
A Rule-Based Process Server Component
for Constructing

Rule-Based Development Environments

Gail E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

We have been working on the MARVEL rule-based development environment (RBDE) for several years [9, 7], and
are currently in the process of scaling up to supporting cooperation among multiple users working together on large
projects [1]. This line of research led us to breaking up the previous single user MARVEL 2.6 implementation into
the two main pieces of multiple user MARVEL 3.0: the clients representing user interface and activity management,
and the server consisting of modules that support process model enaction, concurrency control, and object
management [4, 2]. We are now entertaining the definition of a set of components, generalized from MARVEL’s
modules, which could be used to construct a range of RBDEs. Here we discuss our initial ideas regarding the most
fundamental component, the rule-based process server.

The proposed Rule-Based Process Server component (RBPS) would would provide a toolkit for defining rule
languages for specifying the process, and corresponding chaining engines supporting a spectrum of assistance
models that execute or interpret the process in some manner. RBPS would generalize our previous work on
rule-based process modeling as part of the MARVEL environment kernel.

In MARVEL, each activity corresponds to a user command and is encapsulated by a condition that must be satisfied
before initiating the activity and an effect that asserts the result of completing the activity on the state of the
process [8]. The activity is treated as a ‘‘black box’’, and is typically an external tool invoked through an extended
shell script envelope [6]. Thus a MARVEL rule may have multiple mutually exclusive effects, representing the
multiple possible results of such tools — usually success and failure cases.

MARVEL is only one instance of what we call a RBDE. We have defined a spectrum of RBDEs in terms of the
assistance model they support, ranging from pure automation to pure consistency preservation. The original
single-user MARVEL supported a pure automation assistance model. Backward chaining was employed to attempt to
make the condition of a user-selected activity satisfied, while forward chaining was used to trigger activities whose
condition was made satisfied by the effect asserted for the original activity. Darwin [10] supports a pure consistency
preservation model, in that backward chaining is employed only to determine the truth or falsity of a proposed
program change, which is modeled as a Prolog-style fact regarding whether the change is permissible. AP5 [5]
supports separate automation and consistency rules, with consistency maintained via forward chaining to recompute
derived relationships among objects. Only forward chaining is employed for automation rules as well.

The new multi-user MARVEL 3.0 supports a sophisticated ‘‘maximalist’’ assistance model that combines automation
with consistency maintenance [3]. Predicates in conditions and effects may be designated either automation or
consistency. Forward chaining over consistency predicates is employed to fulfill the implications of a consistency
predicate in the effect of the activity that matches a predicate in the condition of another rule. Backward chaining is
thus never needed, since by definition all consistency implications have already been asserted. The activity of a rule
triggered during forward consistency chaining must be reversible, or null, since either an entire consistency chain
must execute or none of it, in the sense of classical transactions. In the current implementation we support only
consistency chaining among rules with null activities, except for the original rule that triggers the chain, and a
consistency predicate in an effect that triggers a rule with a non-null activity is treated as an automation predicate.
Automation chaining (i.e., chaining due to automation predicates) operates essentially the same as in the single-user
MARVEL 2.6, and may trigger irreversible activities, since by definition an automation chain may be terminated after
any rule without affecting the validity of the original user-selected activity or other previous activities in the chain.

deposit: deposit an object. This rule works on the same objects as the
reserve rule.

deposit[?old:CFILE]:
Only deposit this file if the object is a child of a MODULE
type object through the "cfiles" attribute
(exists MODULE ?m suchthat (member [?m.cfiles ?old])):
No chaining allowed on these predicates
#
0. Only deposit if user who locked object is current user
1. Only deposit if object was in fact CheckedOut.

(and no_chain (?old.locker = CurrentUser)

no_chain (?old.reservation_status = CheckedOut))

{ RCS deposit ?old.contents ?old.version ?old.history }

[?old.reservation_status = Available];

This rule will "touch" a module if any of its CFILEs has become
"NotCompiled" or compiled in "Error".
also, if the reservation status became available
as a result of deposit touch the module.

hide touchup[?M:MODULE]:
(and
(forall CFILE ?c suchthat (member [?M.cfiles ?c]))
(forall YFILE ?y suchthat (member [?M.yfiles ?y]))
(forall LFILE ?x suchthat (member [?M.lfiles ?x]))
(forall MODULE ?m suchthat (member [?M.modules ?m])))
:
(or [?c.status = ErrorCompile] # from compile CFILE

[?c.reservation_status = Available] # from deposit FILE
[?y.status = ErrorCompile] # from compile YFILE
[?x.status = ErrorCompile] # from compile LFILE
[?m.archive_status = NotArchived])

{ }
[?M.archive_status = NotArchived];

Figure 1: C/Marvel Deposit and TouchUp Rules

Figure 1 shows two actual rules from the C/Marvel programming environment for C, which we are using in our
implementation of MARVEL 3.1. The rules correspond to the user deposit command and the hidden touchup
rule (i.e., the hide directive makes it unavailable from the user menu, since it is used only during chaining). The
condition of the deposit rule states that the C file must be checked out by the current user (i.e., the user executing
the deposit command). The "?old.reservation_status = Available" predicate in the effect is marked as
consistency, by its enclosure between square brackets "[...]"; predicates enclosed between parentheses "(...)" are
automation predicates, allowing backward compatibility with old rule sets. This guarantees that the deposit will take
effect only if the implications of this predicate can be carried out, in particular, to execute the touchup rule on the
enclosing module. Note that there is an error in the comment for the touchup rule: this rule is not actually
triggered when a C file’s status becomes NotCompiled. The no_chain directives in the deposit rule
disallow forward chaining to automatically trigger deposit whenever a C file is reserved, and disallow backward
chaining to automatically trigger reserve when a user attempted to deposit a C file that is not checked out to him
or her. Both of these were considered undesirable behavior for practical programming.

There are three main goals for our proposed work on RBPS. The first is to abstract away from the MARVEL Strategy
Language, in which the rule-based process model for MARVEL environments are written. This is simple from a
syntactic perspective; we have already gone through many iterations on the yacc grammar used by the MARVEL

parser. The semantics will be reasonably straightforward for languages that map into our spectrum from consistency
preservation to automation. Our idea is for an RBPS library to include an extensible rule-based process modeling
‘‘assembly language’’ into which the new classes of rules could be translated.

The second major goal is strongly tied to the first: we would generalize MARVEL’s Opportunist module, or chaining
engine, into a parameterizable Process Server. This would be the ‘‘abstract machine’’ for the ‘‘assembly language’’
above. Due to the need for flexibility in parameterization, this ‘‘abstract machine’’ would necessarily be
interpretive in nature and thus relatively inefficient. However, the RBPS library might contain a small number of
optimized rule network representations and corresponding hard-coded chaining engines for selected points on the
assistance model spectrum, including pure automation, pure consistency maintenance, and the maximalist form of
integration we have implemented for MARVEL 3.0.

The final and perhaps most challenging goal is to devise interfaces between RBPS and the other components of
environments, and codify a corresponding methodology for employing RBPS. Consider the possibility of inserting
RBPS into an existing environment. This would involve breaking certain communication links within that
environment, and inserting the Process Server in the middle. For example, if the original behavior of the
environment was centered on a command dispatch loop, then commands that could be mapped to rules would be
rerouted through the Process Server and the results of those commands would be returned through or otherwise
communicated to the Process Server; this is how MARVEL works. An alternative possibility is that the individual
commands do not map to individual rules, but instead it is desirable for lower level tool operations on the objectbase
to map to rules; then the Process Server might be projected onto a method call facility. The subroutines in the RBPS
library would have to be sufficiently flexible to handle a variety of schemes for executing its ‘‘abstract machine’’.

This work is still at the drawing board stage, but we expect to firm up our ideas over the next year, and then begin
extracting initial versions of our components from the MARVEL implementation.

Non-profit institutions and industrial sponsors may contact the author for information about licensing MARVEL 3.0.
The Programming Systems Laboratory is supported by National Science Foundation grants CCR-9106368,
CCR-9000930 and CCR-8858029, by grants from AT&T, BNR, DEC and SRA, by the New York State Center for
Advanced Technology in Computers and Information Systems and by the NSF Engineering Research Center for
Telecommunications Research.

[7] George T. Heineman, Gail E. Kaiser, NaserReferences:
S. Barghouti and Israel Z. Ben-Shaul. Rule Chaining

[1] Naser S. Barghouti and Gail E. Kaiser. Modeling in MARVEL: Dynamic Binding of Parameters. In 6th
Concurrency in Rule-Based Development Environments. Knowledge-Based Software Engineering Conference, pages
IEEE Expert 5(6):15-27, December, 1990. 276-287. Rome Laboratory, Syracuse NY, September, 1991.

[2] Naser S. Barghouti. Concurrency Control in Rule- [8] Gail E. Kaiser, Peter H. Feiler and Steven
Based Software Development Environments. PhD thesis, S. Popovich. Intelligent Assistance for Software
Columbia University, November, 1991. Development and Maintenance. IEEE Software 5(3):40-49,

May, 1988.[3] Naser S. Barghouti and Gail E. Kaiser. Scaling Up
Rule-Based Development Environments. In A. van [9] Gail E. Kaiser, Naser S. Barghouti and Michael
Lamsweerde and A. Fugetta (editor), 3rd European Software H. Sokolsky. Experience with Process Modeling in the
Engineering Conference, pages 380-395. Springer-Verlag, Marvel Software Development Environment Kernel. In
Milano, Italy, October, 1991. Bruce Shriver (editor), 23rd Annual Hawaii International

Conference on System Sciences, pages 131-140. Kona HI,[4] Israel Z. Ben-Shaul. An Object Management System
January, 1990.for Multi-User Programming Environments. Master’s thesis,

Columbia University, April, 1991. [10] Naftaly H. Minsky and David Rozenshtein. A
Software Development Environment for Law-Governed[5] Donald Cohen. Automatic Compilation of Logical
Systems. In Peter Henderson (editor), ACMSpecifications into Efficient Programs. In 5th National
SIGSOFT/SIGPLAN Software Engineering Symposium onConference on Artificial Intelligence, pages 20-25. AAAI,
Practical Software Development Environments, pages 65-75.Philadelphia, PA, August, 1986.
ACM Press, Boston MA, November, 1988. Special issue of

[6] Mark A. Gisi and Gail E. Kaiser. Extending A Tool SIGPLAN Notices, 24(2), February 1989 and of Software
Integration Language. In 1st International Conference on Engineering Notes, 13(5), November 1988.
the Software Process, pages 218-227. Redondo Beach CA,
October, 1991.

