
A Workgroup Model for Smart Pushing and Pulling

Gail Kaiser, Christopher Vaill and Stephen Dossick
Columbia University

Department of Computer Science
New York, NY 10027

212-939-7100/fax:212-939-7084
psl@cs.columbia.edu

http://www.psl.cs.columbia.edu

Abstract
Our Workgroup Cache system operates as a virtual
intranet, introducing a shared cache to members of
the same workgroup. Users may be members of
multiple workgroups at the same time. Criteria are
associated with each workgroup to pull documents
from an individual cache to the shared cache, or
push from the shared cache to an individual cache.
These criteria provide semantics of the workgroup’s
tasks and interests to reduce latency for its members.

1. Introduction
Caching reduces average access latency, from

registers and memory pages cached by hardware, to
the application level such as a web browser retaining
retrieved documents. We focus here on potentially
shared networked documents and define two terms in
relation to this type of caching: Zero latency refers to
the condition where access to a document produces a
cache hit on the local machine, that is, there is little
or no latency due to the network (we assume that
latency due to local disk and memory access is
insignificant in comparison to network latency). A
document with zero latency is usually saved in the
cache after an explicit access, or is pulled there
through some prefetching mechanism. Negative
latency refers to automatic presentation, or push, of a
document to a user based on a prediction that the user
will want that document. With an ideal system, a user
would be presented with documents either that she
was about to request, or that she would not know to
request but that would be immediately useful to her.

We also distinguish between individual and shared
caching. An individual cache, such as built into a web
browser, stores documents for one user for use by
that same user. A shared cache, such as a web proxy
cache, stores documents accessed by many users, and
can provide a document to a user with relatively
small latency even if that particular user has never

accessed the document before. If that shared cache
had pushed the document to appropriate individual
caches, then those users can enjoy zero latency if
they happen to later access that document.

The central problem in caching normally lies in the
cache replacement algorithm, typically LRU, where
the trivial cache fill algorithm is to add every newly
accessed document to the cache. Simple algorithms
like these are routinely used when nothing is known
about the semantic content of the accesses or the
tasks the user will perform utilizing those accesses,
so predictions about the future must necessarily be
rather generic. However, in order to achieve zero
latency in a shared cache system, we must take a
broader view - and devise more sophisticated
algorithms for both cache fill (pull) and replacement
(save). Negative latency also needs a compatible
algorithm for cache-based recommendation (push).

Our Workgroup Cache system can (in principle)
leverage any knowledge available about the semantic
content and pragmatic usage of documents as a basis
for prediction of future accesses. We focus the
potential semantics and pragmatics with respect to a
"workgroup", here a set of users working on the same
task or related tasks. Workgroup membership can be
determined in a number of ways: The users can be
specified in advance, such as a software development
team working closely together (although they might
be physically dispersed); or determined by
dynamically including users whose document
accesses match patterns associated with the
workgroup, such as amateur programmers actively
working on the same subsystem of an open-source
project like Linux. Or any other method that groups
users according to the task(s) they are working on or
likely to work on in the near future – such as
inferring a Web community from link topologies [1].

Various cache fill and replacement criteria, as well
as recommendation criteria (to serve documents with

negative latency), may be defined separately and then
associated on the fly with a given workgroup.
Although obviously any run-time realization of this
Workgroup Cache model might be limited in what
criteria can be applied, the criteria are intended to be
fully configurable and our proof-of-concept
implementation supports dynamic "plug-in" of
criteria objects. Criteria might be based on software
process or workflow routing among workgroup
members, document access patterns of workgroup
members (e.g., if my supervisor keeps returning to
such and such technical report then I want to read it
too), or with XML metadata associated with or
embedded in accessed documents. Criteria might be
defined via simple filter rules, like Cisco firewalls or
Web search engine queries, or via a very elaborate
event/data pattern notation.

Many large software development projects,
particularly in the growing open-source software
community [2], rely on the coordination of multiple
developers distributed over a worldwide geographic
area. Numerous project coordination difficulties can
arise due to the relatively little contact the developers
may have with each other, they might never even
have met! A system for recommending documents
(such as source files) to these developers based on the
nature of their present tasks and the document
content might help ease some of these difficulties.

For example, say a primary developer is making
major changes to one file in a module, and a
secondary developer attempts to start adding a small
feature to another file in the same module. If both
developers are already or automatically become (due
to their apparently shared interests) members of the
same workgroup, and are using Workgroup Cache
powered by semantics drawn from software
configuration management, the system would "know"
about the dependencies between the two files, and
could push (recommend) the changing source file to
the secondary developer. Then she could check if the
code she was adding would be incompatible with the
likely new version of the module. Or pull criteria
might continuously update the feature self-
assignments records, to also inform that another
secondary developer had already started adding a
similar feature, preventing duplication of effort.

2. Related Work
Cache prefetching as a means of performance

improvement is a familiar subject in the fields of
computer architecture, operating systems and
compilers. McIntosh [3] describes methods for a
compiler to insert instructions to prefetch data that is
needed later in the code. Of course, all the code to be
executed in the future can be seen when the
prefetches are inserted, so the prediction can be based

on a concrete analysis of what data will be needed.
This prediction is similar to the workflow analysis
used (optionally) by Workgroup Cache. However, a
compiler inserting prefetching instructions has no
notion of configurable prefetch criteria based on
functional groups, i.e., prefetch criteria that change
depending on the type of program being compiled (or
in the Workgroup Cache case, the tasks to be
performed).

Prefetching of data for performance enhancement
has been applied to streaming multimedia
applications, but this is often limited to special-
purpose buffering. For example, the Nemesis system
[4] must only predict how much data will be needed
from a single source, depending on current frame
rates. There is one data source, and one recipient.

Speculative cache prefetching has also been
explored for improving access times in low and
intermittent bandwidth networks. Tuah et al. [5]
conduct a quantitative investigation into access time
improvements gained by a prefetching model. They
classify multiple prefetches as either mainline
prefetches, which are prefetches of documents that
are most likely to follow one another, or branch
prefetches, which are prefetches of a number of
alternative documents, any one of which may be
accessed in the future. Branch prefetching can be
expected to produce better access time than mainline
prefetching, but at a higher retrieval cost, i.e., greater
bandwidth devoted to retrieving documents that may
never be accessed. Tuah et al. concludes that an ideal
prefetcher would adapt its strategy depending on
available resources and target performance.

Caubweb [6] prefetches subsets of the WWW
document space, called ``weblets'', while the user is
still connected, for the user to browse after network
disconnection. Prefetching is configured and
executed explicitly by the user - document
parameters and starting document are set, and
Caubweb follows hyperlinks and caches all linked
information conforming to the given parameters. The
document parameters include pattern matching on the
URL or hyperlink text, depth from the start
document, and file properties such as size and MIME
type. This system basically requires a user to know
and specify precisely which documents she will need
after disconnection; no "knowledge" of access
patterns or tasks is employed.

A variety of large scale, typically hierarchical
shared cache systems have been developed for
WWW, e.g., Harvest [7], to enable users to obtain
documents from a “nearby” proxy cache rather than a
distant server. Tewari et al. [8] studied such
architectures’ performances on three “benchmark”
trace workloads to arrive at these design principles:

• Share data among many clients
• Minimize the number of hops to locate data on

hits or misses
• Cache data close to clients.

They found that most deployed and proposed
architectures violate some of these principles,
reducing the miss rate in preference to reducing hit
time and miss time. They promote a new variant of
the “hint cache” data-location metadata hierarchy,
which is then exploited by a “push cache”
mechanism. Their simulations show 1.27 to 2.43
times speedup compared to other large scale cache
architectures. The results are expected to be better
when clients of a leaf cache are grouped intelligently,
e.g., according to workgroups. However, Tewari et
al. still base predictions of future accesses primarily
on past patterns, and do not prefetch from primary
sources but only from other pushcashes in the system.
Their open source Cuttlefish implementation is now
available at PushCache.com. It is possible that their
PushAp Kit product could be used to implement our
Workgroup cache architecture on top of Cuttlefish.

The Coda filesystem [9] includes extensive
provisions for caching files on a client for use when
disconnected from the server; indeed one of the main
features of the Coda system is improved accessibility
via caching, or "hoarding" as Coda calls it. A Coda
client caches files periodically or at user request,
using recent file accesses in concert with a hoard
profile, which is a configuration created by the user
to specify which files are to be cached, and what the
hoard priorities of those files are. This approach is
more advanced than Caubweb's, but still requires the
user to specify what is to be cached, using a simple
decaying priority algorithm to cache files that are
accessed but not specified in a hoard profile, and
cannot take into account the file accesses of other
same-workgroup users when determining hoard
priority.

In our previous work on Laputa [10], prefetching
was also proposed to support network disconnection.
We identified three types of criteria for determining
what documents to prefetch: manual, heuristic and
process-based. While manual and heuristic methods
were seen in Coda's "hoarding", the process-based
method was new. Since Laputa was meant for
disconnected software development, information
about software processes would be used to determine
what documents to fetch. Laputa might fetch all
documents necessary for the completion of a selected
task, plus documents necessary for tasks expected to
soon follow the current task in the process.
Workgroup Cache similarly considers workflow
semantics to predict future data need, but extends
beyond Laputa by including the work processes of

multiple users, i.e., multiple participants in the
workflow, in its document prefetch criteria.

The Remembrance Agent [11] augments human
memory by displaying a list of documents that might
be relevant to the user's current context. Unlike most
information retrieval systems, the Remembrance
Agent runs continuously without user intervention.
Its unobtrusive interface allows a user to pursue or
ignore its suggestions as desired. The implementation
currently available for the emacs text editor
continuously watches what the user types and reads,
and finds old email, notes files, and on-line
documents apparently relevant to the user's context.
One-line suggestions at the bottom of the display
buffer, along with a numeric rating indicating how
relevant it thinks the document is. The frequency
with which the front end provides new suggestions,
the number of suggestions, and whether to look at
text notes files, old email, or other document sources
is customizable for each user. An extension to a
workgroup Remembrance Agent is briefly postulated,
but apparently has not yet been pursued. Instead a
“wearable” version is being investigated [12]. A
group-oriented “wearable” is, however, under
development in the Factoid project at Compaq
(http://www.research.digital.com/wrl).

Group-oriented recommender systems are familiar
to anyone who makes purchases via the World Wide
Web. Retailers such as Amazon.com and
CDNow.com use such tools to suggest future
purchases to customers based on their history of
previous purchases. Of course, the algorithms used in
these two cases are proprietary, so we can only guess
at how they actually work, but Amazon states that
buying patterns of other customers are used in the
determination of recommendations. The criteria for
recommendation, then, are based on data from a
functional group, but that group is universal;
apparently, it contains all Amazon customers. One
result of this “universal group” strategy is that
specialized recommendations can be given only
based on per-customer data; recommendations arising
from other customers' buying patterns may not be
very useful.

CDnow's system recommends albums bought by
other customers with buying patterns similar to the
current user's. This allows for some specialization
based on the automatic clustering of users by music
preferences. The criteria for recommendation in this
case are attached to an implicit group of sorts, the
group of customers with "similar buying patterns".
This group is defined only vaguely, however, and
again in practice does not seem very useful.

The Alexa package (http://www.alexa.com) is a
kind of recommender system for the Web, in the

form of "related sites". In newer versions (4.06 or
later) of Netscape Communicator, Alexa's
recommendations are presented through the "What's
Related" control in the location toolbar. Again, the
system is proprietary, but Alexa makes several
statements hinting at how the system works. The
Internet Explorer version watches its users'
browsing behavior, such as links followed and time
spent at a site, and uses this information, collected
from all Alexa users, to infer relations between sites.
These related sites are then listed. Alexa's
recommendations are similar to those of Amazon in
that they are based on data collected from an
effectively universal set of users, although the
universal group for Alexa is apparently much larger,
including statistics mined from browsing patterns of
all Web users. As far as we know, Alexa has no
notion of groups to which users belong, in order to
further specialize recommendations.

Fab [13] also recommends Web sites, but bases its
recommendations on a personal profile that becomes
adapted to the individual user over time. The user's
recommendations are initially random, but the user
can manually rate the pages recommended to her.
These ratings then are used to alter the user's profile,
so that the next group of sites recommended to that
user are more personalized. There is also a provision
for "parasitic" users: users that do not create profiles
of their own but use the profiles of others to get
recommendations. The group model lies at the
opposite extreme from the ones we have seen so far.
Instead of a universal set of users, the set contains
only one user, and recommendations are based on the
profile of that one user. This allows for very
specialized recommendations, but is not applicable to
recommendations as needed in a collaborative
environment of shared media.

Ant World [14] uses what it calls "digital
information pheromones" to produce website
recommendations. The Ant World system appears at
the top of the user's browser while the user performs
a search on the Web. After each link is traversed, the
user must rate the link's usefulness to her search. This
intrusive interaction enables the server to build up a
database of weighted graphs representing the paths
taken by users during their searches. These paths are
meant to be analogous to the pheromone trail left by
ants searching for food. If a user happens upon a path
that was previously rated strongly by another user,
the next recommended link in this strong path is
marked. Thus, information from other users is used to
recommend Web search paths, but again, the set of
users from which this information is obtained is
universal -- there is no way to specify what other

users are likely to be most relevant to one's own
search.

The ReferralWeb [15] recommender system
explores and maps the user's "social network", and an
expert in a requested subject can potentially be found
and recommended (referred). The social network is
used to find experts socially "near" to the user, since
a closer node in the network is more likely to share
common interests and is therefore more likely to
respond usefully to questions about the requested
subject. This project focuses mainly on the
construction of the social network, which is another
type of implicitly defined workgroup. In the
ReferralWeb study, co-authorship on a paper was
considered an association between users, so the large
bibliography databases already in existence could be
used to construct the network. Central to the project's
viability is the idea that information from those in a
group with whom a user associates is more likely
than otherwise to be relevant to that user.

3. Design and Architecture
The Workgroup Cache design is based on a model

of small distributed components interacting with each
other over a network. There are three main
components:

Client: This includes the user-client program
itself, plus a Workgroup Cache interface to provide
the user with controls. The client typically includes
facilities for pulling (requesting) documents directly
from the network, and may also support direct
pushing (recommendation), but neither is mandatory.
Legacy clients are supported on a necessarily ad hoc
basis through wrapping, applets, etc.

Personal Cache Module (PCM): This component
is associated with a single client, and automatically
saves all documents received by the client (until the
cache is full, when prioritization criteria are invoked
to determine replacement). PCM handles criteria for
pushing documents to the shared cache and receives
documents pushed to it by the shared cache. It also
decides whether to present such pushed documents
immediately to the user, and optionally also supports
pull criteria. Each PCM may be connected to any
number of shared cache modules.

Shared Cache Module (SCM): This component
is associated with a workgroup and contains criteria
for sending and receiving documents to and from the
personal caches of users in that workgroup. This
module provides the major caching functionality of
the system, and is the main center for task-based
document pull (e.g., to retrieve documents likely to
be needed "soon" for the in-progress workflow or
otherwise predefined task).

Figure 1. Architecture
The client, PCM and SCM components interact as

shown in figure 1. The client can push documents to
its PCM, and pull documents from its PCM or from
an outside source (for example, the World Wide
Web). The central facet of the client component is its
cache control interface to the PCM. The criteria for
the client to execute any of its interactions with PCM
are completely under the user's control. This is meant
in part to protect the security and privacy of the user,
regarding accessed documents, as well as to permit
avoidance of potentially annoying popup pushes if
that user prefers. The user cache controls allow the
user to specify to which workgroups any documents
accessed by that client are relevant, if any, and to
accept or decline inclusion in automatically
configured workgroups. The user can also turn off
caching entirely or temporarily, if, for example, when
accessing sensitive documents that should not be
cached publicly. The user controls could also provide
configuration options for handling this automatically,
by, for instance, turning off caching automatically for
any document accessed via SSL. The client controls
can also be used for manual recommendation of
documents: if a user has accessed a document that
she thinks might be interesting to her co-workers, she
can push it to the SCM, where everyone in the
workgroup could then access it.

Actions taken by the SCM are not based on direct
per-user controls, but rather on configurable criteria,
represented essentially as rules consisting of
condition-action pairs. The conditions must be highly
flexible, to allow as much freedom as possible in
customizing the behavior of the system to fit the
behavior of the workgroup. Possible conditions (that
might lead to smart push, pull or save actions) could
include frequent accesses to a document by several
members of the workgroup, as determined by
analyzing access history logs, explicit
recommendations from more than one user or from
one high-priority user, or any other detectable

condition that may indicate a document's importance
(or non-importance - e.g., a condition may, if
satisfied, cause a document to, say, be discarded from
the cache). If a workflow system is attached to an
SCM component, a condition-action pair could
specify that if the first document in a workflow is
accessed by a user, the next document or documents
in the flow should be pushed to that user's PCM - or
to another user's PCM if the workflow specifies
routing to another user in the workgroup. (The
workflow system must supply an API suitable for
implementing a conduit from the workflow engine to
the SCM.)

The PCM component's actions include pushing
and pulling documents to/from the client and to/from
any associated SCM. It can also save documents in
its own cache, if it has one. (If the PCM does not
have its own cache, it exists solely for its pushing and
pulling abilities, in contrast to the SCM, which must
always have its own cache to be shared among clients
in the workgroup.) The purpose of the PCM is to
allow for some criteria to be configured on a per-user
basis. A user who is working especially closely with
another user in the workgroup may wish to be
informed of all document accessed by that second
user. That user's PCM would then be configured to
pull from the SCM and push to the client any
document accessed by the other user. (In principle,
any pair of PCM's with their own caches could
interact directly, forming their own mini-workgroup
and by-passing the SCM's criteria and its cache, but
we do not intend to support this initially due to the
relatively higher complexity.)

The normal flow of document access generally
works as follows:

1. The user requests a document via the client
program.

2. The client component tries to pull the
document from its PCM.

3. The PCM looks for the document in its cache.
If it exists there, that copy is returned to the client,
and a record of the access is passed to the SCM. If
not, the PCM tries to pull the document from the
SCM. In any case, all the criteria rules are checked,
and actions are performed for any conditions that are
satisfied by the new access.

4. The SCM looks for the document in its cache.
If it exists there, that copy is returned, and the access
is recorded in the history. If not, either the client or
the SCM (determined by the client's controls)
retrieves the document from its outside source; when
SCM performs the outside pull, its criteria rules are
then checked and any applicable actions are
performed.

Because each client is associated with exactly one
PCM and vice versa, it would be possible to collapse
the two components into one. The PCM is separated
from the client component in the Workgroup Cache
design, however, in order to create as little
disturbance as possible to the normal operation of the
client. It can run on a separate machine (presumably
on the same fast local network as the client) while the
client needs only a small amount of user interface and
PCM-interface code, ideally as unobtrusive as a Java
applet.

4. Realization
Our proof-of-concept implementation of

Workgroup Cache is a collection of Java
applications, based largely around a middleware
framework called the Groupspace Controller ([16]
describes GC’s predecessor but most aspects still
apply). GC provides a flexible and robust
environment that ties together various parts of a
Workgroup Cache component, and includes built-in
support for event publish/subscribe, including
"request" as well as conventional "notification" style
events, and for communication between GCs on
different machines.

The client we have chosen to focus on initially is
the University of California at Irvine's Chimera open
hypermedia system [17]. Chimera includes a linkbase
that represents external (to the media) N-ary
hyperlinks among diverse types of documents, such
as GIF images and FrameMaker documents, whose
"viewers" interface to Chimera through its API. We
plan to employ Workgroup Cache ourselves for our
own software development, where Chimera will store
links between source code files and other types of
media such as design documents and email archives,
as well as among source code files (e.g., identifier
definitions and uses). Thus Chimera, or actually its
viewers, makes for ideal end-user clients for applying
Workgroup Cache to distributed software
development projects (although our own
development is admittedly not distributed any further
than the various participants' homes in addition to the
Columbia campus).

The implementation of the client component
required small alterations to the Chimera code to
interface with GC, and hence with the PCM. When
the user follows a link in Chimera, the code inserted
into Chimera's native event handling mechanism
intercepts that Chimera event and translates it into a
GC event, and fires the event in the controller. The
PCM interface picks up that event, and requests the
document from the PCM. The added Chimera
interface code also provides the user with the cache
controls.

The PCM component is implemented as another
GC with a personal cache controller service and a
cache interface service. The personal cache controller
handles all the local cache criteria, and does the
sending and receiving of access requests. The cache
interface is a simple implementation of the Internet
Cache Protocol (ICP [18]), so any external web
proxy cache that speaks ICP (we're using Squid, see
http://squid.nlanr.net) can be used to handle the
actual storing and retrieval of files.

SCM also uses GC to enable its core service,
which we call a Workgroup object, to interact with
the cache and (optional) workflow system
interface(s). The Workgroup object manages the
criteria. Multiple Workgroup objects (effectively
multiple SCMs for distinct workgroups) can be
connected to a single GC, if desired, to share the
same cache and workflow system interfaces. The
cache interface is an ICP interface as above. The
workflow interface, still in the design stages, is
planned to work with IBM's MQSeries Workflow
product.

We anticipate that our Workgroup Cache model
and architecture, if not necessarily our early
prototype, will prove useful for intelligently sharing
information among distributed software developers.
However, this work is in progress, as befitting a
workshop submission, and empirical data on practical
usage of the system is still to come.

Acknowledgements
We thank John Salasin, Scott Gross, Janak Parekh,

Dan Port, Adam Stone, Jack Yang and attendees at
the 8th WET-ICE for useful technical discussions and
feedback.

The Programming Systems Lab is sponsored in
part by the Defense Advanced Research Projects
Agency, and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-
97-2-0022, and in part by an IBM University
Partnership Program Award. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any
copyright annotation thereon. The views and
conclusions contained in this document are those of
the authors and should not be interpreted as
representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced
Research Projects Agency, the Air Force, the U.S.
Government or IBM.

Programming Systems Lab software is available at
http://www.psl.cs.columbia.edu/.

References
[1] D. Gibson, J. Kleinberg and P. Raghavan.

“Inferring Web communities from link topology”. 9th
ACM Conference on Hypertext and Hypermedia ,
June 1998.

[2] Mann, Charles C. “Programs to the People”.
Technology Review, January/February 1999.

[3] McIntosh, Nathaniel . Compiler Support for
Software Prefetching. Rice University, PhD Thesis,
TR98-303, May 1998.

 [4] Katseff, Howard P. and Robinson, Bethany S.
Predictive “Prefetch in the Nemesis Multimedia
Information Service”. 2nd ACM International
Conference on Multimedia, 1994.

[5] Tuah, N. J., Kumar, M. and Venkatesh, S.
“Investigation of a Prefetch Model for Low
Bandwidth Networks”. 1st ACM International
Workshop on Wireless Mobile Multimedia, October
1998.

 [6] Lo Verso, John R. and Mazer, Murray S.
“Caubweb: Detaching the Web with Tcl”. 5th Annual
USENIX Tcl/Tk Workshop, July 1997.

[7] Chankhunthod , A. et al. “A Hierarchical
Internet Object Cache”. USENIX 1996 Annual
Technical Conference, January 1996.

[8] Tewari, Renu et al. "Design Considerations for
Distributed Caching on the Internet”. 19th IEEE
International Conference on Distributed Computing
Systems, May 1999.

[9] Kistler, James J. and Satyanarayan, M.
“Disconnected Operation in the Coda File System”.
Symposium on Operating Systems Principles,
October 1991.

[10] Skopp, Peter D. and Kaiser, Gail E.
“Disconnected Operation in a Multi-User Software
Development Environment”. IEEE Workshop on
Advances in Parallel and Distributed Systems ,
October 1993.

[11] Rhodes, Bradely and Starner, Thad.
“Remembrance Agent: A continuously running
automated information retrieval system". 1st
International Conference on The Practical
Application of Intelligent Agents and Multi Agent
Technology, April 1996.

[12] Rhodes, Bradley. “The Wearable
Remembrance Agent: A system for augmented
memory”. Personal Technologies, 1:218-224 (1997).

[13] Balabanovic, Marko. “An Adaptive Web Page
Recommendation Service”. 1st International
Conference on Autonomous Agents, February 1997.

[14] Kantor, P.B., Melamed, B. and Boros, E. A
Novel Approach to Information Finding in
Networked Environments. Rutgers University, 1998.

 [15] Kautz, H., Selman, B. and Shah, M. “The
Hidden Web”. AI Magazine, 8(2):27-36, Summer
1997.

[16] Kaiser, Gail E. and Dossick, Stephen E.
“Workgroup Middleware for Distributed Projects”.
IEEE 7th International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, June 1998.

 [17] Anderson, Kenneth M., Taylor, Richard N.
and Whitehead, E. James Jr. “Chimera: Hypertext for
Heterogeneous Software Environments”. European
Conference on Hypermedia Technology , September
1994.

[18] Wessels, D. and Claffy, K. Internet Cache
Protocol (ICP), version 2. RFC 2186, September
1997.

