
International Process Technology Workshop (IPTW) submission file:///D:/kaiser/iptw99/position.html

Page 1 of 6 Tuesday, June 01, 1999 13:04:32

A Mobile Agent Approach to Lightweight Process Workflow

Gail Kaiser, Adam Stone and Stephen Dossick

Columbia University
Department of Computer Science
1214 Amsterdam Avenue, MC 0401

New York, NY 10027
United States

212-939-7100/fax:212-939-7084
psl@cs.columbia.edu

http://www.psl.cs.columbia.edu/

Introduction

The Programming Systems Lab at Columbia University has investigated software process modeling and
enactment since its inception in the mid-1980s, initially in the Marvel project [1,2]. In the early to
mid-90s, we extended to cross-organizational processes operating over the Internet, in Oz [3,4] and
OzWeb [5]. That is, Oz enabled the software development team and other stakeholders to be
geographically, temporally and/or organizationally dispersed. OzWeb added integration of Web and
other external information resources whereas Oz and Marvel had assumed all project materials to be
resident in their native objectbases. OzWeb's plugin services and tools were accessible via conventional
Web browsers, HTTP proxies and Java GUIs, improving dramatically on Marvel's and Oz's X11
Windows XView/Motif user interface clients. The successive prototype frameworks we developed and
demonstrated were used on a daily basis in-house to maintain, deploy and monitor their own
components, APIs and user interfaces.

Novel (at the relevant time) framework components included rule-based process modeling and a
corresponding enactment engine supporting multi-process interoperability for joint and subcontracted
tasks across autonomous organizations (Amber); a transaction monitor customizable to
application-specific long duration and group extended transaction models over Web and legacy
resources (Pern, succeeded by JPernLite); an object manager supporting multi-inheritance
(Darkover); a decentralized intranet-remote tool-sharing service that turned legacy
only-executables-available single-user tools into groupware (Multi-Tool Protocol or MTP, later
Rivendell); an OQL and XML-based "light semantics" information integration service that could
impose external hyperlinks and annotations (Xanth); an integrated object broker/events messenger that
enabled dynamic integration and publish/subscribe for legacy and new data and computation services
(Groupspace Controller); a service for inserting HTML links in both directions between identifier
uses and definitions for any source code file sets supported by the etags utility (Hi-C); a RVP-style
instant messaging system (Java Instant Messaging or JIM); and a toolkit for programming smart
federations among enterprise-enabled services (TreatyMaker). [Citations/References intentionally
omitted from this paragraph due to space considerations; see
ftp://ftp.psl.cs.columbia.edu/pub/psl/INDEX.html.]

The new process technology first presented here is broadly based on our decade of research on and
experimentation with architecting and using such prototype services and software development
processes targeted to Internet/Web middleware and applications, but reflects a major departure from
our own (and others') previous directions. In particular, current process and workflow systems,
including our own, are often too rigid for open-ended creative intellectual work, unable to rapidly adapt

International Process Technology Workshop (IPTW) submission file:///D:/kaiser/iptw99/position.html

Page 2 of 6 Tuesday, June 01, 1999 13:04:34

either the models or the enactment to situational context and/or user role. On the other hand, the
process/workflow ideal implies a flexible mechanism for composition and coordination of information
system components. We now present our in-progress development of rehostable lightweight mobile
agents for on-the-fly process construction, adaptation and evolution, system reconfiguration, and
knowledge propagation.

Worklets Model

Scripted mobile workflow agents, which we call worklets, address both the problems and the promise:
Worklets might be constructed or parametrized on the fly by a human or a program, then transmitted
from component host to host through a "meta-workflow" - a dynamically determined routing pattern
reactive to the latest host's circumstances and surroundings as well as past and planned trajectories.
Workflow typically involves actions performed on data, or perhaps interactions among humans
concerned with implicit data "resident" in the humans' memories. But here the "work" generalizes to
(re)customizing the host's configuration - loosely construed, including, e.g., schemata, lock tables,
authorization capabilities, event subscriptions, even host machine registry. And of course the process
model(s). In the degenerate case of the usual data, a worklet is simply a workflow snippet whose
semantics are dependent on the host's interpretation of its directives. [Note that by host we generally
mean a particular information system component, not usually the entire machine or operating system
platform.]

Each worklet is a small scripted program, like the various web agents (e.g., see [6]) a combination
mobile agent and smart RPC, but in our case potentially including workflow-like rules, as well as
imperative code for host-context exploration/instantiation, whose "work" is to manipulate the
configuration model(s) of a middleware service or a complex document. The level of dynamism is
inherently both enabled and limited by the host: For example, in the case where the host is a database
management system and the worklet initiates changes to its schema, that "(re)configuration" might
immediately evolve all data, upgrade data as it happens to be accessed, apply only to new data, or
become effective only after a long off-line procedure. However, the "configuration" implied by the
database's contents could usually be modified on the fly as worklets arrive or the triggering conditions of
already-local worklets become satisfied. As another example, worklets might define part of or modify
the workflow definition being enacted by a conventional workflow management tool, inserting their
bodies into the model or matching against existing tasks to be adapted or removed. Whether or not a
newly modified process model applies to any in-progress process steps, the current or following spiral
iteration, or only to the "next" instance is necessarily limited by the capabilities of the base workflow
management system. Unless, of course, the worklet enacts a workflow fragment on its own. Any part
of an intelligent document could be treated as a configuration model to be upgraded by the worklet,
e.g., to tailor and install its components in a distributed enterprise setting.

Worklets Architecture

A host-specific worklet adaptor must be constructed for each anticipated host system or component,

International Process Technology Workshop (IPTW) submission file:///D:/kaiser/iptw99/position.html

Page 3 of 6 Tuesday, June 01, 1999 13:04:36

and is attached to that host, as illustrated above. Obviously, construction of such adaptors is plausible
only if the host provides an API or extension language, can reasonably be wrapped, or of course if its
source code is available and the adaptor builder is willing and able to plunge into it. Generally, the
adaptor builder must have expert-level understanding of the host and the capabilities it exports.
However, the worklet writer should have no need to understand any particular host, and usually
worklets should be written without any particular host(s) in mind.

Worklets are intended to be interpreted by a common worklet virtual machine (WVM) embedded in
the host-specific worklet adaptor, as shown above. The adaptor translates those internal configuration
capabilities that the host exposes into terminology meaningful to the worklets through service access
modules (SAMs). Of course, some worklet directives may be impossible to map to anything other than
a no-op: a worklet intent on writing to a console will obviously not do anything very useful if it lands on
a device with no user interface and no file or other storage capacity to approximate an output stream.

SAMs are connected to WVM through our groupspace controller (GC). GC was initially designed to
support workgroup information spaces, by imposing what we termed groupspace services on all data
and computation accesses/requests [7]. Here, GC hooks into the host's event bus, or closest
approximation thereof, to inform WVM of any internal events of interest and to publish to WVM in a
standard manner those host functions available through the SAMs. Although it is possible to implement
the host interface as a single SAM, generally the host's features are divided into functionally cohesive
"services", and thus multiple SAMs.

Worklets Realization

The Worklet Virtual Machine is responsible for maintaining an execution environment for the worklets in
a given system. This includes maintaining worklet interpreters and the threads they run in, as well as an
extensible network layer for transporting worklets between WVMs and serialization (what Python calls
"pickling") capabilities. WVM is implemented in Java 2, and the worklets themselves are written in
JPython. Worklets are transmitted among hosts and communicate with each other through Java RMI.
SAMs should be written following the JavaBeans convention, and their interfaces are also published as
JavaBeans. The Listener worklet below simply listens to events from GC and "handles" them.
MyWorklet immediately sends itself to another host and starts emitting events from there.

class ListenerWorklet(Worklet):
 def foobar(self):
 print "Inside foobar"
 print interp.getEnvironmentName()
 def activate(self):
 print "In activate"
 interp.addSubscription("WVM.eventGenerator.EVENT")
 interp.enterEventLoop()
 def handleEvent(self):
 print "Handling Event"
 print __currentEvent.getEventDescription()

International Process Technology Workshop (IPTW) submission file:///D:/kaiser/iptw99/position.html

Page 4 of 6 Tuesday, June 01, 1999 13:04:38

 print "Done Handling, thanks..."
w = ListenerWorklet()

class MyWorklet(Worklet):
 myCount = 1
 def foobar(self):
 print "Inside foobar"
 print interp.getEnvironmentName()
 def activate(self):
 if (self.myCount == 1) :
 self.myCount = 0
 interp.sendCopy("broadway")
 else :
 print "Worklet arrived safely"
 print "Sending events"
 interp.sendEvent("EVENT")
 interp.sendEvent("OTHER")
 interp.sendEvent("EVENT")
 print "Done Sending events"
w = MyWorklet()

Applications

Systems constructed using our CHIME (Columbia Hypermedia IMmersion Environment [8])
infrastructure present their users with a 3D depiction of hypermedia and/or other information resources.
Users visualize, and their avatars operate within, a collaborative virtual environment [9]
based on some metaphor selected to aid their intuition in understanding and/or utilizing the information of
interest or relevant to the task at hand. Users "see" and interact with each other, when
in close [virtual] proximity, as well as with the encompassing information space. Actions meaningful
within the metaphor are mapped to operations appropriate for the information domain, such as invoking
external tools, running queries or viewing documents. An e-commerce web site peddling computer
hardware might look and feel like an on-screen CompUSA; a digital library might be illustrated as,
indeed, a library. Application domains without obvious physical counterparts might choose more
whimsical themes. For example, a software development environment for an open-source system might
map each source code package to a room on the Starship Enterprise, with the "main" subprogram
represented by the bridge, amateur programmers proposing a modification could beam aboard, and so
forth. Note these are just possibilities: CHIME is a generic architecture, no particular theme is built-in.
But environment designers do not necessarily need to program since graphic textures and models can be
supplied by third parties, and the specific layout and contents of a world are automatically generated
according to an XML-based configuration. The environment designers must, of course, understand their
backend repositories sufficiently to write the XML and corresponding processors, unless such
meta-information is already supplied by the sources.

CHIME will employ worklets in two ways: Incremental update of the virtual worlds, and lightweight
XML processing. When a backend information resource is modified, generally through an external tool,
the corresponding specialized kind of SAM called a data access module (DAM), generates and emits a
worklet to update the internal representation of the virtual world, which is maintained by the Virtual
Environment Model (VEM) component of the infrastructure. VEM in turn generates and emits a
worklet to the theme manager, to make the corresponding updates there. Finally, the theme manager
generates and emits a worklet for each of its active clients. Such worklets are intepreted by each client's
presentation access module (PAM), another subclass of SAMs, to initiate interpolation from the
previous scene graph viewed by that client to the new form (if desired, a user can always choose to
stick with an older version). The twin mappings from backend sources to VEM to theme manager are

International Process Technology Workshop (IPTW) submission file:///D:/kaiser/iptw99/position.html

Page 5 of 6 Tuesday, June 01, 1999 13:04:39

defined in XML by an environment administrator. There is no predefined DTD covering the tags added
at each processing point, but instead unrecognized tags are handled by retrieving the matching worklet
from an "XML oracle" component (which can also be employed separately from the rest of the
CHIME infrastructure). Both processes are obviously very simple, conceptually, but must be extremely
dynamic and flexible, with the constituent workflow tasks effectively conceived and routed on the fly.

Workgroup Cache [10] is intended to reduce average access latency for shared networked documents.
Zero latency refers to the condition where access to a document produces a cache hit on the local
machine, because it was either previously accessed or prefetched; negative latency refers to automatic
presentation of a document to a user based on a prediction that this user will soon want that document.
Simple algorithms like LRU cache replacement and explicit keyword or topic subscriptions are routinely
used when nothing is known about the semantic content of the accesses or the tasks to be performed by
the user utilizing those accesses. However, our Workgroup Cache infrastructure can (in principle)
leverage any knowledge available about the semantic content and pragmatic usage of documents as a
basis for prediction of future accesses. We focus that knowledge within a "workgroup", a set of users
working on the same task or related tasks, as opposed to the "universal" statistics maintained by Alexa
for Netscape's "What's Related". The members of a given workgroup can be explicitly specified in
advance, such as a software development team working closely together (although they might be
physically dispersed), or determined dynamically by including users whose document accesses match
patterns associated in some manner with the workgroup, such as amateur programmers actively
working on the same subsystem of an open-source project [11].

Open source development relies on coordinating numerous developers distributed world-wide;
difficulties can arise due to the relatively little contact developers may have with each other, they might
never even have met! A system for recommending documents (such as source files) based on the nature
of their present tasks and the document content might help. For example, say a primary developer is
making major changes to one file in a module, and a secondary developer attempts to start adding a
small feature to another file in the same module. If both developers are already or automatically become
(due to their apparently shared interests) members of the same workgroup, and are using our
Workgroup Cache system powered by semantics drawn from software configuration management, the
cache system would "know" about the dependencies between the two files, and could push
(recommend) the changing source file to the secondary developer. Then she could check if the code she
was adding will be incompatible with the likely new version of the module. Or pull criteria might
continuously update the feature self-assignments records, so she could also be informed that another
secondary developer had already started adding a similar feature, preventing duplication of effort.

Various cache fill (push) and replacement (save) criteria, as well as recommendation criteria (push), may
be defined separately as worklets and then associated on the fly with a given workgroup. Criteria might
be based on software process or workflow routing among workgroup members, through a
conventional process management system that emits "to do" assignments as worklets. Or worklets
could directly analyze and respond to document access patterns of workgroup members (e.g., if my
supervisor or guru colleague keeps returning to such and such technical report then I want to read it
too). Finally, the "XML oracle" can also operate here, to supply worklets that process XML metadata
associated with or embedded in accessed documents. Again, the portion of the workflow we anticipate
handling through worklets is relatively simple, but necessarily highly dynamic and flexible. Worklets are
intended to operate in tandem with conventional process automation and workflow management
systems, adapting/evolving their process models as need be, being emitted by local worklet adaptors to
perform remote tasks - particularly tasks whose makeup and hosts are determined while the task is in
progress, or on small devices unlikely to support a full-fledged workflow management system.

International Process Technology Workshop (IPTW) submission file:///D:/kaiser/iptw99/position.html

Page 6 of 6 Tuesday, June 01, 1999 13:04:42

References
#. Gail E. Kaiser and Peter H. Feiler, An Architecture for Intelligent Assistance in Software

Development, 9th International Conference on Software Engineering, March 1987, pp.
180-188. ftp://ftp.psl.cs.columbia.edu/pub/psl/icse87.ps.gz.

#. Israel Z. Ben-Shaul, Gail E. Kaiser and George T. Heineman, An Architecture for Multi-User
Software Development Environments, Computing Systems, The Journal of the USENIX
Association, 6(2):65-103, Spring 1993.
ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-012-92.ps.Z.

#. Israel Z. Ben-Shaul and Gail E. Kaiser, A Paradigm for Decentralized Process Modeling and its
Realization in the Oz Environment, 16th International Conference on Software Engineering, May
1994, pp. 179-188. ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-024-93.ps.Z.

#. Israel Z. Ben-Shaul and Gail E. Kaiser, Federating Process-Centered Environments: the Oz
Experience", Automated Software Engineering, 5(1):97-132, January 1998.
ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-006-97.ps.gz.

#. Gail E. Kaiser, Stephen E. Dossick, Wenyu Jiang, Jack Jingshuang Yang and Sonny Xi Ye,
WWW-based Collaboration Environments with Distributed Tool Services, World Wide Web,
1:3-25, 1998. ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-003-97.ps.gz.

#. Michael N. Huhns and Munindar P. Singh (eds.), Internet-Based Agents: Applications and
Infrastructure, special issue of IEEE Internet Computing, 1(4), July/August 1997.
http://www.computer.org/internet/ic1997/w4toc.htm.

#. Gail E. Kaiser and Stephen E. Dossick, Workgroup Middleware for Distributed Projects, 7th
IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, June 1998, pp. 63-68. ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-006-98.ps.gz.

#. Stephen E. Dossick and Gail E. Kaiser, CHIME: A Metadata-Based Distributed Software
Development Environment, to appear in Joint 7th European Software Engineering Conference
and 7th ACM SIGSOFT International Symposium on the Foundations of Software Engineering,
September 1999. ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-006-99.zip.

#. Elizabeth F. Churchill and Dave Snowdon, Report on Collaborative Virtual Environments 1998
(CVE '98), June 1998, http://www.fxpal.com/cve98/Report.

#. Gail Kaiser, Christopher Vaill and Stephen Dossick, A Workgroup Model for Smart Pushing and
Pulling, to appear in 8th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, June 1999.
ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-012-99.zip.

#. Charles C. Mann, Programs to the People, Technology Review, January/February 1999.
http://www.techreview.com/articles/jan99/mann.htm

