
Quality Assurance of Software Applications Using the In Vivo Testing Approach

Christian Murphy, Gail Kaiser, Ian Vo, Matt Chu
Department of Computer Science, Columbia University, New York NY 10027

{cmurphy, kaiser, idv2101, mwc2110}@cs.columbia.edu

Abstract

Software products released into the field typically have
some number of residual defects that either were not de-
tected or could not have been detected during testing. This
may be the result of flaws in the test cases themselves, in-
correct assumptions made during the creation of test cases,
or the infeasibility of testing the sheer number of possible
configurations for a complex system; these defects may also
be due to application states that were not considered dur-
ing lab testing, or corrupted states that could arise due to
a security violation. One approach to this problem is to
continue to test these applications even after deployment,
in hopes of finding any remaining flaws. In this paper, we
present a testing methodology we call in vivo testing, in
which tests are continuously executed in the deployment
environment. We also describe a type of test we call in
vivo tests that are specifically designed for use with such
an approach: these tests execute within the current state of
the program (rather than by creating a clean slate) without
affecting or altering that state from the perspective of the
end-user. We discuss the approach and the prototype test-
ing framework for Java applications called Invite. We also
provide the results of case studies that demonstrate Invite’s
effectiveness and efficiency.

1. Introduction

Thorough testing of a software product is unquestionably
a crucial part of the development process, but the ability
to faithfully detect all defects in an application is severely
hampered by numerous factors. A recent report [30] indi-
cates that 40% of IT companies consider insufficient pre-
release testing to be a major cause of later production prob-
lems, and the problem only worsens as changes are rolled
out into production without being thoroughly tested. Fur-
thermore, it is possible that the test code itself may have
flaws in it, too, perhaps because of oversights or incorrect
assumptions made by the authors.

A key issue is that, for large, complex software systems,

it is typically impossible in terms of time and cost to reli-
ably test all configuration options before releasing the prod-
uct into the field. For instance, Microsoft Internet Explorer
has over 19 trillion possible combinations of configuration
settings [9]. Even given infinite time and resources to test an
application and all its configurations, once a product is re-
leased, the other software packages on which it depends (li-
braries, virtual machines, etc.) may also be updated; there-
fore, it would be impossible to test with these dependen-
cies prior to the application’s release, because they did not
exist yet. A last emerging issue is the fact that, as multi-
processor and multi-core systems become more and more
prevalent, multi-threaded applications that had only been
tested on single-processor/core machines are more likely to
start to reveal concurrency bugs [21].

One proposed way of addressing this problem has been
to continue testing the application in the field, after it has
been deployed. The theory of this “perpetual testing” [26]
approach is that, over time, defects will reveal themselves
given that multiple instances of the same application may be
run globally with different configurations, in different envi-
ronments, under different patterns of usage, and in different
system states.

In this paper, we present a testing methodology we call
in vivo testing, in which tests are continuously executed
in the deployment environment. We also introduce a new
type of test called in vivo tests, which are designed to run
from within the executing application and be used with this
approach. These tests improve on traditional unit or inte-
gration tests by foregoing the assumption of a clean state
created by a test harness, and focusing on aspects of the
program that should hold true regardless of what state the
system is in. These tests execute within the current state of
the program without affecting or altering that state, as po-
tentially visible to users. The approach can be used for de-
tecting concurrency, security, or robustness issues, as well
as defects that may not have appeared in a testing lab (the
“in vitro” environment).

Our three main contributions are an approach (in vivo
testing) to executing tests within the deployment environ-
ment, without altering that system’s state; a new style of

1



tests (in vivo tests) that exercise parts of the application
as the system is running, no matter what its current state;
and a prototype implementation of the testing framework,
called Invite, developed in Java. In [6], we briefly sketched
an earlier version of the Invite framework, focused on dis-
tributed execution of the tests; in this work, we present for
the first time the complete system in full, including a more
detailed description of in vivo tests, case studies in which
the approach reveals defects in real-world applications, and
evidence that the performance overhead of the approach is
reasonable and yet a single application instance can still ex-
ecute millions of tests per day.

2. The In Vivo Testing Approach

The foundation of the in vivo testing approach is the fact
that many (if not all) software products are released into
deployment environments with latent defects still residing
in them, as well as our claim that these defects may reveal
themselves when the application executes in states that were
unanticipated and/or untested in the development environ-
ment. The in vivo testing approach can be used to detect
defects hidden by assumptions of a clean state in the tests,
errors that occur in field configurations not tested before de-
ployment, and problems caused by unexpected user actions
that put the system in an unanticipated state; these flaws
may also be due to corrupted states that could arise due to
a security violation. Our approach goes beyond passive ap-
plication monitoring (e.g. [24]) in that it actively tests the
application as it runs in the field.

In vivo testing is a methodology by which tests are exe-
cuted continuously in the deployment environment, in the
context of the running application, as opposed to a con-
trolled or blank-slate environment. Crucial to the approach
is the notion that the test must not alter the state of the ap-
plication from the user’s perspective. In a live system in the
deployment environment, it is clearly undesirable to have a
test alter the system in such a way that it affects the users of
the system, causing them to see the results of the test code
rather than of their own actions. This section motivates and
describes the in vivo testing approach.

2.1. In Vivo Tests

Although existing unit and integration tests can be used
with in vivo testing without any modifications (for instance,
to address configurations or environments not tested prior
to release, as in [22]), developers may find it desirable to
create in vivo tests that are able to take advantage of the ap-
proach. These tests ensure that properties of the application
(or of subsystems or even units) hold true no matter what
the application’s state is. In the simplest case, they can be
thought of as program invariants and assertions [7], though

they go beyond checking the values of individual variables
or how variables relate to each other, and focus more on the
conditions that must hold after sequences of variable modi-
fications and method calls, without worrying about side ef-
fects visible to the user.

A simple example is that of the functionality of an im-
plementation of the Set interface (such as a Vector or Ar-
rayList) in Java. One of its properties is that, if an object is
added to the Set and then removed, a subsequent call to the
“contains” method must return false. This condition must
hold no matter what the state of the Set, and no matter what
sort of object had been added. A traditional unit test may
investigate this property by first creating a new, empty Set,
but it would not be possible to conduct such a unit test on
arbitrary states of the Set, after it has been used in a real,
running application for some amount of time. Thus, an in
vivo test would be useful in this case.

A more complex example can be found in Mozilla Fire-
fox. One of the known defects is that attempting to close all
other tabs from the shortcut menu of the current tab may fail
on Mac OS X when there are more than 20 tabs open.1 In
this case, an in vivo test designed to run in the field would
be one that calls the function to close all other tabs, then
checks that no other tabs are open; this sequence should al-
ways succeed, regardless of how many tabs were open or
what operating system is in use. Particular combinations of
execution environment and state may not always be tested
in development prior to release of the software, and one way
to fully explore whether this property holds in all cases is to
test it in the field, as the application is running.

It is important to note that in vivo tests are not intended
to replace unit or integration tests; rather, we introduce a
new type of test designed to run within the context of an ex-
ecuting application, which may be in a previously untested
or unanticipated state. As in vivo tests are distinct meth-
ods run inside the application, our approach is like unit test-
ing in the sense of calling individual methods with specified
parameters, but it is also like integration testing in that we
use the integrated code of the whole application rather than
stubs and drivers.

2.2. Categories and Motivating Examples

To examine the feasibility of our testing approach, we
investigated the documented defects (mostly caught by end-
users after deployment) of some open-source applications to
see which of them could have been discovered using in vivo
testing. We considered OSCache [25], a multi-level caching
solution designed for use with JSP pages and Servlet-
generated web content, as well as another caching solution,
Apache Java Caching System (JCS) [1], and Apache Tom-
cat [2], a Java Servlet container.

1http://www.mozilla.com/en-US/firefox/2.0.0.16/releasenotes/



Table 1. Categories of defects for which in
vivo testing is best suited

1 Unit tests make incorrect assumptions about
the state of objects in the application

2 Possible field configurations not tested in the lab
3 Deployment environments not simulated in the lab
4 A user action puts the system in an unexpected state
5 Those that only appear intermittently

We identified five different categories of defects that in
vivo testing could potentially detect. The categories are
listed in Table 1. There may be other types of defects that
could be found with in vivo testing, but these are the ones
identified so far.

The first category of defects likely to be found by in vivo
testing are those in which the corresponding unit test as-
sumes a clean slate, but the code does not work correctly
otherwise. By clean slate, we mean a state in which all ob-
jects have been created anew and are modified only by the
unit test or methods it calls, such that the unit test has com-
plete control of the system. Generally unit tests are written
in such a way that the objects being tested are created and
modified to obtain a desirable state prior to testing [17]. In
these cases, the code may pass unit tests coincidentally, but
not work properly once executed in the field, revealing de-
fects in both the test code and the code itself. State-based
testing [31] or static analysis [12] could be used to look for
defects in this category, though these may not be as useful
as in vivo testing when the system state depends heavily on
external systems or user input sequences.

One of the OSCache bugs notes that, under certain con-
figurations, the method to remove an entry from the cache is
unable to delete a disk-cached file if the cache is at full ca-
pacity.2 In this case, the corresponding in vivo test for test-
ing cache removal may simply add something to the cache,
remove it, and then check that it is no longer there; this se-
quence of operations should work consistently regardless of
the state of the cache. A unit test that assumes an empty or
new cache would pass, however; but when the cache is full,
the in vivo test would fail, revealing a defect that may not
have been caught until it affected a user.

Another example of this type of defect can be found in
Apache JCS. Here, the method that returns the number of
elements in the cache is off by two when the cache is at
full capacity.3 A unit test that simply creates a new cache,
adds some number of elements, and checks the size may
pass in the development environment if the number of added
elements is smaller than the capacity. But an in vivo test that
is executed in the field would detect this defect when it tries
to add those elements and thus meets the cache’s capacity.

2http://jira.opensymphony.com/browse/CACHE-236
3http://issues.apache.org/jira/browse/JCS-16

The second category targeted by our approach includes
those defects that come about from field configurations
that were not tested in the development environment.
For instance, Apache Tomcat has over 60 different param-
eters that can be configured, many of which allow for free-
text input or unbounded integer values, meaning the entire
potential configuration space is huge.

OSCache has around 20 configurable parameters, and
one of its bugs falls into this category, too. In this bug, set-
ting the cache capacity programmatically does not override
the initial capacity specified in a properties file when the
value set programmatically is smaller.4 A unit test for the
method to set the cache capacity may assume a fixed value
in the properties file and only execute tests in which it sets
the cache capacity to something larger; this unit test would
pass. However, if a system administrator sets the capacity
to a large number in the properties file, an in vivo test would
fail when it tries to set the cache capacity to a smaller value,
revealing the defect.

The third category of defects concerns those that come
about from deployment environments that were not sim-
ulated in the lab prior to release. Java applications may
require testing on multiple platforms with multiple JDK ver-
sions and multiple revisions of the application code, possi-
bly with multiple third-party libraries or application servers;
this is not always feasible for testing in a single test lab. Ad-
ditionally, a new JDK, OS, or library may be released after
the software is deployed, making testing prior to deploy-
ment impossible. For instance, in OSCache certain func-
tionality works fine with Solaris 8 but not Solaris 9, which
was released after the version of OSCache in question.5

By extending testing into the various deployment environ-
ments, in vivo testing would detect such defects.

The fourth type of defects targeted by in vivo testing are
ones that stem from a user action that puts the system
in an unexpected state that would not have been tested.
These actions may be legal ones that were simply unantici-
pated, or illegal actions, e.g. a security violation. This could
also happen when objects in the same process are shared be-
tween users, and one user’s activities modify an object such
that it does not work correctly for other users.

For example, in OSCache, an uncaught NullPointerEx-
ception would appear only after a particular sequence of
operations that involves attempting to flush cache groups
that do not exist.6 In this case, an in vivo test that checks
the operation of the flush method would detect this invalid
state because the test would fail, even though that test would
succeed in normal “expected” states.

The fifth and final type of defect is one that only ap-
pears occasionally. These defects may be discovered by

4http://jira.opensymphony.com/browse/CACHE-158
5http://jira.opensymphony.com/browse/CACHE-193
6http://jira.opensymphony.com/browse/CACHE-173



simply conducting more testing during the development
phase, but the fact that our approach continuously tests the
application even after deployment increases the chance of
finding such a defect.

Concurrency bugs are a very common type of defect in
this category. We noticed one of the concurrency bugs in
Apache Tomcat, in which a particular method used in the
creation of a session is not threadsafe. If the thread that in-
validates expired sessions happens to execute at the same
time as a session is being created, it is possible that an un-
caught exception would occur because one of the objects
being used in the session creation could be set to null by
the invalidator.7 A unit test that is simply testing the cre-
ation of sessions is not likely to detect this defect because at
that time there may not be any other sessions to invalidate
(this is also a case of the first type of defect targeted by in
vivo testing, in which the unit test assumes a blank slate).
However, in the deployment environment, this unit test may
fail if the session invalidation thread is cleaning up other
sessions at the same time.

We found at least ten such examples in the listing of
known OSCache defects. For instance, in one of them,
flushing the cache, adding an item, and attempting to re-
trieve the item can occasionally result in an error, particu-
larly if two calls to flush the cache happen within the same
millisecond.8 A unit test that tries this sequence of actions
may simply never encounter the error by chance during test-
ing in the development environment, but an application fit-
ted with the in vivo framework would catch it when it even-
tually occurs.

Note that, in all these cases, in vivo testing helps find de-
fects in poorly designed unit tests as much as it does in the
applications themselves. Software testers may not antici-
pate these types of defects when they write their tests, but
we hope that by using in vivo testing, they will consider a
different approach that allows them to test functionality of
the application, regardless of its state or environment.

Also, it is conceivable that the defects documented here
could have been discovered prior to release of the appli-
cation given more time, better unit tests, and a little luck.
But these examples demonstrate that a testing methodology
that continues to execute tests on an application in the field
greatly improves the chances of the errors being detected
before affecting an end-user. More importantly, certain de-
fects will in practice only manifest themselves in the field
(because of limited time and resources in the testing lab, or
because they are heavily dependent on the state), and these
are the ones for which in vivo testing is most useful.

7http://issues.apache.org/bugzilla/show bug.cgi?id=42803
8http://jira.opensymphony.com/browse/CACHE-175

2.3. In Vivo Testing Fundamentals

To apply the in vivo testing approach, the application
vendor must first perform some preparation steps (described
in Section 4.1), including the instrumentation of the por-
tions of the application that are to be tested in the produc-
tion environment. After these preparation steps have been
performed and the application has been configured to take
advantage of in vivo testing, it is deployed in its usual fash-
ion: the application user does nothing special and would not
even know that in vivo testing is being performed. In vivo
testing then works as follows: when an instrumented part
of the application is to be executed, with some probability a
corresponding test is then executed in a separate “sandbox”
that allows the test to run without altering the state of the
original application process. The application then contin-
ues its normal operation as the test runs to completion in a
separate process, and the results of the test are logged. Note
that the tests are only invoked as a result of the execution
of the code they are testing, so that commonly used code is
tested more often.

Although the in vivo testing approach is a general test-
ing approach suitable to most types of applications, it is
most appropriate for those that produce calculations or re-
sults that may not be obviously wrong, and do not otherwise
make the error obvious, such as crashing. For instance, in
most of the caching examples above, the user would not no-
tice that the cache is acting incorrectly, as the data would
still be usable and may appear to be correct; however, in
those examples the caches are not working correctly and/or
as efficiently as they should. Applications that include ma-
chine learning may also benefit from in vivo testing because
the user may not know whether the calculations are ob-
viously incorrect, but defects in the implementation could
cause slightly erroneous results. Systems that have complex
states that perhaps could not be anticipated in advance are
other good candidates for in vivo testing, which is designed
to execute tests in such situations.

3. Related Work

While the notion of “self-checking software” is by no
means new [33], our work is principally inspired by the idea
of “perpetual testing” [26] [27] [34], which suggests that
analysis and testing of software should not only be a core
part of the development phase, but also continue into the
deployment phase and throughout the entire lifetime of the
application. Perpetual testing advocates that these should
be on-going activities that improve quality through several
generations of the product, in the development environment
(the lab, or “in vitro”) as well as the deployment environ-
ment (the field, or “in vivo”). The in vivo testing approach
is a type of perpetual testing in which the tests are executed



from within the context of the running application and do
not alter the application state from the user’s perspective.

The Skoll project [18] [22] has extended the idea of
“continuous” [28], round-the-clock testing into the deploy-
ment environment by carefully managed facilitation of the
execution of tests at distributed installation sites, and then
gathering the results back at a central server. The principal
idea is that there are simply too many possible configura-
tions and options to test in the development environment, so
tests can be run on-site to ensure proper quality assurance.
Whereas the Skoll work to date has mostly focused on ac-
ceptance testing of compilation and installation on different
target platforms, in vivo testing is different in that it seeks
to execute tests within the application while it is running
under normal operation. Rather than check to see whether
the installation and build procedure completed successfully,
as in Skoll, in vivo testing executes tests as the application
runs in its deployment environment.

Other approaches to testing software in the field include
the monitoring, analysis, and profiling of deployed soft-
ware, as surveyed in [10]. One of these, the GAMMA sys-
tem [24], uses software tomography for dividing monitor-
ing tasks and reassembling gathered information. Another,
Cooperative Bug Isolation [20], enables large numbers of
software instances in the field to perform analysis on them-
selves with low performance impact, and then report their
findings to a central server, where statistical debugging is
then used to help developers isolate and fix bugs. Others
have looked at methods of recording, reproducing, and min-
imizing failures to enable and support in-house debugging
[8], or using machine learning to detect anomalies in de-
ployed software [4]. All of these strategies could take ad-
vantage of in vivo testing as part of their implementation.

Lastly, in vivo tests themselves can be considered “ex-
tended assertions” or “extended program invariants”. Oth-
ers have looked at the automatic detection of invariants, e.g.
DIDUCE [14] and Daikon [11], and of checking them at
runtime [29]. However, those approaches will only perform
runtime checks that have no side effects, whereas in vivo
tests necessarily allow for side effects, but they are hidden
from the end user. It may be possible, though, to consider
the use of such tools to determine properties of the software
that can be checked using the in vivo testing approach.

4. The In Vivo Testing Framework

The prototype in vivo testing framework, which we call
Invite (IN VIvo TEsting framework), has been implemented
for Java applications and has been designed to reuse existing
test code and to allow for the creation of in vivo tests, while
not imposing any restrictions on the design of the software
application. This section describes the steps that must be
followed to prepare an application for in vivo testing, and

how the tests are executed in the deployment environment.

4.1. Preparation

Here we describe the steps that a software vendor would
need to take to use the Invite framework. It is important
to note that these steps do not require any modification or
special constraints on the design of the software application
itself; the development of any new test code and the con-
figuration of the framework would be done a priori by the
vendor who plans to distribute an in vivo-testable system,
and not by the customer in whose environment the tests run.

Step 1. Create test code. If unit and integration tests
already exist, it is certainly possible to use the Invite frame-
work without writing a single line of new code. By ship-
ping these tests with the application and then running them
in vivo as the application executes in the field, it is clear that
defects that appear infrequently are much more likely to be
revealed purely by increasing the number of times the tests
are executed. Furthermore, it is also clear that this approach
will help find defects that only appear in certain configu-
rations or environments, since the tests will run in a broad
variety of settings, as in [22]. Thus, one can take advantage
of in vivo testing even without writing any new code.

To get the most out of in vivo testing, however, applica-
tion developers should create in vivo tests as described in
Section 2. These tests are designed to check properties of
the application that should hold true regardless of its state,
and these are most likely to reveal defects that were not
found (or could not have been found) in the development
environment.

To create in vivo tests, the software vendor must ensure
that the test methods reside in the same class as the code
they are testing (or in a superclass). By default, the in vivo
test for a method “foo” should be a public method called
“testFoo”, but this name can be overridden in the configura-
tion file; the test method should return a boolean (to indicate
whether or not the test passed, so that Invite can log the re-
sult and possibly take some appropriate action). The param-
eters to “testFoo” should be the same as those to the origi-
nal method “foo”, so that the actual arguments can be used
when testing. Additionally, rather than create new objects
to test in the in vivo test methods, those methods should use
existing objects (i.e. the one in which the method resides, or
other objects directly accessible through it), since the goal
of in vivo testing is that, when the test is run in the field, it
is using the object whose method invocation triggered the
testing, which has been modified over the course of the ap-
plication’s execution.

Figure 1 shows a simple in vivo test that could be used in
a Set implementation. Upon invocation of the “add” method
with an Object parameter, for instance, “testAdd” is called
and the argument is passed to it as testObj. Because this test



method resides in the same class that defines the “add”, “re-
move”, and “contains” methods, it uses the object reference
“this” to call methods on itself.

public boolean testAdd(Object testObj) {
this.add(testObj);
this.remove(testObj);
return (this.contains(testObj) == false);

}

Figure 1. Example of in vivo test

Another approach to creating in vivo tests is to build
upon already-created unit tests, modified so that they use
existing objects, rather than creating new ones. Figure 2
shows such a unit test in the JUnit [16] style. It is clear that
there are only small changes required to convert this into
the in vivo test in Figure 1: (1) the test method has been
moved into the same class as the one it is testing; (2) the
name of the test method has been changed to match that of
the method it is testing; (3) the parameter to the test method
matches that of the original method, and the parameter is
used in the testing; (4) the return type of the test method has
been changed, and a return statement is used instead of an
assert; and (5) the reference to the object being tested (in
this case, the Set) in the test method is now “this” instead
of a newly-created object. Future work could look into the
potential of automating this conversion.

private Set set;
@Before public void setUp() {

set = new SetImpl();
}
@Test public void testAddRemoveContains() {

Object testObj = new Object();
set.add(testObj);
set.remove(testObj);
assert(set.contains(testObj) == false);

}

Figure 2. Example of JUnit test

As noted above, the modification of unit tests into the
style of in vivo tests is not strictly a requirement for using
the Invite framework. Existing unit and integration tests can
be used without any modifications whatsoever, and the dif-
ferent types of tests are not mutually exclusive. However,
our intention is to demonstrate that it is possible to create in
vivo tests only with small changes to existing unit tests.

Step 2. Instrument classes. In the next step, the vendor
must then select the methods in one or more Java classes in
the application under test for instrumentation. Aside from
acting as jumping off points for the tests, the instrumented
methods are also the same ones that will be tested by the

Invite system, and should be selected according to which
ones the vendor wants to test (this could certainly be all of
the methods, of course). The list is specified in an XML
file. To achieve this instrumentation, a component written
in the aspect-oriented programming language AspectJ [3] is
woven into the instrumented classes. This does not require
any modification of the original source code: it only calls
for recompilation, though this restriction could be lifted by
use of a system like [13], which would dynamically insert
the test harness code into the application after it is compiled.

Step 3. Configure framework. Before deployment, the
vendor would then configure Invite with values represent-
ing, for each method with a test in the instrumented classes,
the probability ρ with which that method’s test(s) will be
run. This configuration is specified in an XML file, which
for each test specifies the name of the class, the name of the
method, and the percent of calls to that method that should
result in execution of the corresponding tests (if a method
is associated with multiple tests, these are all specified sep-
arately). The file is read at run-time (not at compile-time)
so it can be modified by a system administrator at the cus-
tomer organization if necessary. A “DEFAULT” value can be
specified as well: any method not explicitly given a percent-
age will use that global default. If the global default is not
specified, then the default percentage is simply set to zero,
which provides an easy way of disabling all in vivo testing
for all but the specified methods. To disable testing for all
methods in the application, the administrator can simply put
“DISABLE” in the first line of the file.

Step 4. Deploy application. It is assumed that the ap-
plication vendor would ship the compiled code including
the tests and the configured testing framework as part of the
software distribution. However, the customer organization
using the software would not need to do anything special at
all, and ideally would not even notice that the in vivo tests
were running.

4.2. Implementation Details

Whenever a method of an instrumented class is invoked,
the Invite framework uses the percentage value ρ for that
method to decide whether to execute a test. If Invite decides
that a test is to be run, it uses Java Reflection to see if the
method has a corresponding “test” method (for performance
reasons, however, Invite remembers the results of previous
checks to see if the test method exists). This is the in vivo
test that will then be executed. The purpose of running a
method’s corresponding test method is so that the test is
executed at the same point in the program (the same state) as
the method itself, which is preferable to arbitrarily choosing
a random test to execute, since there may be states when
such a test is not expected to work correctly.

If a test method exists and it is determined that a test



should be run, Invite then forks a new process (which is a
copy of the original) to create a sandbox in which to run the
test code, ensuring that any modification to the local process
state caused by the in vivo test will not affect the state of the
“real” application, since the test is being executed in a sep-
arate process with separate memory. As Invite is currently
implemented in Java, and there is no “fork” in Java, we have
used a JNI call to a simple native C program which executes
the fork. Performing a fork creates a copy-on-write version
of the original process, so that the process running the test
has its own writable memory area and cannot affect the state
of the in-process memory of the original. Once the test is
invoked, the application can continue its normal execution,
while the test runs in the other process. Note that the appli-
cation and the in vivo test run in parallel in two processes;
the test does not pre-empt or block normal operation of the
application after the fork is performed.

In the current implementation of Invite, test modifi-
cations to network I/O, the operating system, external
databases, etc. are not automatically undone; the sand-
box only includes the in-process memory of the application
(through the copy-on-write forking). To address this lim-
itation, we are currently integrating Invite with DejaView
[19], an application which creates a virtual execution envi-
ronment that isolates the process running the unit test and
gives it its own isolated view of the system.

When the test is completed, Invite logs whether or not
it passed, and the process in which the test was run is ter-
minated. Invite provides a tool for analyzing the log file
and providing simple statistics like the number of tests run,
the number that passed/failed, and a summary of the suc-
cess/failure of each instrumented method’s corresponding
test(s). We describe in [6] the mechanism by which all er-
rors are reported back to a central server (presumably at the
vendor’s location), and could then be processed as in [24],
wherein configuration parameters (like the frequency of test
execution or even the list of methods to test) could then be
modified and sent back to the application instance.

Note that Invite avoids the “Heisenberg problem” of hav-
ing the test alter the state of the application it is testing. This
is one of the major contributions and differentiating charac-
teristics of the in vivo testing approach.

4.3. Configuration Guidelines

In order to help a system administrator or vendor under-
stand the configuration’s impact on performance and test-
ing, Invite periodically records to a log file the total number
of in vivo tests that have been run, the average time each
test takes, and the number of tests run per second. All of
these statistics are tracked globally, but also for the separate
methods, since they may have different ρ values. From this
data, it is then possible to estimate how altering the value of

ρ will affect the system’s performance and number of tests
executed.

Specifically, the rate of tests run per second is propor-
tional to ρ: for instance, to double the frequency of execu-
tion of a particular test, simply double the method’s ρ value.
This simple calculation will help guide how to adjust ρ so
as to execute more (or fewer) tests for a given method, as-
suming constant usage of that method over time.

To estimate the performance overhead caused by the unit
tests, one can multiply the number of unit tests by the av-
erage time each takes to see what additional time is being
spent running those tests. Then, by calculating the effect
that ρ has on the number of tests being run per unit time,
one can then calculate the additional overall time cost of in-
creasing or decreasing ρ. We surmise that, in practice, the
ρ values would presumably be very small (less than 1%).
However, these are heavily dependent on the number of
instrumented methods, the frequency with which they are
called, the desired amount of testing to be performed, and
the acceptable performance degradation. We discuss more
performance issues in Section 6.

5. Case Studies

Given the motivating examples listed in Section 2, we
sought to apply Invite to some of those applications to
demonstrate that in vivo testing would have quickly de-
tected those defects, even assuming the presence of suffi-
cient unit tests that could be used in the development envi-
ronment.

We first investigated OSCache 2.1.1, which contained
three of the known defects listed in Section 2. Unfortu-
nately the unit tests that are distributed with that version of
OSCache do not cover the methods in which those defects
are found, so we asked a student (who was not aware of the
goals of this work) to create unit tests that would reason-
ably exercise those parts of the application. As expected,
those tests passed in the development environment during
traditional unit testing, primarily because the student had
created the tests assuming a clean state which he could con-
trol. This took a total of two hours.

We then asked the same student to develop in vivo tests,
using those unit tests as a starting point; it took less than
one hour to complete this task. Next we instrumented the
corresponding classes in OSCache with the Invite frame-
work. Although we did not have a real-world application
based on OSCache for our testing, we created a driver that
used the OSCache API to randomly add, retrieve, and re-
move elements of random size from a cache, and randomly
flushed the cache. All three defects were revealed by In-
vite in less than two hours. The last to reveal itself was the
one that only happened when the cache was at full capac-
ity, which happened rarely in our test because the random



adding, removing, and flushing did not allow it to reach ca-
pacity often; however, this defect may have revealed itself
more quickly in a real-world application.

A similar experiment was conducted with Apache JCS
version 1.3. Here we were looking for a defect that only
appeared when the cache was at full capacity, and this de-
fect was revealed in less than one hour, but again may have
appeared sooner in the real world.

Although these defects were discovered in our own test-
ing environment (as opposed to a deployment environment),
these examples demonstrate that certain intermittent defects
or those that only are revealed under certain circumstances
may not be revealed in traditional unit testing, but would
be detected with in vivo testing. More importantly, these
case studies demonstrates the technical feasibility of our ap-
proach and is indicative of its efficacy in such situations.

6. Performance Evaluation

We are concerned with the performance impact of our
approach, particularly in using aspect-oriented program-
ming to instrument potentially numerous method calls (per-
haps all of them), and the overhead incurred by forking a
process through a native method call to create a new pro-
cess in which the test would be run. This section describes
some of the design considerations to address performance,
and the results of some tests we conducted to determine the
additional overhead introduced by the Invite framework.

6.1. Addressing Performance Concerns

The first and perhaps most obvious measure we took is
to allow the administrator to limit the number of simulta-
neous tests that are being executed, so that test processes
are not created so frequently as to flood the CPU. When the
maximum number of test processes are executing, the Invite
framework is temporarily disabled so that no more tests are
started. This gives the administrator a mechanism for keep-
ing the number of processes under control.

The maximum allowed number of simultaneous test pro-
cesses would ideally be less than or equal to the number
of CPUs/cores in the machine. To take advantage of multi-
processor/multicore architectures, it is possible to configure
Invite so that each process runs independently and does not
interrupt the others. Each process is assigned to a separate
CPU/core using an affinity setting (this is not supported in
Java but is possible through a JNI call), thus ensuring that
the tests do not run on the same CPU/core as the main pro-
cess and limiting the overall impact on the application. For
instance, on a quad-core machine, one core could be execut-
ing the application, allowing for up to three simultaneous
tests, each on a separate core, so that none of them would
pre-empt the original application process.

We have also investigated ways to reduce the overhead
by distributing the testing load across multiple instances of
the application under test, as described in [6]. However,
here we only discuss the case in which a single instance
performs the tests.

6.2. Test Setup

We measured the performance impact during our testing
of OSCache 2.1.1, using Java 1.6.0 on a Linux Ubuntu 2.7.1
server with a dual-core 3.0GHz CPU and 1 GB of memory.
Only minimal background system processes were executing
during our tests.

We first executed the test in our environment without the
in vivo testing framework attached, to determine a baseline.
The test consisted of 100,000 random calls to add, retrieve,
and remove items from a cache, as well as to flush the entire
cache. The time to complete the benchmark with no Invite
instrumentation was 1062ms.

We then instrumented the four appropriate methods in
the GeneralCacheAdministrator class and created simple in
vivo tests for each; we then set the probability of running
a test to 0. In this case, we could measure the overhead of
the instrumentation itself from the inserted AspectJ code,
which still has to check that probability on each method call,
since the instrumentation of the code is done at compile-
time but the configuration is checked at run-time. In this
case, though, we did not need to consider the forking of
new processes or parallel execution of any test code, since
Invite would never execute any tests. This time, the test
completed in 1080ms (1.6% increase), which indicated very
little impact overall and is consistent with the small over-
head caused by calls to weaved-in AspectJ code [15].

6.3. Performance Impact

Next we configured Invite so that the probability ρ of
running a test (for each of the four methods) was set to
0.1%. To demonstrate the effects of more frequent testing,
we then repeated the tests with larger ρ values; the results
are shown in Table 2. All tests ran on a different core from
the original process.

Note that the number of tests executed does not increase
by an order of magnitude just because the percent proba-
bility of running a test does: depending on how long the
test takes to run, and the allowed maximum number of con-
current tests, only a certain number of tests could be fit in
before the program runs to completion. It is possible that
an in vivo test that takes a very long time to run will reduce
the overall number of tests run, but it will also reduce the
overhead (since new tests are not starting), and we expect
that the ratio of overhead to number of tests run would stay
about the same even in those cases.



Table 2. Results of performance testing
Percent of
methods Total Number Tests
that execute time of per
tests (ρ) (ms) %diff tests second
Baseline 1062 - - -
0% 1080 1.6 0 0
0.1% 1115 4.9 39 34.9
1% 1140 7.3 51 44.7
10% 1276 20.1 58 45.5
100% 1299 26.6 72 55.4

We also ran similar experiments on a quad-core machine,
in which we allowed for two and then three simultaneous
tests to be run. The results were as expected: the per-
formance overhead increased because more test processes
were being forked, but the number of tests run during the
experiment also increased with the number of allowable si-
multaneous tests. For instance, with ρ set to 100% and al-
lowing for up to three simultaneous tests, we were able to
achieve rates of over 200 tests per second, though at a higher
performance cost (around 60%). Additionally, we were able
to sustain such rates over much longer tests (a few hours).
See our tech report [23] for more details.

Despite the large overhead incurred by running numer-
ous tests very frequently, the results indicate that incurring
an overhead of just 5% still achieves over three million tests
per day for a single application instance. Although more
investigation is still needed, this experiment demonstrates
that it is possible to gain the benefits of in vivo testing with
limited performance overhead.

7. Limitations and Future Work

The most critical limitation of the current Invite imple-
mentation is that anything external to the application pro-
cess itself, e.g. database tables, network I/O, etc., is not
replicated by forking the process and modifications of those
made by an in vivo test may therefore affect the external
state of the original application. As described previously,
we are currently looking into integrating Invite with De-
jaView [19], though DejaView may introduce non-trivial
performance overhead and only provides a limited sandbox
that addresses local file system issues and does not address
any concerns related to external databases or network I/O.
We hope to address these limitations soon.

Also, we have not yet finalized what action to take once
a test fails and a defect is found. We currently have an op-
tion to report failed in vivo tests to a central server, as we
previously discussed in [6]. Another approach would be to
create a “snapshot” of the process execution state and file
system state, so that when a test fails, the snapshot could be

sent back to the vendor, who could then try to reproduce,
debug, and fix the problem. This could conceivably raise
privacy and security issues, however.

Currently the Invite framework has only been designed
to work with Java applications, but we are now in the pro-
cess of developing an implementation for C. Additional is-
sues may come up with using a language that does not use
managed code (e.g. our implementation uses Java Reflec-
tion to determine the test method names), but other types
of defects may be revealed, particularly those related to the
state of the environment; most of our work so far has only
focused on issues related to the state of the application. Ad-
ditionally, it may not always be desirable or even possible
to recompile the target source code, as made necessary by
our use of aspect-oriented programming. An approach to
dynamically instrumenting the compiled code, such as in
Kheiron [13], could be used instead.

To date we have not made efforts to determine the ade-
quacy [32] of our testing approach, for instance by measur-
ing path/statement coverage or percentage of defects reli-
ably found, and establishing success criteria. Further work
could also more precisely categorize the prospective defects
that could be found, or the types of applications for which
the approach is best suited.

Future work could also investigate which classes to in-
strument, the percentage of method calls that should launch
unit tests, the optimal timing for when tests should be run,
or how to test code that is not in the execution path, since the
current framework only uses a percentage value to choose
when to execute tests, based on actual invocations of the
instrumented methods. This would vary greatly depending
on the type of application and the defects that are being tar-
geted, however. A further enhancement could consider the
automatic selection of test cases at the time of execution,
depending on the current system state and load.

8. Conclusion

We have presented in vivo testing, a novel testing ap-
proach that supports the execution of tests in the deploy-
ment environment, without affecting that application’s state.
We have also presented in vivo tests, which execute within
a running application and test properties of the application
that must hold regardless of the state the process is in. Last,
we have described a Java implementation of our framework,
called Invite. Through our initial findings, we have pre-
sented some real-world examples of defects that could be
detected, and have demonstrated that our approach and the
current implementation add limited overhead in terms of
system performance and code modification.

Testing in the deployment environment has been identi-
fied as a future challenge for the software testing commu-
nity [5], and we expect that in vivo testing will provide a



foundation for future work in this field.

9. Acknowledgments

The authors would like to thank Lori Clarke, Lee Os-
terweil, Simha Sethumadhavan and Junfeng Yang for their
suggestions and assistance. Murphy and Kaiser are mem-
bers of the Programming Systems Lab, funded in part by
NSF CNS-0717544, CNS-0627473 and CNS-0426623, and
NIH 1 U54 CA121852-01A1.

References

[1] Apache Java Caching Solution (JCS).
http://jakarta.apache.org/jcs/.

[2] Apache Tomcat. http://tomcat.apache.org/.
[3] AspectJ. http://www.eclipse.org/aspectj/.
[4] G. K. Baah, A. Gray, and M.J. Harrold. On-line anomaly

detection of deployed software: a statistical machine learn-
ing approach. In Proc. of the 3rd International Workshop on
Software Quality Assurance, pages 70–77, 2006.

[5] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In Proc. of ICSE Future of Software
Engineering (FOSE), pages 85–103, May 2007.

[6] M. Chu, C. Murphy, and G. Kaiser. Distributed in vivo test-
ing of software applications. In Proc. of the First Interna-
tional Conference on Software Testing, Verification and Val-
idation, April 2008.

[7] L. A. Clarke and D. S. Rosenblum. A historical perspec-
tive on runtime assertion checking in software development.
ACM SIGSOFT Software Engineering Notes, 31(3):25–37,
May 2006.

[8] J. Clause and A. Orso. A technique for enabling and support-
ing debugging of field failures. In Proc. of the 29th ICSE,
pages 261–270, 2007.

[9] M. B. Cohen, J. Snyder, and G. Rothermel. Testing across
configurations: implications for combinatorial testing. In
Proc of the Second Workshop on Advances in Model-based
Software Testing, pages 1–9, 2006.

[10] S. Elbaum and M. Hardojo. An empirical study of profiling
strategies for released software and their impact on testing
activities. In Proc. of ISSTA 2004, pages 65–75, 2004.

[11] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely programming invariants to
support program evolution. In Proc. of the 21st Interna-
tional Conference on Software Engineering (ICSE), pages
213–224, 1999.

[12] R. E. Fairley. Static analysis and dynamic testing of com-
puter software. Computer, 11(4):14–23, April 1978.

[13] R. Griffith and G. Kaiser. A runtime adaptation framework
for native C and bytecode applications. In 3rd IEEE Interna-
tional Conference on Autonomic Computing, pages 93–103,
June 2006.

[14] S. Hangal and M. S. Lam. Tracking down software bugs us-
ing automatic anomaly detection. In Proc. of the 24th Inter-
national Conference on Software Engineering (ICSE), pages
291–301, 2002.

[15] E. Hilsdale and J. Hugunin. Advice weaving in aspectj. In
Proceedings of the 3rd international conference on aspect-
oriented software development (AOSD), pages 26–35, 2004.

[16] JUnit. http://www.junit.org/.
[17] JUnit Cookbook. http://junit.sourceforge.net/doc/cookbook/cookbook.htm.
[18] A. Krishna et al. A distributed continuous quality assurance

process to manage variability in performance-intensive soft-
ware. In 19th ACM OOPSLA Workshop on Component and
Middleware Performance, 2004.

[19] O. Laadan, R. A. Baratto, D. B. Phung, S. Potter, and
J. Nieh. Dejaview: a personal virtual computer recorder.
In Proceedings of twenty-first ACM SIGOPS symposium on
operating systems principles (SOSP), pages 279–292, 2007.

[20] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Public deployment of cooperative bug isolation. In Proceed-
ings of the Second International Workshop on Remote Anal-
ysis and Measurement of Software Systems (RAMSS ’04),
pages 57–62, May 2004.

[21] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atom-
icity violations via access interleaving invariants. In Proc of
the 12th international conference on architectural support
for programming languages and operating systems, pages
37–48, 2006.

[22] A. Memon and A. Porter et al. Skoll: distributed continuous
quality assurance. In Proc. of the 26th ICSE, pages 459–468,
May 2004.

[23] C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assurance
of software applications using the in vivo testing approach.
Technical Report CUCS-045-08, Columbia Univ. Dept. of
Computer Science, 2008.

[24] A. Orso, D. Liang, and M.J. Harrold. Gamma system: Con-
tinuous evolution of software after deployment. In Proc. of
ISSTA 2002, pages 65–69, 2002.

[25] OSCache. http://www.opensymphony.com/oscache.
[26] L. Osterweil. Perpetually testing software. In The Ninth

International Software Quality Week (QW’96), May 1996.
[27] D. Richardson, L. Clarke, L. Osterweil,

and M. Young. Perpetual testing project.
http://www.ics.uci.edu/˜djr/edcs/PerpTest.html.

[28] D. Saff and M.D. Ernst. Reducing wasted development time
via continuous testing. In Proc. of ISSRE 2003, page 281.

[29] S. Sankar. Run-time consistency checking of algebraic spec-
ifications. In Proceedings of the 1991 international sympo-
sium on software testing, analysis, and verification, pages
123–129, 1991.

[30] StackSafe, Inc. IT Operations Research Report: Testing Ma-
turity, 2008.

[31] C. D. Turner and D. Robson. State based testing and inheri-
tance. Technical Report TR-1/93, Univ of Durham, 1993.

[32] E. Weyuker. Axiomatizing software test data adequacy.
IEEE Trans. Software Eng., SE-12, pages 1128–1138, De-
cember 1986.

[33] S. S. Yau and R.C. Cheung. Design of self-checking soft-
ware. In Proc. of the International Conference on Reliable
Software, pages 450–455, 1975.

[34] M. Young. Perpetual testing. Technical Report AFRL-IF-
RS-TR-2003-32, Univ. of Oregon, February 2003.


