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Abstract

Rule-based software development environments (RBDEs) model the software development
process in terms of rules that encapsulate development activities, and assist in executing the
process via forward and backward chaining over the rule base. We investigate the scaling up of
RBDEs to support (1) multiple views of the rule base for multiple users and (2) evolution of
the rule base over the lifetime of a project.  Our approach is based on clarifying two distinct
functions of rules and chaining: maintaining consistency and automation.  By definition,
consistency is mandatory whereas automation is not.  Distinguishing the consistency and
automation aspects of RBDE assistance mechanisms makes it possible to formalize the range
of compatible views and the scope of mechanizable evolution steps.  Throughout the paper, we
use the MARVEL RBDE as an example application.
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1. Introduction
Process-centered software development environments assist their users in carrying out the

software development process [Perry 89, Katayama 90].  In order to accommodate long-term

projects involving teams of software personnel, it is essential to support multiple views and

evolution.

Multiple views are needed for several purposes. Individual users can express personal

tailoring of localized aspects of the process; managers can impose their different management

styles regarding the rigidity of the process on their groups.  Views for different user roles or

lifecycle phases can emphasize the subset of functionality appropriate to those roles or phases,

respectively.

Evolution is inescapable due to changes in management philosophy and optimization of the

development process [Humphrey 89], reorganization of the project components as their

number and complexity grows, and changes to the tool set as new tools become available and

older tools are discarded.

The problems of multiple views and evolution are related, because they are both concerned

with divergent versions of the process definition, the data format, and the tool set of an



environment. But in the evolution case the divergence is over time, whereas there may be

multiple views at the same point in time.  Multiple views necessarily co-exist with one

another, while evolution is not necessarily backward compatible and in fact may require

upgrading or invalidation of previous views.  Note that we are concerned here with the

evolution of the software development process, project organization schema and tool set, as

opposed to the evolution of the product being developed or of the underlying environment

framework.

Different process-centered environments represent the process using different formalisms.

Arcadia [Taylor 88] uses an extension of Ada as a process programming language [Sutton

90a]. HFSP employs a form of attribute grammars [Katayama 89].  MELMAC combines

several perspectives on the process into a representation similar to Petri nets [Deiters 90].

It seems likely that the approach to multiple views and evolution will depend to a large extent

on the process modeling formalism. This paper describes our investigation of the problems of

multiple views and evolution in the context of process-centered environments that use rules to

define the software process. We chose rules because they provide a natural primitive

formalism for defining software development activities, in terms of their conditions and

effects. Other more abstract formalisms have been elegantly defined on top of rules [Deiters

90, Kaiser 91], but this issue is outside the scope of this paper.

Rule-based software development environments (RBDEs) are a subclass of process-centered

environments. In RBDEs, each step in the process is modeled by a rule that specifies the

condition for initiating the step and the effect of completing the step. The schema (or data

model) is typically specified in an object-oriented style, as a set of classes.  The rule

conditions and effects operate on attributes of objects, instances of the classes.  Example

RBDEs include Grapple [Huff 88], Darwin [Minsky 91], Workshop [Clemm 88],

Oikos [Ciancarini 93] and ALF [Legait 89].  In an RBDE, a view is a subset of the rules, and

the main problem introduced by adding multiple views to an RBDE lies in the inter-

operability of views with respect to shared objects.  Evolution consists of modifications to

rules, and the most significant difficulty is upgrading existing objects so they can be correctly

manipulated by the new or modified rules in the environment.

We analyzed the RBDE paradigm, to find clues toward a solution for these problems. We

discovered that rules serve two distinct purposes:  to express consistency constraints and to



express opportunitiesfor automation. Maintaining consistency is mandatory whereas carrying

out automation is optional.  Distinguishing between these two functions of rules results in an

elegant approach to supporting both multiple views and evolution.  In particular, an RBDE

can support multiple simultaneous views if they share a common set of consistency

constraints so no view can make changes resulting in inconsistency with respect to another

view, while there are no such restrictions on overlapping notions of automation.  Further,

mechanical evolution of the consistency model is always feasible towards weaker levels of

consistency or the addition of new constraints completely disjoint from the previous process

and data models (considering initial values), but again there are no such limitations on

evolution of the automation model.

We first give an overview of RBDEs, using our own MARVEL environment [Kaiser 88a] as an

example, and describe a chaining algorithm for ‘‘enacting’’ software processes.  We also

present an example that we use throughout the paper. Next, we show how chaining has both

consistency and automation aspects, and then introduce a ‘‘maximalist’’ chaining mechanism

that formalizes the distinction between consistency constraints and automation opportunities.

An extension of this mechanism has been implemented in the first multi-user MARVEL,

version 3.0 [Programming Systems Laboratory 91a, Programming Systems Laboratory 91b],

while the previous single-user versions of MARVEL, culminating in version 2.6, did not

distinguish these concerns [Kaiser 90].  In the next two sections, we explain how the

separation of consistency from automation may be exploited to support multiple views and

evolution. The paper ends with a comparison of related work concerned with multiple views

and evolution in software development environments, and a summary of our contributions.

2. MARVEL Overview
Every software project assumes a specific development process and a particular organization

for its components, as well as a set of suitable software tools.  Since these may be quite

different for different projects, it is inappropriate to build a single software development

environment that has a fixed development process, data model and tool set. Instead, RBDEs

provide a common kernel that can be tailored to the particular project by providing a project-

specific process, data model and tool set.

In the MARVEL RBDE, a project administrator specifies a model of the development process

in terms of rules (the project rule set) and a model of the project’s data in terms of object-



oriented classes (the project type set), and writes envelopes that interface to external tools (the

project tool set). These descriptions are then loaded into the MARVEL kernel, tailoring it as a

MARVEL environment. The organization of the project components is abstracted into a

hierarchy of complex objects, each an instance of one of the administrator-defined classes.

These objects are manipulated by the software development tools installed on the operating

system. The tools do not manipulate the objects’ attributes directly, but operate on files and

directories that are mapped to these attributes [Kaiser 88b].

2.1. Rules

reserve[?c:FILE]:
:

(?c.reservation_status = Available)
{ RCS reserve ?c.contents ?c.version }
(?c.reservation_status = CheckedOut);

edit[?c:CFILE]:
:

(?c.reservation_status = CheckedOut)
{ EDITOR edit ?c.contents }
(and (?c.compile_status = NotCompiled

(?c.time_stamp = CurrentTime));

compile[?c:CFILE]:
:

(?c.compile_status = NotCompiled)
{ COMPILER compile ?c.contents ?c.object_code

?c.error_msg "-g" }
(and (?c.compile_status = Compiled)

(?c.object_time_stamp = CurrentTime));
(?c.compile_status = Error);

dirty[?m:MODULE]:
(forall CFILE ?c suchthat (member [?m.cfiles ?c]))

:
(?c.object_time_stamp > ?m.time_stamp))
{ }
(?m.archive_status = NotArchived);

Figure 2-1: Example Rules

The development process of a project is modeled in terms of rules.  Most rules control the

execution of a development activity, typically the invocation of a tool.  They specify the

condition under which it is appropriate to initiate the tool and the possible effects of the tool

on the values of objects’ attributes.  Since such rules invoke external tools that might either

succeed or fail, they typically have multiple mutually exclusive sets of effects.  For example,

a compiler might succeed in producing object code, or fail and produce error messages. Thus,

the rule encapsulating the compilation activity must specify two sets of effects, one to be

asserted in case of success and the other in case of failure.



Some rules are not associated with activities (i.e., the activity part is left empty), in which

case there can be only a single effect, an expression that is a logical consequence of the

condition of the rule.  Such rules define relations among attributes of the same or different

objects and accordingly derive new values for attributes of the objects.  All rules are

parameterized to take as arguments one or more objects, each of which is an instance of some

class. Four MARVEL rules for a C programming environment are shown in figure 2-1.

Each rule has a name followed by a list of parameters enclosed in square brackets "[...]".  Rule

names may be overloaded.  Each parameter has a name beginning with "?" and a type, one of

the classes defined in the project type set.  Following the parameter list is the condition, which

consists of a set of bindings followed by ":" and a property list.  Bindings attach a local

variable, whose name also begins with "?", to the set of objects that are of the type specified

after the variable name and which satisfy the logical clause following "suchthat".

The property list gives a complex expression of logical predicates that must be true of one (for

existential) or all (for universal) of the objects bound to a variable.  For historical reasons,

quantifiers are currently stated as part of the bindings but are applied as part of the property

list. The activity invocation is enclosed in curly braces "{...}".  It consists of a tool name, the

name of an operation of that tool (some tools support more than one operation), and a

sequence of attributes supplied as arguments.  These arguments may include attributes of the

bound variables in addition to attributes of the parameters.  Following is the set of effects,

each terminated by ";". Each effect is a conjunction of logical predicates that assign values to

named attributes of the parameter objects; it is currently not possible to assign values to

attributes of bound variables.

The classes for the rules of figure 2-1 are shown in figure 2-2. Each class definition starts with

the name of the class followed by ":: superclass" and the list of its superclasses.  Multiple

inheritance is supported.  Then follows a list of attribute definitions, each terminated by ";".

A definition consists of a name followed by ":" and the type of the attribute; the type may

optionally be followed by "=" and an initialization value.  MARVEL supports several built-in

attribute types: string, integer, and real are self-explanatory. text and binary

refer to text and binary file types, respectively, and the ‘‘initializations’’ in these cases give

the file name suffixes used in the underlying file system. user represents a userid and time

a time stamp.  An enumerated type is a list of possible values enclosed in parentheses "(...)".

The "set_of" construct allows an aggregate of arbitrarily many instances of the same class.



RESERVABLE :: superclass ENTITY;
locker : user;
reservation_status : (CheckedOut,Available,None) = None;

end

FILE :: superclass RESERVABLE;
time_stamp : time;
contents : text;

end

HFILE :: superclass FILE;
contents : text = ".h";

end

CFILE :: superclass FILE;
contents : text = ".c";
includes : set_of link HFILE;
compile_status : (Archived,Compiled,NotCompiled,Error)

= NotCompiled;
object_code : binary = ".o";
object_time_stamp : time;

end

MODULE :: superclass RESERVABLE;
time_stamp : time;
archive_status : (Archived,NotArchived)

= NotArchived;
cfiles : set_of CFILE;
modules : set_of MODULE;

end

Figure 2-2: Example Classes

A "link" attribute refers to a named and typed relation from an instance of this class to an

instance or a set of instances of the given class. Each class definition is terminated by "end".

MARVEL’s process and data models are strongly typed.  The project type set must include

definitions for all classes and attributes mentioned in the conditions and effects of the rules in

the project rule set.  Consider the edit rule in figure 2-1, which applies to instances of class

CFILE, and whose condition checks whether the value of the reservation_status

attribute is equal to CheckedOut. Thus, the definition of CFILE must contain an attribute

called reservation_status of an enumerated type including the CheckedOut value.

The rule set must be self-consistent in the sense that no two rules assume different types for

the same attribute of the same class.  For example, the rule set would not be self-consistent if

it contains another rule that also applies to CFILE but assumes reservation_status is

a string.

MARVEL analyzes the specifications of the project rule set and the project type set when they

are loaded into the kernel by the project administrator. If these specifications are not both



self-consistent and consistent with each other, they are rejected, with appropriate error

messages. The administrator should debug the specifications and attempt to load them again.

Thus, loading is analogous to compilation with strong typing.  When loading succeeds, the

tailored RBDE presents the environment end-users (the software developers) with commands

corresponding to the project rule set and an objectbase defined by the project type set.  Thus

environments for different projects are likely to have different user commands as well as

different objectbase structures. When a user requests the execution of a command on a set of

objects, MARVEL selects the rule that matches the command.  Rule names can be overloaded,

and application of rules is disambiguated using the types of the actual parameters, subtyping

and inheritance [Barghouti 90].

For example, the user might request the edit command on an instance of CFILE, which

matches a rule whose condition specifies that the object’s reservation_status attribute

must have the value CheckedOut in order to initiate the activity. The rule’s activity invokes

the edit operation of the EDITOR tool and passes the given attributes by reference, i.e., they

may be modified by the tool. The first effect is applied if the tool returns the status code 0,

setting the CFILE’s compile_status attribute to NotCompiled and

object_time_stamp to the value of the built-in CurrentTime variable. The second

effect is applied for status code 1.  The purpose of effects are to indicate any results of

invoking the activity on the state of the parameters’ attributes not passed as arguments to the

envelope. The distinction between arguments and effects is required for chaining.

2.2. Chaining

RBDEs assist their users by applying forward and backward chaining to opportunistically fire

rules, usually in order to automatically initiate development activities.  When a command is

requested by the user, the corresponding rule’s activity cannot be invoked unless its condition

is satisfied.  If the condition is not satisfied, the RBDE applies backward chaining to fire other

rules whose effects might satisfy the condition. (These are attempted in an arbitrary order

determined by the implementation.)  It cannot be known a priori whether firing a given rule,

even if its condition is satisfied, will produce the desired effect since there are multiple

effects, one of which is selected only as a result of actually executing the activity.  The result

of this backward chaining is either the satisfaction of the original condition or the inability to

satisfy it given the current objectbase state.  In the latter case, the user is informed that the

RBDE cannot execute her command.



When the condition is satisfied, the activity is executed, and after it terminates, the RBDE

asserts one of the rule’s effects. This might satisfy the condition of other rules, collectively

called the implication set of the rule.  The RBDE fires these rules (in an order determined by

the implementation).  The effects of these rules may in turn cause further forward chaining,

until no additional rules are triggered.  In MARVEL, the parameters of rules fired through

backward and forward chaining are bound through a logical inversion mechanism [Heineman

91].

Consider the edit rule in figure 2-1.  Say a user requests to edit an instance of class

CFILE but the reservation_status attribute of this object does not have the value

CheckedOut, as required by the condition of the edit rule. Instead of rejecting the user’s

command, MARVEL tries to fire the reserve rule, one of whose effects changes the value of

the reservation_status attribute to CheckedOut (only the success effect is stated

since the failure effect results in no changes).  If reserve succeeds, edit’s condition

becomes satisfied and its activity is invoked. Once the editing session terminates and its

effect is asserted, MARVEL tries to fire all the rules whose condition became satisfied,

including the compile rule. If compile terminates successfully, it triggers the dirty

rule on the MODULE containing the original CFILE object.

3. Consistency and Automation
The chaining algorithm described above, which is implemented in MARVEL 2.6, does not

necessarily reflect the project administrator’s intentions in specifying the various conditions

and effects.  There is no way for the administrator to state: (1) whether or not an unsatisfied

condition of a rule warrants rejecting the user’s command that triggered the rule, even though

it might be logically possible to infer the condition; (2) whether or not an unfulfilled

implication of the effect of a rule warrants rejecting the command, when it is not logically

possible to automatically fulfill the implications; and (3) whether or not the actions performed

during chaining are definite or tentative (i.e., can be undone).  This is relevant if backward

chaining fails to satisfy the desired condition.  In particular, backward chaining is always

attempted, forward chaining is executed until no additional rules can be triggered (i.e. infinite

cycles are possible, but this is necessary to support edit/compile/debug cycle), and all actions

are definite.  The problem lies in the inability to distinguish between consistency and

automation.



Considering the example of the previous section, the administrator might like to specify that

compiling a C file after it has been edited is not mandatory, while outdating a module after

one of its C files has been compiled is obligatory. The rules as given make it seem that both

are optional, or alternatively both are obligatory, which is not the case.  There is no way to

specify that the former reflects an opportunity for automation but the latter is a consistency

constraint.

3.1. A Maximalist Chaining Mechanism

Some RBDE rule languages, such as CLF’s AP5 [Cohen 89], distinguish between consistency

rules and automation rules.  The MARVEL Strategy Language (MSL) rule language used in

MARVEL 3.0 distinguishes between consistency and automation predicates in both the

condition and effects of rules, and a single rule may contain both kinds of predicates.  Both

AP5 and MARVEL 3.0 implement what we call a maximalist assistance mechanism.  In the

rest of this paper, we assume the maximalist mechanism implemented in MARVEL 3.0

(henceforth simply MARVEL), which subsumes the AP5 mechanism.

MARVEL combines consistency and automation as follows: (1) if an automation predicate in

the condition of a rule is not satisfied, MARVEL tries to make it satisfied by backward

chaining; (2) if a consistency predicate in the condition is not satisfied, MARVEL refuses to

execute the activity; (3) the assertion of a consistency predicate in the effect of a rule

mandates that MARVEL must fire all the rules in the implication set atomically; and (4) the

assertion of an automation predicate in the effect of a rule causes MARVEL to try to carry out

the implications of the predicate.  Backward and/or forward automation may be turned off, if

desired by the user, but consistency chaining is by definition mandatory.

compile[?c:CFILE]:
:

(?c.compile_status = NotCompiled)
{ COMPILER compile ?c.contents ?c.object_code

?c.error_msg "-g" }
(and (?c.compile_status = Compiled)

[?c.object_time_stamp = CurrentTime]);
(?c.compile_status = Error);

Figure 3-1: Consistency and Automation Predicates

To illustrate, consider the modified compile rule in figure 3-1. The predicate enclosed in

square brackets "[...]" is a consistency predicate, whereas those in parentheses "(...)" are



automation predicates (thus MARVEL is compatible with old rule sets, with all predicates

treated as automation). The second predicate in the first effect of the compile rule

("[?c.compile_status =  Compiled]") is now marked as a consistency predicate.  This causes

the dirty rule to become a consistency implication of compile.

The distinction between automation and consistency predicates is depicted by representing

rules and chains as a graph. This graph consists of nodes that represent rules, and three kinds

of edges:  automation forward edges, consistency forward edges and automation backward

edges; there are no consistency backward edges.  An automation forward edge from rule R1

to rule R2 exists if one of the effects of R1 contains an automation predicate that implies a

predicate (of either kind) in the condition of R2.

Figure 3-2: Rule Graph

There is a consistency forward edge from rule R1 to rule R2 if there is a consistency predicate

in one of the effects of R1 that implies a predicate in the condition of R2. There exists an

automation backward edge from R2 to R1 if an automation predicate in the condition of R2 is

implied by an automation predicate in one of the effects of R1. The graph for the two

unchanged rules of figure 2-1 and the modified rules in figure 3-1 is shown in figure 3-2.

Each rule R has a set of consistency implications consisting of all the rules that are connected



to R via a forward consistency edge emanating from R. The set of loaded rules is complete if

and only if for each rule loaded by the RBDE, all the rules in its consistency implication set

are also loaded.  It must also be the case that the loaded data model defines all of the classes

and attributes accessed by these rules.  In the MARVEL implementation, an extended form of

this graph-based model, with edges distinguished by their specific predicates, is generated

when the project rule set is loaded.  This network is used to limit search during backward and

forward chaining.

Consider the following scenario. A user requests to edit a C file "f.c". Once the editing

session is terminated and the effect asserted, the RBDE fires all those rules whose condition

became satisfied by the edit rule. One of these rules is compile, since there is an

automation predicate in common between the effect of edit and the condition of compile.

Thus MARVEL attempts to compile "f.c". If the compilation is successful, its first effect is

asserted, and MARVEL fires all the rules in the implication set of this effect. The set includes

the dirty rule, which is fired on the module "mod" containing "f.c".  If the condition of

dirty is not satisfied, say because "mod" has been reserved by another user, then the

compile rule cannot take effect.  The edit rule, however, will not also be undone since the

compile rule was only an automation implication of edit, not a consistency implication.

Distinguishing between automation and consistency predicates enables us to define a

consistency model for a development process. Given a rule set, the consistency model of the

software process is defined by the consistency forward edges in the rule graph.  Thus, in order

to preserve data consistency in a particular project, the RBDE must guarantee that for each

rule, all the consistency implications of each rule’s asserted effect will be carried out. All

other rules in the rule graph define the automation model for the development process. These

notions of consistency and automation form the basis for our approach to supporting multiple

views and automating evolution in RBDEs.

Our approach is based on two observations: (1) all co-existing views must maintain either the

identical consistency model or disjoint consistency models; and (2) for the RBDE to be able

to automatically transform the objectbase to a new consistent state following an evolution

step, there must be a mechanical transformation from the current consistency model to the

new consistency model.  We argue for (1) by noting that if a forward consistency edge does

not exist in one view, and therefore is not followed when its predicate is asserted, then another

view containing that forward consistency edge will see what it terms is an inconsistent



objectbase. (2) is true by the conventional definition of consistency, i.e., if the objectbase can

reach some state that could not have been reached had the new consistency model been in

place as it was developed, then it is inconsistent.  In the next two sections we elaborate on our

approach to solving the multiple views and evolution problems.

4. Multiple Views
A view in an RBDE consists of subsets of the project rule set, the project type set and the

project tool set. At any time, an RBDE must have some view loaded in order to function.

Different views might be loaded by the same user during different phases of the development

process; different users might also load different views at the same time to fulfill different

roles. There are two correctness criteria for views: (1) the type set of the view must match the

assumptions of its rule set; and (2) the set of rules in the view must be complete with respect

to the project rule set, consistency off all the rules in all views.  (A third criterion,

compatibility of the rule and type sets with the project tool set, is outside the scope of this

paper; see [Gisi 91].)

The first criterion is local to a view in the sense that it determines whether or not the view is

self-consistent. The conditions and effects of the rules in a view manipulate (read and update)

the attributes of instances of the classes in the view’s type set. Thus, each rule assumes that

its view includes definitions of those attributes that the rule manipulates.  If the view’s type

set does not meet the assumptions of the view’s rule set, then there is a discrepancy.

A discrepancy can make it impossible for the RBDE to evaluate the conditions of some rules

because the attributes manipulated in these conditions are either missing or of the wrong type,

so these rules could never fire because their conditions would always be unsatisfied.  This

possibility can be tolerated only if none of the affected rules is in the consistency implication

set of any rule in the rule set of the view.  Similarly, a discrepancy could also make it

impossible for the RBDE to assert the effects of some rules, resulting in a situation where the

activity of a rule has terminated but the RBDE cannot assert the appropriate effect.  This

situation is not well-defined regardless of whether the predicates involved are consistency or

automation, and in either case cannot be permitted.

Thus, an RBDE cannot load any view that does not meet at least the first of the criteria listed

above (that the rule set and the type set match). The analysis is not affected by any other

views, loaded or otherwise.  The second criterion mentioned above, on the other hand, is



greatly affected by the consistency model of the project rule set.  A view is said to be

complete if and only if for each rule R in the rule set of the view, the rule set includes all those

rules that are members of the consistency implication set of R.

The notion of completeness is based on only the consistency forward edges in the graph of the

project rule set.  Automation forward edges are not relevant, since they represent optional

behavior. For example, there is an automation forward edge between the two rules edit and

compile. The inability to fire the compile rule after edit terminates successfully for

any reason, including the non-existence of compile in the current view, does not invalidate

the success of edit. Thus, a view containing edit but not compile is still complete.

A consistency forward edge, in contrast, is interpreted as a consistency implication.  The

consistency forward edge between compile and dirty means that if compile is fired

and the relevant effect asserted, then the changes that its activity introduces in the objectbase

cannot be made permanent unless dirty is also fired and terminates successfully (and so do

any consistency implications of dirty). Thus, if a view contains compile but not dirty,

the edge representing this consistency implication would be missing from the rule graph of

the view.  This could lead to inconsistencies if the changes introduced by compile’s activity

become permanent (assuming all other implications are met) even though the dirty rule

cannot be fired (because it is not in this view).  Thus any other view that assumes that the

module is marked as outdated whenever any of its C files is recompiled will see an

inconsistent objectbase.

The two correctness criteria for a view can be formalized as follows:

Definition 1: A view is said to be complete iff its rule set and type set are
consistent with each other and if for each node in the rule graph of the view, the
consistency forward edges are identical to the consistency forward edges for the
corresponding node in the graph of the project rule set consisting of all views.

Given this definition, the RBDE can determine that a view that consists of the rules shown in

figure 4-1 is incomplete because it is missing the dirty rule and hence the forward

consistency edge from compile to dirty. Similarly, if the dirty rule were present but

there were only an automation forward edge, the view would still be incomplete.



reserve[?c:FILE]:
:

(?c.reservation_status = Available)
{ RCS reserve ?c.contents ?c.version }
(?c.reservation_status = CheckedOut);

edit[?c:CFILE]:
:

(?c.reservation_status = CheckedOut)
{ EDITOR edit ?c.contents }
(and (?c.compile_status = NotCompiled)

(?c.time_stamp = CurrentTime));

compile[?c:CFILE]:
:

(?c.compile_status = NotCompiled)
{ COMPILER compile ?c.contents ?c.object_code

?c.error_msg "-g" }
(and (?c.compile_status = Compiled)

(?c.object_time_stamp = CurrentTime));
(?c.compile_status = Error);

Figure 4-1: Incomplete View

5. Evolution
As the process or data model is changed over time, the correctness criteria we required for

views (that the data model matches the process model and that the process model is complete)

must be reevaluated to ensure that they still hold.  Technically speaking, these restrictions

need not be enforced if the rules that have been modified or added are not in the consistency

implication set of any other rules.  Since by definition automation chaining is optional, then

inability to chain because the project type set does not match the project rule set might be an

acceptable reason to not carry out some automation chains.  This does not seem satisfactory,

however: automation chains should be prevented only when the user because the user has

turned off automation, not because of typing errors that should have been detected when the

rules were loaded.

To illustrate, consider the compile rule of figure 3-1. This rule is connected by a

consistency forward edge to the dirty rule of figure 2-1.  The condition of the dirty rule

contains a predicate that checks if any C file contained in the module has been compiled more

recently than the last archival of the module.  If this predicate is satisfied, the module’s

archive is outdated by assigning the value NotArchived to the module’s

archive_status attribute.



edit[?c:CFILE]:
:

(?c.reservation_status = CheckedOut)
{ EDITOR edit ?c.contents }
(and (?c.compile_status = NotCompiled)

[?c.time_stamp = CurrentTime]);

dirty[?m:MODULE]:
(forall CFILE ?c suchthat (member [?m.cfiles ?c]))

:
(?c.time_stamp > ?m.time_stamp));
{ }
(?m.archive_status = NotArchived);

Figure 5-1: Non-Mechanizable Evolution

Consider the scenario where the users of the environment tailored by these rules complain that

the RBDE does not always outdate the module archives when it should.  The administrator

discovers the reason is that the dirty rule outdates a module whenever any of its C files is

recompiled correctly, but not when the compilation discovers errors.  So she modifies the

edit and dirty rules, as shown in figure 5-1.  A new predicate

"(?c.time_stamp > ?m.time_stamp)" replaces "(?c.object_time_stamp > ?m.time_stamp)" in

the condition of dirty, while the "(?c.timestamp =  CurrentTime)" predicate in the effect of

the edit rule is changed to a consistency predicate "[?c.time_stamp = CurrentTime]".  This

creates a new consistency forward edge between edit and dirty. Now the module will be

outdated whenever the source code has been edited.

If this modified rule is loaded, then potentially all instances of MODULE might become

inconsistent because the value of their archive_status attribute might not reflect the new

consistency implication between edit and dirty. To upgrade the objectbase, the RBDE

must fire the dirty rule on all instances of MODULE. For the cases where the condition is

satisfied, the archive_status can be set to NotArchived and we can be confident that

this is the correct value.  However, in the cases where the condition is not satisfied, but the

current value of archive_status is NotArchived, the RBDE must determine what is

the correct value of archive_status. In general, this is impossible to do automatically

(since there are two possible values, Archived and INotArchived). Therefore, this

change to the dirty rule should not be allowed.

This example demonstrates the need for a concept of a legal evolution step. An evolution step

is a change either to the definition of a single rule (or a single class).



Definition 2: An evolution step is said to be legal iff (1) the resulting project type
set and project rule set are self-consistent and consistent with each other; and (2) all
objects in the objectbase can be mechanically transformed to meet the new
consistency implications specified by the modified rule set.

The example above is not a legal evolution step in the general case since it is not always

possible to mechanically transform an objectbase to a consistent state.  However, this example

may represent a legal evolution step on some objectbases, simply because the condition of the

dirty rule happens to be satisfied for all instances of MODULE in that particular objectbase.

There is no method for determining whether or not this evolution step is legal a priori; it is

necessary to attempt the potentially very costly transformation of the objectbase.

A more realistic approach would be to restrict the kinds of changes allowed to those that can

be statically analyzed to determine whether or not an evolution step should be attempted.

Intuitively, if the consistency implications specified by the modified rules are weaker than the

old ones, then all objects in the objectbase will definitely meet the new criteria.  If the only

change to the rule set is to relax a rule (i.e., make it apply to a narrower set of objects) or to

completely remove it, then the objectbase would not violate any consistency requirements.

Thus, a more useful definition is:

Definition 3: An evolution step is legal iff the consistency implications specified
by the rule set after the evolution step are either weaker than the implications before
the evolution step is carried out, or are independent of them.

edit[?h:HFILE]:
:

(?h.reservation_status = CheckedOut)
{ EDITOR edit ?h.contents }
(?h.time_stamp = CurrentTime);

compile[?c:CFILE]:
(exists HFILE ?h suchthat (linkto [?c.includes ?h]))
:
(or (?h.time_stamp > ?c.object_time_stamp)

(?c.compile_status = NotCompiled))
{ COMPILER compile ?c.contents ?c.object_code ?c.error_msg

"-g" ?h.contents }
(and (?c.compile_status = Compiled)

[?c.object_time_stamp = CurrentTime]);
(?c.compile_status = Error);

Figure 5-2: Mechanizable Evolution

The problem then reduces to defining ‘‘weaker’’ and ‘‘independent’’ consistency

implications. The set of consistency implications specified by a rule set can be represented by



the rule graph after removing all the automation edges from the graph, but keeping the

consistency forward edges, to produce a consistency graph. For each set of consistency

implications I, the corresponding graph is denoted by G(I).

Definition 4: A set of consistency implications I′ is said to be weaker than another
set I iff G(I’) is a subgraph of G(I). I′ is said to be independent of I iff G(I’) and
G(I) are disjoint.

In an RBDE supporting only automation predicates, with no consistency predicates, there are

no restrictions at all on modifying, adding and/or removing rules at any time.  There is no

notion of consistency in the objectbase that could become corrupted.  The change in the rules

simply causes a change in the optional automation behavior of the RBDE. In a maximalist

RBDE with both automation and consistency predicates, rules containing only automation

predicates can always be removed, but there are limitations on addition and modification of

rules containing consistency predicates since this might introduce a new forward consistency

edges from some consistency rule to an automation rule.

To illustrate how an RBDE can decide whether or not an evolution step is legal, consider the

compile rule of figure 5-2.  The condition of the rule was modified so that the compile

rule is fired on a C file whenever one of the HFILEs it includes is edited.  This change is

necessary for practical programming in C, since any C source file might include several ".h"

files. (The edit rule that applies to HFILE is also shown in figure 5-2, but would have been

added in an earlier evolution step.)

Figure 5-3: Consistency Graphs

The RBDE determines if this evolution step is legal by comparing the consistency graph of

the rule set including the modified compile rule, shown in figure 5-3B, with the consistency



graph of the original rule set, shown in figure 5-3A.  The consistency edges in the two graphs

are identical, which means that the evolution step fulfills the legality criteria and can be

permitted. In contrast, the consistency graph of the rule set after the illegal evolution step

discussed earlier in figure 5-1, shown in figure 5-3C, is not a subgraph of the original graph.

Therefore, the evolution step should not be permitted.

6. Related Work
3The RPDE project has had substantial experience with supporting real changes [Ossher 90].

The ease with which these changes were accommodated rests on three pillars: the system’s

architecture, its extended object-oriented technology, and structured representation of the
3programs manipulated by the system.  RPDE supports multiple display views, but these are

hard-wired into the code of the system, as is the software process. Evolution of the process

was one of the the several kinds of changes singled out as particularly difficult due to the

limitations of their object-oriented technology [Harrison 89].

The Field environment [Reiss 90] integrates tools through a centralized message server that

routes messages among tools.  Tools send messages to the server to announce changes that

other tools might be interested in, and the server broadcasts those messages to tools that have

previously registered matching patterns.  Existing tools are supported by adding an interface

to each tool to send and receive messages.  Field makes it relatively easy to evolve the tool

set, but is not concerned with process modeling and there is no common project data model.

Forest [Garlan 90] extends the Field approach by adding a policy tool to a simulated message

server. The policy tool supports a simple process model consisting of condition/action rules

and a simple data model consisting of state variables.  The policy tool fires the first rule

whose condition matches each incoming message; the possible actions include sending a

message on to a tool, sending a new message to the message server, or doing nothing.  Forest

enforces access control over which categories of users can change which rules, as well as the

membership of these categories.  It is not concerned with logical restrictions on evolution or

the impact of changes on consistency of the global state reflected in the data accessed by the

tools, and does not address multiple views.

In MELMAC [Deiters 90], an object type and activity view, a process view, a feedback view

and a project management view are combined into a common representation called a

FUNSOFT net. These views represent different perspectives on the process, and are not



related to our notion of multiple views for multiple users. The FUNSOFT net, essentially a

hierarchical Petri net, consists of some nodes representing primitive activities while other

nodes must be refined by recursive nets.  The nodes may have preconditions and

postconditions. MELMAC supports evolution of the process model by introducing the notion

of modification points, which are attached to nodes whose refinements can be changed on the

fly. It is not clear, however, whether there are any restrictions on what kinds of changes are

allowed, and if so how they are handled, to ensure consistency in the project database.

Darwin [Minsky 91] uses laws, written as Prolog rules, to regulate the activities that users can

carry out but it never initiates activities on behalf of users.  A Prolog interpreter enforces

these laws.  The laws govern what changes can be made to the laws themselves as well as to

programs, and thus a single elegant mechanism supports both process enactment and process

evolution. But Darwin does not provide any mechanism for legislating that new laws are

consistent with old ones with respect to the existing objectbase, and does not address the

problem of multiple views.

APPL/A [Sutton 90a] is the process programming language used in the Arcadia environment.

It extends Ada with persistent relations, triggers, predicates, and transaction statements.

APPL/A is specifically concerned with accommodating inconsistency resulting from, among

other things, evolution of the process program.  A flexible consistency model, FCM [Sutton

90b], is defined in terms of predicates and transactions.  Evolution of the process model may

lead to adding new predicates, introducing inconsistencies in the project objectbase.  The

transactions may be used to control the enforcement of these predicates, by determining the

conditions for relaxing consistency and providing a scope for restoring consistency. APPL/A

seems to provide the closest match to MARVEL’s consistency model. FCM defines a

complementary framework for tolerating inconsistency.

7. Conclusions
We considered the problems of scaling up rule-based software development environments to

support multiple views and evolution.  Our solution is based on distinguishing two functions

of rules and chaining: (1) to express, enforce and maintain consistency constraints and (2) to

express and carry out opportunities for automation.  By definition, consistency is mandatory

whereas automation is not. Our earlier work on MARVEL did not recognize any distinction

between consistency and automation, and thus our original approach to multiple views and



evolution [Kaiser 88b] could lead to inconsistent objectbases.  The new MARVEL 3.0 extends

the maximalist assistance mechanism presented in this paper with additional directives to turn

off forward and/or backward chaining in and/or out of individual predicates, to provide the

administrator with powerful control over consistency implications. Now by separating the

consistency and automation aspects of RBDE assistance mechanisms, we make it possible to

formalize the range of compatible views and the scope of mechanizable evolution steps.

Although neither multiple views nor evolution has been implemented yet, the distinction

between consistency and automation is used in MARVEL 3.0 as part of a semantics-based

concurrency control mechanism to support multiple users.
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