposed into sub-plans, i.e. WF fragments, implementing sub-goals (such as in JIL [18]). 
A WF for the coordination of an agent-based distributed system has some peculiarities. It is completely 
automated– humans have usually no role at all in it, except possibly as the owners and initiators of the 
process. The SW agents participating in the community can be seen both as WF agents and as pools of 
resources (i.e. the capabilities and services they offer, as well as the information describing them). 
Moreover, the overall scope of the goals and the distributed computations implemented by agent 
communities are normally clearly defined from the start and limited: for instance the production of some 
information upon request. Such a WF does not need to be very open-ended, but has typically a limited 
(although not necessarily short) duration while it converges toward its final goal. On the other hand, it may 
be enacted repeatedly a large number of times, since the same computation can be requested over and over 
again to the distributed system made up by the agent community (e.g. a collaborative information search). 
The richness of the WF specification essentially depends on the degree of expressiveness that the agent 
components can handle as their coordination language. Substantial amounts of complexity for the WF can 
be deferred from the design time to the enactment time, by relying upon autonomy and discretionality of 
the agents for the implementation of the coordination process. In that case, the WF specification may be 
simple and structurally straightforward, and it may describe the coordination process only at a high level of 
abstraction. Consequentially, the dynamic aspect of the WF (i.e. the way it’s enacted from one process 
instance to another) may be extremely variable, in accordance with the high degree of discretionality of the 
agent community and since there may be a large number of cooperation patterns leading to the same high-
level goals, i.e. instantiating the corresponding WF. 
Noticeably, there is a tension between the level of coordination guidance provided via WF to an agent 
community and the level of autonomy of the agents. A WFMS orchestrating a community of agents would 
lean towards some form of externally imposed coordination, but must reconciliate this tendency with the 
self-organizing capabilities of the community. One extreme is absolute guidance by the WF, with 
proactivity on the part of the WFMS taking over and leaving very little or no autonomy at all to the agents. 
This is particularly evident in the case of a strongly centralized WFMS, in which the WF engine (the 
srever) takes the roles of the external master coordinator, and sees the various SW agents merely as 



executors of its directives. Notice that, as the dispersion of the enactment responsibility among multiple 
WF agents increases, so does the blurring of distinctions between clients and servers, making absolute 
guidance difficult to achieve and possibly also inconvenient. 
The opposite extreme is full autonomy: the WF only describes the overall process – possibly in very general 
terms - and the WFMS limits itself to serve as the process specification repository and as reactive run time 
support to the agents, which enact the WF relying uniquely on their self-organizing policies. 
As an example of the many possible trade-offs between those extremes, one could imagine to organize and 
express the overall WF as a hierarchy of sub-processes: each of the agents may be proactively put in charge 
of some sub-process by some WFMS-run coordinator, but autonomously pursues any task taking part in 
that sub-process, and therefore the corresponding WF sub-goal. Interrelations (such as dependencies or 
precedence) between sub-processes must be resolved by the WFMS coordinator. 
However, the one above is merely an example, and how to reach the most effective trade-off between 
autonomy and guidance (that is, in terms of an agent coordination WF, between reactivity and proactivity) 
depends on the characteristics of the cooperation policies built in the agent framework, as well as on the 
WF paradigm and the WFMS of choice, and it remains one of the major questions to be solved in order to 
adequately exploit WF techniques to coordinate a group of distributed agents. 
The notion of an accessible distributed state is paramount in any agent-based system. Such a distributed 
state is founded on the composition of the states of all the SW agents in the community, but must also 
include information about the advancement of the various parts of the distributed computation carried out 
by the agents. As for an agent coordination WF, both of those aspects take part in its own concept of state 
and both must be globally accessible to the WF components. Therefore, they must be published and 
distributed by agents that own that kind of information. 
All data used and produced by an agent-based system constitutes the artifacts for an agent coordination 
WF. Notice that such artifacts may be not only documents in the traditional sense, but also streams of data 
exchanged and processed on the fly by the cooperating agents. Such streams are in fact very volatile 
artifacts and can also be considered as resources (precisely, impromptu information resources) for the WF. 
Other kinds of impromptu resources for the WF may be identified and fetched by some specific SW agents, 
which have a data retrieval role in the agent-based system, rather than a data processing role, and might not 
be considered in the WF as full WF agents. 

3.2.1 Relevant distribution dimensions 
The relevant entities that are to be distributed in the agent coordination WF are the following: 
• WF data 

• Design data 
• WF specification: declarations of WF tasks and the corresponding actions are most likely co-

located, since they express goals and spell out plans to reach those goals. The way the 
information about the WF specification is distributed greatly varies depending on the 
coordination model embraced by the agent community and implemented by the WFMS. 
According to some models, (sub-)plans are exclusively owned by and known to appointed 
coordinating agents, while according to others the information is shared by all agents via 
either access to a plan repository or duplication of the information at the agent sites. However, 
the most flexible and dynamic agent coordination schemes account for the composition of the 
global plan in a bottom-up fashion, and require that different agents own and know certain 
sub-plans and exchange that information with the others as needed. A way to make this 
possible is to distribute the corresponding task decomposition hierarchy of the agent 
coordination WF on a number of hosts, keeping track of the composition relationships via 
pointers, and to provide those pointers to the various agents to enable them to acquire 
knowledge about the specification fragments. Notice that there is an issue here, related to the 
assignment of certain sub-plans and the corresponding sub-goals to specific agents, which 
actually creates a dependency with respect to the proactive dimension of WF enactment 
distribution, since the agent owning the specification information for a WF fragment is also 
those who are put in charge of its enactment. 



• Artifact, resource and role types: the type system can be stored in one or more type 
repositories which can be accessed by the WF agents whenever feasible (e.g. at initialization 
time). 

• Run-time data 
• WF state 

• Task state: a task is a sub-plan in execution by some agent and its state is owned and 
maintained by that agent. 

• Process state: the state of the overall process is represented by the composition of the 
execution states of all the various sub-plans, including the information on the 
achievement of the various sub-goals contributing to the final goal of the process. It is 
therefore owned collectively by and distributed together with the agents in charge of the 
various WF fragments. In case some global image of the process state is needed, the 
agents must be able to publish/communicate the state information they own to that global 
state server. One way to organize such a state server in a decentralized way can be per 
example with pointers from and to the state server to the fragments of state maintained by 
each single agent. 

• Artifacts: those that are taken as input of some WF task can be in principle distributed 
anywhere, but tend to be distributed as much as the agent (i.e. the WFMS) architecture: if the 
agent system supports mobility it is possible that agents are moved where those artifacts are 
located, otherwise the artifacts might be re-located onto the hosts where agents run. Also 
those artifacts that are produced as by-products of the execution of some WF task by an agent 
tend to be as distributed in the same way as the WFMS architecture. 

• Resources: as for artifacts, although they can be in principle distributed anywhere, they tend 
to be co-located with and distributed in the same way as the WFMS architecture. Notice that 
impromptu resource may have a significant role in various ways in this WF. For example, an 
agent may need to identify on the fly some other agent whose capabilities are needed to carry 
out some task; this is an example of the acquisition of an impromptu resource. Also, the 
dynamic data flow streams of information exchanged, manipulated and transformed by the 
agent community qualify as information impromptu resources. 

• WF architecture 
• Static architecture: The architecture of the WFMS coincides with that of the agent community, 

since the SW agents are at the same time WF enactment engines. In case some components of the 
WF architecture cannot be reified as a participant in the SW agent community (e.g. a state server, 
see above), those components can be in principle deployed everywhere on the network, although 
the topology of agent community is likely to somewhat suggest their optimal locations., for 
instance because of proximity to WF agents that need them. 

• Dynamic architecture: The WFMS architecture is as dynamic as the SW agents are, again because 
the identification of SW agents as WF agents of the distributed WFMS. 

• WF enactment:  
• Reactive enactment: task pulling can happen as the result of negotiating cooperation among some 

SW agents, e.g. a WF agent accepts to carry out a task as a response by a request by another agent.  
• Proactive enactment: proactivity by delegation and automation can be both supported. Delegation 

again happens as the result of some negotiation. In fact, since in any context - apart from the 
absolute guidance scenario outlined above - the SW agents that must be coordinated are also the 
WF agents enacting (fragments of) the coordination process, what looks like proactive behavior 
from the point of view of the delegating WF agent, may appear reactive on the part of the other 
agent. Automation can occur either internally to a WF agent pursuing a sub-plan, or across agents, 
depending on their task dependencies and the coordination model adopted by the community. 

Figure 3 shows a hypothetical scenario for the distribution of the agent coordination WF and its 
corresponding WFMS, according to the various distribution issues discussed above. The approach taken in 
drawing the scenario is once again that of maximum distribution along all of the relevant dimensions, for 
the sake of theoretical discussion about all the distribution characteristics of this WF. 



A synopsis related to the agent coordination WF is provided in Table 3 (see Appendix A). 

4 The continual validation scenario 
The continual validation scenario provides us with a unified context for experimenting with different 
distributed WF conceptual models and techniques that address the types of distributed coordination we are 
interested to investigate. 
Continual validation is about run time monitoring and controlling of heterogeneous components taking part 
in some complex distributed system, in order to ensure that the system keeps operating within its declared 
valid functional as well as extra-functional parameters, via some appropriate distributed infrastructure (also 
called meta-architecture). The meta-architecture is in charge to detect the occurrence of certain conditions 
within the target system and to respond by modifying the run-time configuration and behavior of the target 
system’s components, effectively creating either a feedback loop (to recover the system after it has reached 
a malfunctioning or otherwise undesired state), or a feed forward loop (to take preventive measures that 
preserve the system from degenerating into a malfunctioning or undesired state) into the target system. 
Both the monitoring activities carried out within the meta-architecture and the controlling (feedback and 
feed forward) activities carried out by the meta-architecture upon the target system have – for any non 
trivial case – a considerable level of complexity, and can be seen as distinct but interrelated processes. 
More specifically, the coordination of the monitoring entities that are part of the meta-architecture takes the 
form of a process focused on the production of notifications and reports upon the state of the target system. 
Such production of information involves multiple monitoring entities, each employing and handling a 
peculiar set of capabilities and data. Moreover, while the overall scheme for the production of the 
monitoring information may be fairly well understood and straightforward, the run time interactions 
between the monitoring entities must largely be decided on the fly. All of these considerations lead to 
consider the monitoring functionality of the meta-architecture as a case of orchestration of a community of 
largely autonomous but cooperating SW agents that produce streams of information, and opens the way to 
employ a WF with the corresponding characteristics - as discussed in Section 3.2. 
On the other hand the feedback and feed forward control loops that must be enforced by the meta-
architecture over the target system clearly provide an example of the coordination reference problem 
dealing with the external run time control of a distributed system, and can be addressed with a WF 
approach that has the corresponding characteristics, as discussed in Section 3.1. 
The interplay between those WFs defines a more complex, federated WF, which guides the overall 
behavior of the meta-architecture as a whole, which therefore can itself be seen in many senses as a WF-
coordinated distributed system. 
In principle, any kind of distributed system can be the target of continual validation by an infrastructure 
that is able to enact the monitoring and control processes. However, a special and particularly intriguing 
case of continual validation is that in which the target distributed system itself enacts yet another 
independent process, i.e. is or incorporates a distributed WFMS running some decentralized WF. While the 
value of continual validation is not limited to this kind of cases and is in fact largely independent from the 
nature of the application being controlled, this special case provides especially interesting insights, since it 
supplies a unifying context for a very wide range of distributed WFs, in which a traditional usage of WF at 
the application level (that is, in the target system), which may contemplate the presence of human WF 
actors, coexists with the WF-based coordination of computerized distributed systems needed at the 
continual validation infrastructure level.  
Notice that the choice of a WF-aware system as the subject of continual validation may also shed some 
light on considerations about the reflectivity of the usage of WF to coordinate distributed systems. Since a 
distributed WFMS with its components is in principle a valid subject for distributed systems coordination, 
it is arguable that the effective coordination of a generic distributed SW system via WF and along the 
various WF distribution dimensions is analogous to the coordination of the WF enactment architecture 
itself, and that must be possible to address the former and the latter in a unified way. 



4.1 Case Study: AI2TV 
We propose hereby a potential case study that enables the investigation of the continual validation scenario 
and all the WF facets involved in it, since WF is in fact present both at the application and at the 
infrastructure level. Furthermore, the case study represents a project that has relevant research connotations 
per se in a number of areas, among which there are Internet-scale distributed systems and WF. 
AI2TV stands for “Adaptive Internet Interactive Team Video”. The project aims at creating a collaborative 
virtual environment for group work, which includes an infrastructure for the provision of multimedia 
content relevant to the work carried out by the group, such as audio/video recordings of group discussions 
and decisions, informational and educational events, etc. Multimedia provision is mediated in AI2TV by 
the knowledge about the work context of the team and the individual members, which is derived in turn by 
the planned and enacted WF they follow. Multimedia is hence treated as both a new type of artifact and an 
additional resource (albeit an “expensive” one that must be carefully organized and managed, especially in 
an environment that demands for rapid and random access to it) for the WF of the distributed team. 
The group members can be widely dispersed over the Internet, and may enjoy any combination of 
connectivity, ranging from 28.8k modem, to DSL, to cable to T1 or T3 lines. The multimedia content must 
hence be delivered over heterogeneous Internet links to heterogeneous platforms, taking in account widely 
varying bandwidths and QoS, in an efficient and adaptive manner. For instance, one of the requirements for 
the provision system is the support for synchronous watching of a video clip by all members of a team 
across their different equipment and networking capabilities, including support for video operations like 
fast forward, rewind, seek, etc. 
To achieve its goals, the AI2TV provision infrastructure must: 

1. First of all, derive a semantic structure from the multimedia information, which can be associated 
to the structure and semantics of (fragments) of the team’s workflow. This way, multimedia 
provision may be adapted to the planned as well as the enacted work context of the team, by 
prioritizing the transfer of those segments that are deemed relevant. 

2. Exploit any available heuristic perception or knowledge of present and anticipated user activity, in 
order to resolve connectivity and capability idiosyncrasies with a combination of content 
prefetching and caching, thus responding efficiently - even preventively - to users’ requests. 

3. Integrate a number of particular server cluster configurations, protocols, proxies, local client 
caches, and video management schemes, which can accommodate varying latencies, throughputs, 
client processing power, and server work loads. These schemes will optimize prefetching and 
refinement of multimedia, on the basis of semantic cues present in the streams and related to 
anticipated as well as past work patterns. They also corresponds to the components subjected to 
the continual validation. 

In order to proceed with the case study, we will have to build an experimental continual validation 
infrastructure and also a proof of concept multimedia provision system, along the lines sketched above. The 
latter will also allow us to better explore some issues which are relevant to the primary goal of this 
proposal, such as point 2 above, which provides some options for dealing with WF data distribution aspects 
(see also Section 5.3). 

4.1.1 Application level WF in AI2TV 
The distributed WF aspect in AI2TV is essential, since on one side it enables and enforces dispersed 
teamwork, while on the other side represents the source of knowledge that is fed into the multimedia 
infrastructure to enable adaptivity and efficiency of the content provision. 
The typology of this WF is in general that of a classic human-oriented process, in which WF agents 
represent persons and the goal of the process is to facilitate and guide the collaboration among those 
persons. The process is explicit, well defined and fairly open-ended. The most relevant WF distribution 
dimensions concern the enactment architecture, the state of the process – which must be fully available 
to the multimedia provision system – and run time access to artifact/resources (including multimedia). 
Many other characteristics of the WF strictly depend on the application domain of the teamwork: in 
our case study we plan to address educational processes involving SW development, such as the case 



of geographically dispersed student teams carrying out course project assignments, but other 
collaborative contexts involving multimedia streams can provide equally valid application domains. 
In fact, the presence of streaming multimedia is a source of peculiarities for the WF. First of all, 
multimedia streams and fragments thereof provide an excellent example of information impromptu 
resources, since relevant fragments must be dynamically determined and extracted from the raw data 
mass. Moreover, they add a temporal concern, which is mostly overlooked in traditional WF, which 
regards the acquisition and the utilization of artifacts and resources as instantaneous with respect to 
task invocation. That is in all cases an approximation, whose validity limits do not encompass 
multimedia types of data in two respects: the non-negligible access latency in a truly distributed 
environment and the lower-bounded time necessary to operate a task that requires the assimilation by 
users of some information contained within a multimedia stream. While the former aspect can be 
handled as a specific facet of the more general WF data distribution problem, the latter is inherent in 
the nature of the multimedia data employed by the WF, and analogous considerations may arise for 
other non-instantaneous impromptu information resources, e.g., successively refined Web searches. An 
interesting open question is whether this outlines a temporal distribution dimension of WF. If so, 
should enactment engines account for non-instantaneous access and utilization of certain artifacts and 
resources, and how? And how should this be described in the process model? 
Table 4 in Appendix A provides a synopsis for an application WF in the context of AI2TV. 

4.1.2 Continual validation and AI2TV 
In AI2TV, a continual validation meta-architecture (and the associated infrastructure level WFs) may 
be used to guide the behavior of the provision infrastructure. Specifically, it can enable the dynamic 
selection of the video management schemes and the transmission modalities (ranging from streaming 
of full content to prefetching/caching of selected segments), on the basis of conditions detected by 
probes placed onto the various components of the provision infrastructure, as well as the client 
environments and the networking interfaces on both sides. 
The meta-architecture gauges capabilities, performance levels, problems and failures, synchronization 
states and so on, and reports this wealth of monitoring information to a set of controllers that 
collaborate to emit directives for the automatic adaptation of provision parameters. Figure 4, represents 
informally the interrelationships between AI2TV and the continual validation meta-architecture. 

5 Mechanisms for enhanced distribution of WF 
In this Section we describe a set of mechanisms that we believe can effectively enhance the way a 
distributed WFMS enacts WF, and which consider and help reconciling the various distribution dimensions 
discussed earlier on. Those mechanisms individually and collectively approximate the optimization of 
distributed WF enactment, particularly in terms of enhanced availability of data and resources to the WF 
agents. We are familiar with and consider exploiting those mechanisms for constructing experimental 
systems that investigate the coordination reference problems in the distributed WF perspective. Other 
candidate enabling technologies with different approaches but similar potential are surveyed in Section 6.3. 

5.1 The dataweb approach to the distribution of semantically 
rich information 

Datawebs [79] [80] are an effective way for organizing and structuring information according to its 
semantic model in a coherent and unified way, without imposing any restriction upon the location of any 
piece of data. Datawebs superimpose networks of unobtrusive hypertextual metadata upon a (potentially 
hugely) dispersed pool of data, enabling straightforward categorization, structural browsing and retrieval. 
The term dataweb defines an information base and the corresponding semantic model. The information 
content of a dataweb is represented as a set of URL or URI-accessible resources, which can take the form 
of HTML pages, XML documents, images, binaries, etc. The semantic model explicates the intended 
structure of the information base: in the original implementation, the semantic model of choice is an E/R 



schema [113], but other semantic models2 can be employed and implemented upon the same principles. 
The semantic model is expressed with various layers of metadata upon the information base: metadata is 
represented as a set of Web pages separate from the information base. WWW hyperlinks connect 
opportunely the various layers of metadata with each other and to the information base. One layer provides 
descriptors for the resources taking part in the information base with hyperlinks pointing to their URL or 
URI; it also provides similar descriptors for any relationships, correspondences, dependencies, etc. holding 
among them according to the semantic model: the relationship descriptors also include hyperlinks to the 
descriptors of the correlated resources. The following layer provides directories of hyperlink pointers to the 
above-mentioned descriptors grouped by type (i.e. by each Entity or Relationship in the case of an E/R 
schema). The top layer describes the topology of the schema, with pointers to all the directories. 
In Figure 6, a fragment of a dataweb taken from a SW engineering example is shown, to highlight the 
semantic layers superimposed on the information base and their structural interrelationships. 
A dataweb constitutes a variation of the open hypermedia system (see Section 6.3 for more details) idea, 
with the peculiarity that data, metadata, link bases, types and semantic schemas are all stored referenced 
and accessible directly on the Web. Datawebs promote a structure-driven access and utilization of their 
content, but - in contrast to most OHSs - are very lightweight and completely Web-native. Furthermore, the 
level of scalability and decentralization of information supported is the same as that of the WWW. 
We maintain that all the data distribution dimensions of WF can be gracefully handled by and expressed 
with a set of properly designed datawebs, provided compliance with the global networking scenario; that is, 
the dataweb concept must be extended, so that it is made available to WF components on network nodes 
that are not Web-based, through an adequate set of interfaces and bridges. 
The WF specification dataweb can express both WF declaration and definition: it can organize and provide 
a unified view of all the distributed WF declaration fragments, correlating them with respect to their mutual 
dependencies, and also explicating any such relationships. Moreover, WF actions can be referenced using 
the same dataweb, with relationships connecting each WF fragment declaration to the corresponding action. 
At any moment during the execution of the WF, various instances of the WF tasks are enacted and are in 
some specific state. This kind of WF information can be heavily decentralized, since it is owned by the 
distributed WF agents carrying out the tasks, i.e. those who have taken the responsibility to uptake a task 
and are executing the corresponding action. For on-line process monitoring and auditing purposes, 
however, it is convenient that information about enacted WF instances and their state is published by WF 
agents in an appropriate and structured form. Once again a (rather dynamic) WF state dataweb can be used 
to structure and reference all the dispersed enactment-time data. This dataweb can thus provide a unified 
view of the state of the overall process, and can also be easily linked to the WF specification dataweb, 
according to a type/instance semantic schema. 
Distributed artifacts and resources needed by the WF, together with their types can be made available 
through a WF document dataweb. It can provide a unified representation of the types and the relationships 
holding among types, and can link such a type system to the actual instances of artifact and resources, 
according to a type/instance semantic schema. Thus, the WF document dataweb can effectively take the 
place of the artifact repository in a classic centralized WFMS. 
As far as (information) impromptu resources are concerned, many times they are not part of the artifact 
repository from the start, and must be incorporated in it whenever they become available. To achieve this, it 
is possible to classify the (information) impromptu resources either within the same type system as the 
other artifact and resources (hence within the same dataweb), or keep them in a separated impromptu 
information dataweb, which might be organized according to a different semantic model (e.g. according to 
the task(s) they take part in, rather than the artifact/resource types). In the latter case, the two different 
datawebs can be overlapping, i.e. reference some common information in different ways, thus providing 
two different views on these categories of WF data. 
We foresee that the dataweb approach can be useful to attack data-related WF distribution dimensions (see 
Section 2.2). It is noticeable that the overall amount of WF data needed at both design and run time can be 
all expressed and orderly distributed with a set of interrelated or overlapping datawebs: so far we have 

                                                           
2 For instance, a dataweb devoted to describing the artifacts of a software development process could 
employ the semantic model of UML class diagrams [85]. 



mentioned a WF specification dataweb, a WF state dataweb, a WF document dataweb, an impromptu 
information dataweb. Each of them will provide a self-consistent and complete view about one of the data-
related distribution dimensions without perturbing any of the others. Also, other views can be added as 
needed, by referencing and interconnecting in different ways (i.e. according to different schemas) the 
metadata descriptors in one or more of the mentioned datawebs, thus obtaining additional datawebs. In this 
context, XML and related formats and mechanisms can be used extensively for expressing and 
manipulating the metadata in forms that are amenable for both human and computerized agents. 

5.2 Task forecasting 
Task forecasting is the ability to predict the (likely) future course of an enacted WF, on the basis of some 
heuristics. It can have different degrees of sophistication. Many traditional WFMS are able to indicate what 
is the most likely (i.e. the default) WF course, at least at the time of initial enactment. Another simple 
forecasting technique is to “look forward” one step from the current enactment stage and pick either the 
most likely or all steps that can legally follow. 
A more sophisticated kind of forecasting would be able to compute the most likely path from any given 
enactment stage, on the basis of knowledge about the current WF state, or even to rate the likeliness of any 
alternative courses. The ability to carry out this kind of forecasting strongly depends on the kind of WF 
formalism employed and on the level of detail and comprehensiveness of the WF state information. 
Moreover, in the case of hierarchically defined WF, forecasting may either be limited to one hierarchical 
level only (i.e. within the same subplan), or traverse part or all of the hierarchy of the WF. 
Task forecasting can also greatly benefit from availability and analysis of the WF history. Effective 
predictions can be made not only and not necessarily by reasoning on the layout and the possible state 
transitions of the WF, but simply looking back at what had happened during past WF instantiations [110]. 
Of course, history-based task forecasting becomes increasingly effective only with time and after a 
sufficient number of repetitions of the WF, and its reliability is proportional to the repeatability of the 
process. 
Independently from the techniques employed, task forecasting capabilities may enable the WF agents and 
infrastructure to prepare for future work. More specifically, they can be precious in guiding the adaptation 
of the distribution of the WF data or architecture [111] according to the forecasted work needs. 
In our context, task forecasting capabilities must be available to the various decentralized WF agents. 
Therefore, even the forecasting “oracle” must be decentralized or at least replicated.  
The scope of the predictions may vary depending on the type of WF; for example, in a hierarchical WF task 
forecasting for an agent may take into consideration possible paths of WF execution within the subplan 
including the WF fragment currently enacted by the agent, 
We plan to associate task forecasting capabilities to smart caching (see Section 5.3), in order to enhance the 
availability of WF information to WF agents; we also mean to associate them to mobile agent technologies, 
in order to be able to deploy WF agents and assign them work in a dynamic and optimized way. 

5.3 Smart caching mechanisms for distributed WF 
Caching techniques are used to reduce average access latency: we focus here on documents shared among 
dispersed users or teams thereof, in the context of some decentralized collaborative process, in which 
network latency is likely to be an issue. Zero latency refers to the situation in which document access 
produces a cache hit on a (relatively) local machine, that is, there is negligible latency due to the network. 
This is the typical assumption made by traditional WFMS about artifact and resource access. Positive 
latency is the situation in which non-negligible latency delays the utilization of a requested. Finally, 
negative latency refers to automatic presentation (pushing) of a document to a user based on an accurate 
prediction that the user will need that document. It is important that the caching system is “smart”, i.e. able 
to express and comply with very precise retrieval and push criteria, in order to avoid information noise, 
which might overwhelm users. 
The proposed Workgroup Cache system [105] for smart caching can leverage, in principle, any knowledge 
available about the semantic content and pragmatic usage of documents as a basis for prediction of future 
accesses. The Workgroup Cache focuses the potential semantics and pragmatics with respect to a 



"workgroup", that is, a set of users working on the same or related tasks. The criteria to instruct the 
Workgroup Cache are very flexible and can be derived from the workflow routing among workgroup 
members, as well as document access patterns of the workgroup members, or drawn from XML metadata 
associated with accessed documents. Criteria might be defined via simple filter rules, like Web search 
queries, as well as via a very elaborate event/data pattern notation. 

5.3.1 Smart, team-oriented caching 
A smart cache, such as the Workgroup Cache, is a useful mechanism for any widely distributed CSCW, in 
a number of ways: 
• Negative-latency caching is a way to push to a work group or an individual (potentially) relevant 

information for their activities. 
• Zero-latency caching is a way to benefit from past experience and data collected by the work group or 

individual. 
When the criteria for smart caching are derived from the specification and state of an instantiated 
distributed WF - the above mentioned benefits can be extended to WF agents – either human or 
computerized - and can represent a solution to the problem of efficient dislocation of WF data/resources 
with respect to the WF agents. Specifically, negative-latency caching can be particularly effective for this 
purpose, when coupled with task forecasting capabilities. 
Also the issue of the impromptu resources that must be collected for carrying out a task can be taken care 
of by appropriate negative-latency caching mechanisms. Such impromptu resources can be either data or 
the computations that must be run to produce some necessary WF data. In this respect, smart caching 
capabilities can be of further use if associated not only to (groups of) WF agents, but also to given WF 
tasks: the same impromptu resources, in fact, might be re-used for different instantiations of the same WF 
task, no matter what individual/group actually performs it from time to time. It makes therefore sense to 
associate a smart cache also to task definitions. 
The Workgroup Cache can therefore be seen in this context as: 

• a local pool that mirrors remote WF data and impromptu resources, for the benefit of some (group 
of) WF agents; 

• an automatic mechanism to collect and maintain impromptu resources in a way that is transparent 
to the WF and the WFMS; 

• an auxiliary agent that can be used by WF agents to carry out the “sideways” steps necessary to 
secure some impromptu resources that are going to be needed to carry out some task. 

In our context, each WF agent shall be equipped with a smart cache; agents that at some point in the WF 
collaborate towards some ends can put in common their individual smart caches and their contents, and 
create at any moment in the process a common cache for their workgroup. The caching criteria for the 
smart caches are provided by the agent (or agents), which exploits its knowledge of the running WF and 
any available task forecasting capabilities. 

5.3.2 Smart caching and datawebs 
The smart cache must be aware of the organization and semantics of the WF data to be effective. With 
respect to the dataweb context, this means to be able to recognize, access and manipulate the existing WF-
related datawebs, properly taking advantage of the superimposed layers of metadata. In fact, the availability 
of an explicit semantic model for the WF information, as that provided by datawebs, enables the smart 
cache to work in a focused and efficient way, minimizing both information noise AND silence. 
However, the smart caching mechanisms must also be able to fetch and handle generic, unstructured 
information residing on the global network, which may be relevant to the WF (e.g. impromptu information 
resources). A possibility that is worth exploring is organizing of all the cache internal storage in the form of 
yet another “local” dataweb, which can be interconnected with other datawebs of cached information as 
well as with the “main” datawebs that take care of the wealth of original WF information. 
As far as the implementation of the caching mechanism is concerned, it can have any degree of 
sophistication, ranging from a relatively simple and passive proxy, to a mobile information retrieval agent, 



to a community of ancillary intelligent software agents, as far as the functionality and the interaction model 
made available to WF agents remain the same. 

5.3.3 Smart caching: open issues 
A cache contains only a work copy of the original information, while the master copy remaining on the 
original host. Various issues derive from this duplication, such as the resolution of concurrency conflicts 
among various cached copies, the refresh of the work copy and its granularity, etc. In a widely distributed 
and rather dynamic context such as that of decentralized WF enactment, these issues can become seriously 
problematic. Datawebs have built-in update and concurrency policies and mechanisms, which address the 
direct manipulation of the master copy on the remote host by multiple users. Those mechanisms must be 
extended and integrated with the concept and the functionality of the Workgroup Cache. 

5.4 Dynamic deployment of WF agents 
The dynamic dimension of the architectural distribution of WF may be supported in different ways and at 
different levels by a distributed WFMS. Hereby we list - according to an increasing level of dynamism – 
various approaches to the dynamic deployment of WF agents: 

• support to mobility of human agents 
• support to disconnected WF operation by human agents 
• on-the-fly instantiation of static computerized agents 
• support to the “cloning” of static computerized agents on remote hosts 
• support to the migration of mobile computerized agents3 
• support to sudden activation/deactivation of agents as a consequence of spontaneous networking. 

Independently from the level of support to dynamic reconfiguration of the architecture offered by a given 
distributed WFMS, the execution of a decentralized WF would benefit from mechanisms that carry out 
such reconfiguration in a coordinated and timely manner, and furthermore as transparently as possible with 
respect to the ongoing WF enactment and its users. For instance, ideally users should not be forced to 
specify explicitly when and where to instantiate a new remote computerized agent, and for what purposes, 
but should rely on the WFMS timely recognition of situations in which this need exists. 
Once more, task forecasting capabilities can play an important role, since they can also be used to pre-
deploy WF enactment agents onto any network host that is suitable to the execution of a (series of) 
forecasted tasks, in case the current distribution of the WF enactment architecture is not convenient. Such 
an automatic preventive deployment of WF agents (or also re-deployment, in case the architecture of the 
WFMS supports some form of agent mobility) clearly regards computerized agents only. 
An important open issue is that of the interaction between the data pre-fetching capabilities through smart 
caching and the preventive agent deployment capabilities in the same WFMS. In many cases, the pre-
fetching and pre-deployment can be seen as alternative, e.g. either pre-fetch the necessary information to 
the location of an active WF agent, or pre-deploy a WF agent to the location of relevant data for the WF. 
An integrated view of these two capabilities together with the task forecasting capabilities must be 
conceived – perhaps through proper decision-making policies and heuristics - in order to maximize the 
effectiveness of pre-fetching coupled with pre-deployment. 
Another issue regards the interaction between the dynamic relocation of WF computerized agents – with 
their WF enactment engines - and the dispatching of task declarations and definitions to be enacted by 
those agents. It is clearly possible to keep separate those two concerns: in this case, the computerized 
agents are pre-deployed onto the target host to provide the enactment context and the machinery for 
executing some WF tasks remotely, while all the necessary enactment directives are pushed at a distinct 
time and through different means. But it is also possible to pre-deploy the agent and the WF data together, 
thus explicitly binding together in advance the task to be enacted to the agent. In this case, the distinction 
between the distribution of the architecture and the distribution of work to the architecture is blurred. On 
the other hand, it fits especially well the idea that the architecture of a decentralized WFMS should be not 
                                                           
3 Notice that SW mobility itself has various degrees, each with its distinct properties [75]. 



only dynamically reconfigurable, but also the reconfiguration of the architecture should be merely 
consequential with respect to the dynamics and the distribution of the WF enactment. 
Both options can be explored to various degrees with a technological infrastructure for the computerized 
agents that supports mobility, coupled with some form of process awareness, like in the case of Worklets 
[106]. Worklets can aid to express and convey to the decentralized WFMS both directives for the dynamic 
reconfiguration of the enactment architecture, and directives for the distribution of the enactment itself. 
Alternative agent platforms, such as the Aglets [107], could also be profitably used in this context. 

5.5 A conceptual architecture for advanced decentralized WF 
The construction of a WF solution that handles the reference problems in the domain of distributed systems 
coordination and operates over all the distribution dimensions is an ambitious endeavor. A number of 
techniques that can enable (parts of) such a solution have been proposed earlier in this Section. They 
constitute a rather composite set of mechanisms, whose integrated implementation within the architecture 
of the WFMS must be studied carefully. Also, some of those mechanisms may result incompatible with 
each other, or be substituted by others that are functionally similar or equivalent. At this stage, we present a 
conceptual architecture, based on considerations about WF distribution and assumptions about the roles 
that some of the mechanisms above can play, and descending primarily from principles that are briefly 
outlined below 
We envision a communication facility that ties together all the many components of the WF architecture 
over a global networking environment: it is some kind of Global Bus for efficient and dynamic routing of 
the multiple data and control flows exchanged within the architecture, whose formats and semantics may be 
extremely diverse, but whose circulation should be handled in a unified way, notwithstanding the 
heterogeneity of the global network. Several issues regarding the Global Bus are fundamental for the 
design of a decentralized WFMS; for this reason, we devote to it a brief separate discussion in Section 0. 
WF agents must be treated uniformly, independently from their nature (operating interfaces for human 
stakeholders, or wrappers of legacy systems and tools that are incorporated in the WF, or largely 
autonomous computerized agents) and their purposes. This is a generality requisite, to allow the WF to 
handle effectively a wide variety of processes, e.g. cooperation among humans as well as coordination of 
automated distributed systems. Therefore, all agent environments must be equipped with the same 
functionality and must have the same access to WF information. An agent environment can be seen as a 
collection of SW components offering a set of capabilities enabling WF enactment in autonomy as well as 
in collaboration with other agents. No pre-defined hierarchy between WF agents exists, in the sense of 
centralized WF enactment decisions. 
The WF architecture can also include “ancillary” SW agents that are not primarily concerned with the 
enactment of the WF, but offer additional capabilities that can be useful or even essential for the overall 
decentralized WFMS (some examples can be the decentralized oracle for task forecasting, or information 
gathering agents for delivering impromptu information resources,). Deployment and utilization of those 
ancillary agents occurs as a consequence of “decisions” taken by the WF agents. 
In Figure 5, an informal diagram of the conceptual architecture is drawn, which, although approximate and 
incomplete, tries to highlight the multiplicity of components taking part in the foreseen WF solution, the 
diversity of data and control flows, and the complex network of relationships between all the elements. 

5.6 The Global bus communication infrastructure 
In the first place, the Global Bus is a useful abstraction that enables uniform reasoning about all the inter-
process communications, independently of any machinery, protocols, semantics, etc. Besides, a Global Bus 
is also a concrete architectural device, whose design and implementation must provide a potentially 
extremely dispersed but conceptually and functionally unified communication facility of great versatility. 
The Global Bus may be seen as a sort of middleware (see Section 6.3 for details) for the decentralized 
WFMS; however, it must be noticed that it must have some peculiar characteristics. 
First of all it will service a decentralized WFMS, which shall be active along the dynamic architectural 
distribution dimension of WF; thus WF agents could migrate on potentially any network node on very 
platforms, and the Global Bus will need to be able to gracefully adapt in order to remain available to the 



migrated agents. Therefore it must not be tied to any specific inter-process communication paradigm but 
must cross boundaries among them, coherently with what stated about a global networking environment in 
Section 2.1. An option we intend to explore is a sort of XML-based middleware (as advocated for example 
in [86]), which would use some form of encoding of all inter-processes communications with XML DTDs, 
and will use the exchange of XML streams as the common denominator across platforms. 
Moreover, the Global Bus must support a great deal of dynamism, mobility and on-the-fly reconfiguration 
of its own architecture. As an infrastructure, it is particularly affected by changes in the topology of the 
underlying network it provides an abstraction for, such as those consequential to spontaneous or active 
networking: the Global Bus must be able to continue its services notwithstanding the volatility of the 
network medium, and also to offer them as soon as new spontaneous connections are established between 
new nodes, on whatever medium happens to accommodate elements of relevance for the decentralized WF. 
The deployment structure of the Global Bus is bound to be as volatile as the network, and as dynamic as the 
active components that exploit it to communicate. Thus, the Global Bus must have mechanisms enabling 
fluid and seamless transitions between configurations, and must ensure reliability and availability with 
respect to and for the components of the distributed WFMS during and after all those transitions. 

6 Related work 
The proposed research crosses over and draws from a number of domains. In the remainder of this Section, 
we try to provide an overview of the state of the art in those domains, at the same time highlighting the 
intended contributions of our research with respect to them. First of all, we describe some of the latest 
examples of decentralized WF technology, pointing out the WF distribution dimensions they cover. Then, 
we offer a view over the very wide and composite field devoted to the study of coordination models and 
languages, addressing general-purpose contributions, as well as results from other specific Computer 
Science domains concerned with coordination issues, and we will try to assess the potential of distributed 
WF technology for coordination with respect to those other approaches. We conclude by analyzing some 
enabling technologies and their relevance for our purposes, such as open hypermedia systems (correlated 
with datawebs), push technologies (correlated with smart caching mechanisms), and middleware 
frameworks, which can be seen at the same time as instrumental and alternative to other approaches for the 
development of distributed SW. 

6.1 Distributed WFMSs 
We describe hereby some results in decentralized WF technology that are meant to operate at a very large 
scale of distribution, typically the Internet scale, which also represents the reference domain for our studies. 
In Appendix B, we provide a synopsis in Table 5 for a number of the WFMSs discussed below, profiling 
them against to the identified distribution dimensions. 
Endeavors [20] is both a research prototype and a commercial WFMS, strongly based on WWW paradigms 
and protocols. It uses HTTP as its main distribution and communication mechanism, complemented and 
extended by means of Servlets [28], and WebDAV [29]. WF descriptions are coded in XML and accessed 
via the SWAP protocol [30] . WF descriptions are hierarchical, with increasingly more refined activity 
networks, which are sets of activities associated by control, data and resource flow. The leaves of the 
hierarchy are atomic activities. WF is specified in an OO fashion in terms of artifacts, activity networks and 
resources, which are collectively termed Process Objects (POs). POs are stored persistently in object stores 
sitting behind HTTP servers and deployed according to different architectural schemes. The most general 
and flexible architecture is multi-client and multi-server [31], designed for scalability and robustness: POs 
can either live on the client environments (i.e., copies of Endeavors allocated to stakeholders), or on any of 
multiple HTTP servers, which are enriched with machinery to handle POs, which effectively constitute 
computerized WF agents. All POs communicate asynchronously by means of events that are routed through 
the HTTP Servers. In response to the events, POs invoke and execute matching handlers. Handlers are 
snippets of code that provide POs with behavior and can be dynamically bound to POs, possibly by 
transferring them on-the fly from remote object stores. Caching schemes for the WF information such as 
POs and handlers is supported. Concerning the distribution of work, POs representing activity networks are 
loaded onto the client environment either by pulling their URL explicitly on the user’s part, or by pushing, 
via a delegation mechanism called the WebNavigator. 



OPSS is a prototype of a distributed WFMS employed to coordinate Value Added Services within the 
ORCHESTRA telecommunication infrastructure [32]: services are a combination of distributed SW (often 
OTS) and human operations. WF in OPSS is specified in terms of Agents, Activities, Artifacts and 
Resources; each of these elements is characterized by a Finite State Machine (FSM) describing its state, as 
well as the valid transitions among states and the conditions that must hold for the transitions to take place. 
The aforementioned elements are organized in an OO fashion, therefore support specialization, including 
that of their characterizing FSMs, and are implemented as Java classes. The WF description is made up of 
one or more chains of activities, whose behavior (the associated activity description – a snippet of 
procedural code) is accessible via an URL. In OPSS, there are three kinds of WF agents: SW agents are 
completely automated and are proactively activated to enact some WF fragment; human agents are 
represented by an agenda-like interface for WF stakeholders who must carry out creative, open-ended tasks 
in the WF; external tool agents are wrappers needed to invoke any legacy or OTS SW exploited in the WF 
for business-specific tasks. Human agents execute a WF by pulling or pushing (delegating) activities to 
other agents. State transitions during the life cycle of activities fire events that may initiate other activities, 
which are assigned automatically to some agent. In its current implementation, OPSS include a centralized 
State Server maintaining the States of all elements in the WF, while WF agents, activity execution and 
artifacts can be distributed everywhere on the WWW. WF agents communicate among themselves and with 
the State Server via asynchronous events. 
Serendipity-II [21] is a decentralized WFMderived from a more centralized predecessor called Serendipity. 
Serendipity-II is purely component-based: each Serendipity-II agent is in itself a set of interconnected 
components. Also all WF information (models, states etc.) is expressed in the form of software 
components. Serendipity-II stresses collaborative distributed process editing – as well as enactment - and 
supports disconnected work. The process description is a hierarchy of process stages. Process stages have a 
state, are assigned to roles and are interrelated by enactment flows, which are traversed when the 
corresponding state for a process stage is reached. WF agents in Serendipity-II represent WF stakeholders 
(humans), as well as computerized agents, and interfaces to external tools. Each agent comprises a 
complete copy of the WF modeling and enactment environment. Each environment executes a (part of the) 
WF specification autonomously and communicates with other agents via events called change descriptions. 
Users enact process stages by pulling the specification of some stage, and the work flows both in the local 
environment and in any affected remote environments, according to the events fired when enacted stages 
change their state. Component-passing/copying schemes, including the circulation of change descriptions 
and their logging for momentarily disconnected agents, allow the exchange and versioning of all WF 
information that must be shared among WF agents: at the cost of partial duplication, there is no centralized 
server or repository for WF information. The architecture also contemplates ancillary, fully automatic 
software agents, called work coordination agents. These agents match and filter the events exchanged by 
WF agents and execute processing actions in response to filtered events. Actions are fully customizable 
depending on the application, and include the automation of chains of WF tasks, WF logging, legacy tool 
integration via invocation of wrappers, etc. Work coordination agents can be deployed at the users’ will.  
METEOR2 [35] is a model for distributed WFMS. There are various implementations of the METEOR2 
model, such as OrbWork [34] (based upon CORBA middleware and services), and WebWork [33], which 
relies solely on WWW technologies. All implementations share the same formalism and facilities for 
process modeling, and differ with respect to the enactment infrastructure and environment. Hereby, we 
examine the lightweight WebWork incarnation of METEOR2. WF is described as a hierarchy of tasks, with 
tasks at the same hierarchical level interconnected via inter-task dependencies, which define both control 
and data flow. Each task has its own FSM, which defines valid states and transitions. Transitions to a given 
state can also be forced by dependencies from external tasks. WebWork is a multi-server, WWW-based 
WFMS. WF servers for WebWork are WWW servers; each WF task is allocated firmly to a specific WWW 
server and is executed on that server Servers accept and execute requests expressed via CGI from the users’ 
browsers, potentially with some rerouting. The scheduling of the tasks is carried out by WF schedulers, 
which – although conceptually autonomous entities in the architecture - are in practice encapsulated into 
the WWW servers that execute the tasks, and can automate chains of tasks depending on the state of 
interconnected tasks. 
Opera [27] defines a kernel that can provide WF services to a generic distributed system. As the term 
kernel implies, it is not meant to be in itself a complete WFMS, but a platform that needs to be extended 
and tailored to the application domain. 



Oz [89] addresses WF distribution by pioneering the concept of WF federations. A federated WFMS [22] 
allows the sharing of WF fragments defined within the processes of diverse and dispersed organizations. 
Architecturally, Oz extends the client/server paradigm with a multi-server approach. 
APEL [98] [99] embraces the idea of federations to integrate heterogeneous WFMSs, each of which serves 
as a component of a larger-scale WFMS, with a distinct functionality. The various WF representations and 
semantics, as well as the various levels of operation, are reconciled by a Common Process Engine, enacting 
a common WF model, which represent partial centralization points for the overall WF, whose degree of 
decentralization is for the rest largely influenced by that of the WFMSs participating in the federation. 
Juliette [100] – based on the Little-JIL [101] process modeling formalism – presents a hierarchically 
distributed and mobile WF engine (the interpreter), and a system of distributed agendas to keep track of the 
WF state. The WF distribution is eminently proactive, since the interpreter finds through a resource 
manager an agent capable to enact a WF step and then dispatches to its agenda a corresponding work item. 
IBM MQSeries Workflow [102] is one of the leading industrial WF products. It basically adopts a variation 
of the client/server model, with Web-enabled clients and multiple servers organized in a hierarchy. Also, to 
optimize local workload, servers at the same node in the hierarchy tree can be distributed on separate 
machine. The WF specification is inherited according to the hierarchy and can be specialized locally. 
Mobile [87] and Exotica/FMQM [88] adopt a distribution approach based on the replication of WF servers 
– which however remain points of centralization - with complex schemes for the preservations of 
consistency and for work partitioning and assignment among the servers. 

6.2 Coordination languages and models 
The study of coordination has lately gotten a lot of attention in a variety of scientific disciplines, besides 
Computer Science, such as Operations Research, Organization theory, Economics, etc. An accepted 
interdisciplinary definition of coordination, which does not constrain in any way the nature of the 
coordination subject, but emphasizes the process underlying coordination, has been proposed in [1] : “The 
management of dependencies between activities”. 
Within Computer Science, a number of more specialized definitions have been proposed, each reflecting 
different perspectives on coordination problems, such as SW architecture specification, component-based 
SW frameworks, Distributed Artificial Intelligence, agent-based systems, WF, and others. Each of those 
perspectives studies coordination models, languages and mechanisms with different purposes and scopes, 
although of course the main motivation is common, i.e., the specification and guidance of the interactions 
among entities taking part with different titles to a complex SW system. 
A large quantity of effort has been also devoted to studying general-purpose coordination concepts that can 
be employed across application domains like the ones listed above. This trend was perhaps initiated by 
Carriero and Gelernter, who proposed in [2] the strict separation of concerns between coordination and 
computation in programming. Such separation should provide a clearer understanding of the complexities 
inherent in guiding the interactions within a distributed system, and a key to deal with generality and 
heterogeneity concerns (e.g. cross-platform, cross-language etc.) 
According to [2] , coordination is the process of building programs by gluing together ensembles of active 
entities; a coordination model takes the role of the glue that binds together the computational activities 
carried out by the entities in the ensemble, and a coordination language is the linguistic embodiment of a 
coordination model, offering facilities to express synchronization, communication, creation and termination 
of the coordinated computations. 
A seminal example of a pure coordination language is Linda [3] [4] , which provides simple but powerful 
linguistic means and architectural abstractions for the coordination of generic distributed systems, as well 
as for computational parallelism. Linda’s coordination model is based on the concept of a tuple space, i.e. a 
global shared data structure that serves as the only mediator of the interactions among all components of 
the system. The tuple space model owes much to the classic blackboard architecture [95] [96] [97] of many 
Distributed Artificial Intelligence (DAI) systems. 
Although implicit, since it is completely data-driven [5] , the coordination model promoted by Linda can be 
implemented easily on top of most conventional programming languages [6] and its quite general. This is 
why Linda has become a reference point for new coordination models and languages, and the reason behind 
its numerous variations, derivations, and specializations in a myriad of Linda-based models and systems, 



which address a variety of application domains (an example out of many: JavaSpacesTM [7] by SUN 
Microsystems). 
Many other general-purpose languages, sporting different paradigms (e.g. control-driven[5] langauges) 
have been developed and studied in the last few years (see for example [5] and the COORDINATION 
conference series [8] [9] [10). However, it is also interesting to discuss some results originating from fields 
of study with a more restricted scope, but which provide nevertheless useful insights into the Computer 
Science coordination problem space at large. 

Architecture Description Languages 

The study of SW architectures, for example, has produced a number of Architecture Description Languages 
(ADLs) [11], whose purpose is the high-level but to same degree formal specification of the structure and 
behavior of a SW system. ADLs predicate about components, connectors and configurations (i.e. the 
topologies of component and connectors instantiating an architecture). As observed in [12], all inter-
component interactions are captured by connectors: different types of connectors support different 
coordination models, and, once instantiated in a given configuration, determine its valid coordination 
models. Although many of the latest ADLs provide a good deal of tool support to the guidance of the lower 
phases of the SW development process, aiming at enforcing the architectural decisions onto the low-level 
design and also the implementation phases, ADLs remain prominently declarative. 

Coordination programming 

More imperative connotations are present in Module Interconnection Languages (MILs) [14] 15] and 
megaprogramming paradigms [13]. Both promote a bottom-up, compositional approach to coordination, 
which addresses the implementation of distributed systems by gluing together in a programmatic way 
already coded components with varying degrees of autonomy, heterogeneity and granularity. Only 
megaprogramming is – as today - an active thread of research: megaprograms operate at very coarse 
granularity, and aim at the construction of metasystems, by encapsulating and composing megamodules 
(i.e. services which can constitute large, complex, coherent and complete distributed SW systems in 
themselves) across their different ontologies [16] . In theory, megaprogramming languages are only 
concerned with expressing and scheduling computation requests to the various megamodules according to 
their ontologies, and to return results to other megamodules, applyinginter-ontology correspondences when 
needed (which are conceptually challenging). They must remain independent from and unconcerned with 
the implementation technicalities, the computing and communication infrastructures, and the application 
domains proper of the megamodules, which is in practice a considerably difficult technical challenge. 

Coordination of active agents 

Many coordination languages, and certainly ADLs and megaprogramming languages, adhere to a 
conventional view in which components are “passive” subjects of coordination. Nowadays, that view can 
be too restrictive: SW components can be “smart” and “active” agents, which sport characteristics such as 
substantial autonomy, awareness and knowledge of the application domain, some degree of reasoning and 
decisional power, mobility [83]. SW agents can be part of self-organizing communities, causing the 
coordination model to be dynamically influenced by the very subjects of coordination [81]. The 
coordination of agent-based systems thus requires a different paradigm with respect to that of traditionally 
engineered component-based SW. 
Agent-based systems are rooted in DAI, but their experimentation and usage has grown steadily in the 
latest years, principally due to the affirmation of the WWW as the dominant information as well as 
computational global infrastructure [109]. In that context, agents have been applied for widely distributed 
information gathering and processing, data mining, document management, electronic commerce, etc. A 
number of coordination models and the corresponding Agent Coordination Languages (ACLs) [82] –such 
as KQML [84] - have been explored in response to these trends. Most models are based on the concepts of 
goals, and plans that must be executed to reach goals. Plans are analogous to well-defined, explicit, often 
hierarchically decomposed processes. The level of flexibility and dynamism with which agents interpret 
and execute a plan depends on the chosen coordination model. It may vary from rather inflexible 
organizational structuring (i.e., a coordination policy defined a priori and pursued by a master coordinator 
of “slave” agents) [92], to fully dynamic run time negotiation [93], with agents interactively searching for 



and pursuing the best compromise among each other’s goals, exchanging information about plan fragments, 
services/capabilities and ontological contexts.  

WF and distributed systems coordination 

The primary goal of WF technology is the coordination of human-oriented processes, i.e. processes in 
which the subjects of coordination are persons, collaborating towards some common accomplishment. Such 
processes can be very diverse, are usually very open-ended with possibly long duration, and have a high 
degree of variability, calling for the handling of exceptions and multiple alternative courses of actions. 
Distributed WF faces many challenges, some of which have been discussed earlier in this document, which 
require them to rely more and more onto legacy, OTS, third-party or otherwise autonomous SW for the 
remote enactment of substantial WF fragments. Also in this case, the WWW has served as a catalyst as 
made evident by the big focus on WWW issues on the part of distributed WF research and industry. 
By observing the efforts and trend in all the various fields mentioned above, it is possible to perceive 
substantial overlapping, the opportunity of synergy, and also hints of convergence. This is being 
increasingly recognized by scholars and practitioners (see for example [17] [23] [26] . In the latter: “The 
last decade gas seen the emergence of a class of models and languages variously termed coordination 
languages, configuration languages, architectural description languages, and agent-oriented programming 
languages. These formalisms provide a clean separation between individual software components and their 
interaction within the overall software organization.”). In this convergence scenario, distributed WF has 
the chance to play a prominent role, since it has the potential to address many concerns typical of the other 
domains. 
For example, substantial commonality has been detected between software agents and distributed WF [17] : 
on the one hand, it is feasible to try to orchestrate the cooperation of an agent community as a distributed 
WF, as experimented for instance in [18]; on the other hand, it is possible to employ SW agents to represent 
(some) WF actors or enhance WFMS functionality (as in [20] [21]), and to use ACLs to describe (some) 
human-oriented processes (as in [19] among others). Moreover, federated WFMSs [22] [99] represented an 
early although specalized case of coarse-grained componentware, in many ways analogous to metasystems, 
as in the megaprogramming paradigm. Megamodules are in that case whole WFMSs or components 
thereof, which are coordinated by means of federated processes to create a meta-WFMS. It seems feasible 
to extend the experience of federations from WF-dedicated components to generic SW components, 
employing WF specifications as their programmatic glue: [24] [25] –among others - advocate such an 
approach as a most important trend for WF research, and also consider the investigation of the interplay 
between ADLs at the specification level and WF at the implementation level of the distributed and 
federated system. 
There are a few important reasons why distributed WF can be the “common ground” for the convergence of 
many coordination paradigms such as agent systems, megaprogramming and SW architectures. The notion 
of process is native and allows to describe coordination explicitly and abstractly at the same time. 
Moreover, most WF formalisms have both declarative and imperative connotations (in the terms used in 
this document, they map respectively to the declaration of tasks vs. the definition of behavior/actions 
attached to those tasks). Thus they are feasible for reasoning about the model of coordination (like ADLs), 
as well as implementing it over the distributed system (like megaprogramming languages). Finally, and 
opportunistically, WF technology is perhaps not mature tout court, but seemingly more than agents and 
ADLs, and certainly more than megaprogramming: for example, distributed WF accounts reasonably well 
for heterogeneity (of actors and technologies) and generality (of kinds of processes supported). 
All of the considerations above contribute to a vision in which a WFMS could be placed at the core of a 
distributed system, serving as the coordination medium and perhaps taking the role of a dynamic and 
process-aware middleware [27]. This is in accord with the goal of this proposal, i.e. the investigation of the 
potential of such a coordination perspective, in the context of the current state of and upcoming 
advancements in WF research and technology. 



6.3 Enabling technologies 

6.3.1 Open hypermedia systems (OHSs) 
Open Hypermedia Systems (see [36], [43], and the series of Proceedings of the Workshop on Open 
Hypermedia Systems [37] [38] [39] [40] [41] ) are concerned with the clear separation of contents (i.e., 
documents) and structure (expressed as hperlink sets) in hypertexts. OHSs like Chimera [42], Hyperform 
[46] , or Multicard [47], provide link bases (or link servers) that are distinct from the document 
repositories, superimposing dynamically the relevant hyperlinks on documents requested by their users and 
displaying them on dedicated or extended hypertext viewers. OHSs also provide type systems for 
documents and links. 
OHSs hence promote an alternative way of structuring the information and exploiting the hypertext 
concepts with respect to the WWW, in which links are embedded into documents, and the overall structure 
remains completely implicit. In the last few years, the OHS community has actively researched ways to 
integrate its efforts with the WWW paradigm as seamlessly as possible (see for example [44] [45]). 
Link servers in OHSs account for enhanced flexibility and dynamism, for instance enabling easier 
automatic processing of links, and on-the-fly creation/adjustment of structured hypertexts. Xanth [48] , for 
example, exploits the distinct link information to activate and guide a series of pre- and post-processing 
modules in order to provide enhanced services (such as WF, presentation, transactions, versioning, etc.), 
whenever some document is requested by the user. The price to pay with respect to the embedded hyperlink 
paradigm is generally that of limited scalability of the OHS, in terms of both volume and dispersion. 
Access to a hypertextual document is in general heavier since it include queries to multiple repositories and 
processing of the partial results to obtain the final layout of the document. Maintaining the link base 
consistent is another complex issue. Moreover, link services represent a point of centralization and 
potentially of failure for the distribution of information. 

6.3.2 Caching and push technologies 
Prefetching of data into a cache, in order to optimize the performance of a system is a theme found in many 
domains in Computer Science. We concentrate hereby on results applied to distributed information systems 
and the WWW in particular. We also mention some related results in recommendation systems. 
Various large-scale cache systems (usually hierarchical) have been developed for the WWW, such as 
Harvest [49], in order to let (groups of) users obtain documents from an optimal secondary source (the 
cache), rather than from its sub-optimal primary source (i.e., the original WWW server hosting the 
document). [50] enunciates three main principles for the design of large-scale distributed cache, i.e., 
“minimize the number of hops to locate and access data on both hits and misses, share data among many 
users and scale to many caches, and cache data close to clients.” and proposes a hierarchical architecture 
that exploits metadata about the location of information to achieve improved response time. The resulting 
prototype, named Cuttlefish, also uses pushing schemes to move documents to caches in the hierarchy 
closest to clients that are likely to use them, but solely on the basis of past usage patterns. 
Among systems that employ prefetching, there are some that are intended for disconnected Web browsing: 
they found their prefetching policies upon explicit user’s indications [51] , or also supplement them with 
past usage heuristics [52]. These are different from the Workgroup cache, since the latter is also based on 
criteria that are automatically derived from the work context of teams as well as individuals, e.g. the state 
of an enacted WF. The concept of process-based prefetching is explored in Laputa [53], which is 
specifically intended to enable disconnected software development within a collaborative Process-centered 
Software Engineering Environment and was limited to supporting an individual user. 
Prefetching and pushing schemes are also employed to recommend to users potentially relevant documents 
in context. Most of them concentrate on individual users and their preferences or habits: Remembrance 
Agent [70], Fab [72] , and Ant World a[73], and many others all have their own means to “guess” what the 
context of interest is and what other information should be presented. Examples of recommendation 
systems that are tuned to the needs and interests of groups are the Knowledge Pump [71]  and ReferralWeb 
[74], but also a plethora of proprietary systems on e-business Web sites, such as Amazon.com and others, 



which match the buying habits of their customers to cluster them in “communities” and to provide them 
with potentially interesting purchasing advice and offers. 

6.3.3 Middleware and component-based SW infrastructures 
Middleware technologies [68], such as DCOM/COM+ [66] [67] [68], CORBA [63], Java RMI [65], DCE 
[64] , JavaSpaces [7], TIB/Active Enterprises [103] and many others take a pragmatic approach to the 
development of distributed SW systems, by providing a layer of software that abstracts out low-level 
networking details and offers “in a package” a uniform set of inter-process communication facilities and a 
common API for gluing distributed components. Each middleware infrastructure carry with itself some 
definite assumptions on the valid interaction modality among components, hence it leans towards certain 
architectural styles and constrains the variety of coordination models that can be implemented on top of it 
[61]. By paying this price in terms of generality, developers gain with the adoption of a given middleware 
certain productivity advantages, like the hiding of technicalities and and an established structural and 
semantic ground. 
Nowadays, middleware products tend to expand their scope by offering additional services (see for 
example [62] for CORBA), which either provide different alternative or complementary communication 
facilities on top of the basic infrastructure, or augment it with other packages of high-level functionality for 
the connected components (e.g. transactions, security, mobility support, etc.). 
Distributed WF in a middleware-based view can be seen as another additional service; an alternative 
persepctive is that of ad hoc middleware that is specialized towards servicing needs that are peculiar to 
distributed WFMSs [69]. A more radical approach, that is akin to the line of research of this proposal, is 
that of having WF placed within the kernel of the infrastrucure, as advocated in [54] , thus creating a sort of 
process-aware kind of middleware that can be exploited for the construction of distributed systems of any 
kind, rather than only WFMSs. 

7 Evaluation 
Among the intended results of this work, there is an evaluation of the potential of distributed WF to address 
the coordination of distributed SW systems, in the first place in the application domains represented by the 
two reference coordination problems, and, by appropriate abstraction of the lessons learnt, in generalized 
cases. State-of-the-art distributed WF technology will be evaluated along the distribution dimensions we 
have defined, to highlight capabilities as well as limitations with respect to the problems at hand; 
furthermore, extensions and improvements to the state-of-the-art, like (but not necessarily limited to) those 
outlined in Section 5, will be subject to experimentation and similarly evaluated. 
The problem of how to carry out a complex evaluation of what is in substance an innovative technology , in 
terms of principles, criteria and techniques, must be placed in the general framework of Empirical Software 
Engineering. While the Software Engineering community has recognized that proposed improvements to 
methodologies technologies and practices must be scrutinized to weigh their actual – rather than claimed – 
impact on organizations, processes and products, no common consensus has yet been reached on the 
general principles, measures and protocols for such quantitative evaluation. As stated in [90]: “At this 
moment in time, there is no widely held collective agreed model of the definition and role of empirical 
software Engineering (ESE).”. While approaches to establish quantitative confrontations of Software 
Engineering results are available in some specific contexts (for instance, computing performance, or 
models for software cost estimation [91]) in other contexts and - more importantly - at the general level this 
is not the case. 
The intended approach for this work is to point out a set of software quality factors, which are likely to be 
affected by the selection of a coordination paradigm over another for developing complex SW systems, and 
try to consider the effects that WF-based coordination has on them. An additional difficulty in our case may 
be that it can be difficult to establish some benchmark to measure advantages and disadvantages of our 
approach with respect to any chosen quality factors, especially since the intended application domain (i.e., 
continual validation) is in itself an innovative area. The possibility of employing as an alternative or 
additional case study an application domain that presents substantial challenges with respect to distributed 
coordination, for the sake of the evaluation, will be considered. 



At this stage, it is already possible to outline that the results of this works should have an effect on the 
following quality factors of the distributed SW: 

• Productivity 
• Reusability 
• Maintainability (corrective, adaptive and perfective) 
• Performance 
• Reliability 
• Robustness 

With respect to each of those factors, we will take in considerations a number of metrics that will be 
collected during the development of any case study; metrics shall be quantitative whenever possible. 
Results will be discussed in comparison to the state-of-the-art and the available literature. 

8 Conclusions 
A number of research issues will be explored by the proposed work, and we expect the emergence of 
interesting results in the following areas: 

• evaluation of the state of the art in decentralized WF technology with respect to the various 
distribution dimensions outlined in this proposal; 

• investigation of a number of conceptual and technological challenges for advanced WF 
technology, such as: 

o impromptu resources; 
o manipulation of multimedia artifact/resources in distributed WF; 
o temporal concerns in distributed WF; 
o WF distribution over active and spontaneous networks 

• definition of the requirements of advanced, fully decentralized WF technology to further and 
completely address the distribution dimensions and the challenges above; 

• exploration, design and implementation of mechanisms to support full distribution of a WFMS, 
according to the afore mentioned requirements; 

• evaluation of the potential of fully decentralized WF for distributed SW systems coordination, 
with special attention to the following coordination problems: 

o run-time control of a distributed system 
o dynamic coordination of distributed cooperative computations 

• presentation of a technological solution that addresses the coordination problems mentioned above 
in the scenario of continual validation; 

• application of the solution to one or more case studies. 
In Figure 7, a tentative, high-level work plan for meeting the goals above is presented in the form of a 
GANTT chart. We foresee a prototype-based approach, with two major rounds of study, development, 
experimentation and evaluation of results. 
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Appendix A; Synoptic tables of the workflows 
Synopsis of coordination problems 
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Table 1: template of the synoptic table for WF distribution characteristics. 

Terminology 

In the following tables we employ some specific terms to qualify the level of distribution along the various 
dimensions, which are better explained upfront: 
• Unconstrained distribution: there is no constraint or dependency for distribution dimension in object 

with respect to any other distribution aspect, or any other consideration relative to the coordination 
process. Hence, the WF elements relevant to that WF distribution can be freely distributed. 

• Matching distribution: the characteristics of the WF distribution dimension in object are the same as 
those of another distribution dimension. For example, if WF agents are constrained to be co-located 
with the WF definitions of task they are responsible for, their distribution must match that of the WF 
specification dimension. 

• Conforming distribution: the WF distribution dimension in object is constrained by some external 
(i.e., not relative to WF distribution considerations) compelling factor in such a way that it must 
strictly comply with it. As an example, consider the WF dedicated to the run-time control of a target 
distributed system (the Coordination problem 1 of Section 3.1), in which the WF architecture is 
constrained to overlay the architecture of the target system. 

• Irrelevant: the WF distribution in object does not play an important role in the case at hand. 



Coordination problem 1: run-time distributed control WF 
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Automation level Largely automated   
Explicitness Implicit Fragmented Bottom-up contstruction 
Repeatability Highly repeatable   
Table 2: Synoptic table of the characteristics of the control WF. 
 



Coordination problem 2: distributed agents coordination WF 

Distribution characteristics of the WF 
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Specification 
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action definitions 

D
es

ig
n 

tim
e 

Type system Unconstrained distribution  

WF State Task state: matching distribution 
wrt the executing agents’ 
distribution 

Process state is composition of 
task states 

Artifacts matching distribution wrt the 
executing agents’ distribution 

 

W
F 

D
at

a 

R
un

 ti
m

e 

Resources matching distribution wrt the 
executing agents’ distribution 

Impromptu resources present: 
unconstrained distribution 

Static architecture Unconstrained distribution  

W
F 

ar
ch

ite
ct

ur
e 

Dynamic 
architecture 

Unconstrained distribution  

Reactivity Present (for agent autonomy)  

W
F 

en
ac

tm
en

t 

Proactivity Present (by delegation Present (by automation) 
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Automation level Completely automated  
Explicitness Goal-oriented Largely explicit 
Repeatability Highly repeatable (plan)  
Enactment Very dynamic Limitedly open-ended 

Table 3: Synoptic table of the characteristics of the agent coordination WF. 



AI2TV case study application WF 

Distribution characteristics of the WF 
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Automation level Human-oriented limited  
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Enactment Very open-ended Likely exceptions  
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artifacts/resources 

Lower-bounded duration 
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Table 4: Synoptic table of the characteristics of an application WF for AI2TV. 



Appendix B: Synoptic table for the comparison of decentralized WFMSs. 
Distribution dimension coverage by the WFMS 

WFMS Endeavors OPSS Serendipity-
II 

WebWork Opera Oz APEL Juliette MQSeries 

WF Specification 
n ! n n 

! 
(Rel. or OO DB) n ! ! n 

D
es

ig
n 

tim
e 

Type system 
n " ? ? 

! 
(Rel. or OO DB) n ! ? n 

WF State 
n " ! 

(duplicated) n 
! 

(Rel. or OO DB) n ! n 
! 

(Rel. DB) 
Artifacts 

n n n ! 
! 

(Rel. or OO DB) n ! n 
! 

(Rel. DB) 
Resources 

n n n ! ! n ! n 
! 

(Rel. DB) 

W
F 

D
at

a 

R
un

 ti
m

e 

Impromptu 
resources " " " " " " " " " 

Static architecture 
n n n ! n ! n n n 

W
F 

ar
ch

ite
ct

ur
e 

Dynamic architecture 
! n n " " " ! n " 

Reactivity 

n n n n n n n ! n 

W
F 

en
ac

tm
en

t 

Proactivity 

n n n n n n n n n 

Table 5: synoptic table of some decentralized WFMSs. 



 

Legend: 

n complete distribution support 

! partial distribution support 

" no distribution support 

? irrelevant/unknown 
Note: it can be observed form the table that Endeavors operates on most of the distribution dimensions; therefore, it can be considered a promising candidate to become the experimental WF 
platform upon which to investigate the reference problems and the WF-based coordination of distributed SW systems at large, in order to identify what adjustments and extensions may be 
necessary. Another interesting candidate seems to be Juliette. 
 



Appendix C: Figures 
Controlled System

ControlsControlsControlsControllers
ControlsControllers

ControlsControllers ControlsControlsControlsControllers
ControlsControllers

ControlsControllers

Control system  

Figure 1: Reactive behavior of a distributed control system. 

Note: triangles represent probes; the control is exerted (possibly cooperatively) by the components of the 
control system (i.e., the Controllers), which elaborate on the data transmitted by probes and operate with 
directives that influence some single components of the controlled system, or its overall functioning. The 
red circle represents a facility to compose the elementary “signals” emitted by the probes into semantically 
richer notifications, of significance for the control system. 
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Figure 2: Maximum distribution scenario for the control WF. 

For clarification and due to the informality of the representation, notice the following about Figure 2: 
1. Each separate element shown in the Figure is intended as being possibly located on a different 

host with respect to those of all other components, with the exception of probes, which are co-
located with the components of the target system or the connectors among them. 

2. The “clouds” represent the WWW at large. Elements of the Figure included in the clouds can be 
dispersed anywhere over the WWW. Elements NOT included in the clouds may indeed still reside 
and operate over the WWW but are not dispersed anywhere over the WWW; rather, each of them 
must have a well-known network location (even if the location can change during the enactment of 
the WF, for instance because of spontaneous networking). 

3. Thin solid arrows indicate pointers maintained between rule definitions and their corresponding 
action, which allow independent distribution of those two parts of the WF specification. 

4. Thick solid arrows symbolize a task request by a WF agent and the consequential transfer of the 
relevant WF specification information. Notice that the request by a WF agent is always a 
consequence of the reception of an event that matches a rule definition, since the WF is purely 
reactive (the reactive vs. proactive distribution cannot adequately be represented in the Figure). 

5. Dashed arrows indicate event circulation originated by the probes. 
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Figure 3: Maximum distribution scenario for the agent coordination WF. 

For clarification and due to the informality of the representation, notice the following about Figure 3: 
1. Each separate element shown in the Figure is intended as being possibly located on a different 

host with respect to those of all other components, as for the maximum distribution scenario, with 
the partial exception of WF agents, which are at times co-located with artifacts and/or resources 
for reasons of convenience, as discussed above. 

2. The “clouds” represent the WWW at large. Elements of the Figure included in the clouds can be 
dispersed anywhere over the WWW. Elements NOT included in the clouds may indeed still reside 
and operate over the WWW but are not dispersed anywhere over the WWW; rather, each of them 
must have a well-known network location (even if the location can change during the enactment of 
the WF, for instance because of spontaneous networking). 

3. Thin solid arrows indicate pointers maintained between fragments of distributed WF information. 
4. Thick solid arrows symbolize task requests by WF agents (the dotted arrows) and the 

consequential transfer of the relevant WF specification information (the solid arrows). Notice that 
in the Figure, task requests can be initiated by a WF agent on its own, as well as by a WF agent on 
behalf of another WF agent. This is intended to show that the trade-off and the interplay between 
guidance and autonomy and reactivity and proactivity in the agent coordination WF. 
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Figure 4: continual validation for AI2TV. 
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Figure 5: a view of the conceptual WFMS architecture. 

Note: in Figure 5 WF agents are positioned separately from datawebs and other parts of the architecture 
only to augment the clarity of the figure; in fact, as pointed out in Section 2.3, they can be distributed and 
dynamically re-deployed on any host. 
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Figure 6: An E/R structured dataweb fragment. 

 

Figure 7: proposed work plan. 


