
Using JML Runtime Assertion Checking to Automate Metamorphic Testing in
Applications without Test Oracles

Christian Murphy, Kuang Shen, Gail Kaiser
Department of Computer Science, Columbia University, New York NY 10027

{cmurphy, ks2555, kaiser}@cs.columbia.edu

Abstract

It is challenging to test applications and functions for
which the correct output for arbitrary input cannot be
known in advance, e.g. some computational science or ma-
chine learning applications. In the absence of a test oracle,
one approach to testing these applications is to use meta-
morphic testing: existing test case input is modified to pro-
duce new test cases in such a manner that, when given the
new input, the application should produce an output that
can be easily be computed based on the original output.
That is, if input x produces output f(x), then we create input
x’ such that we can predict f(x’) based on f(x); if the ap-
plication or function does not produce the expected output,
then a defect must exist, and either f(x) or f(x’) (or both)
is wrong. By using metamorphic testing, we are able to
provide built-in “pseudo-oracles” for these so-called “non-
testable programs” that have no test oracles.

In this paper, we describe an approach in which a func-
tion’s metamorphic properties are specified using an exten-
sion to the Java Modeling Language (JML), a behavioral
interface specification language that is used to support the
“design by contract” paradigm in Java applications. Our
implementation, called Corduroy, pre-processes these spec-
ifications and generates test code that can be executed using
JML runtime assertion checking, for ensuring that the spec-
ifications hold during program execution. In addition to
presenting our approach and implementation, we also de-
scribe our findings from case studies in which we apply our
technique to applications without test oracles.

1. Introduction

Assuring the quality of applications such as those in the
fields of scientific calculations, optimizations, data mining,
machine learning, etc. presents a challenge because con-
ventional software testing processes do not always apply:
in particular, it is difficult to detect subtle errors, faults, de-
fects or anomalies in many applications in these domains

because there is no reliable “test oracle” to indicate what
the correct output should be for arbitrary input. The gen-
eral class of software systems with no reliable test oracle
available is sometimes known as “non-testable programs”
[37]. These applications fall into a category of software that
Weyuker describes as “Programs which were written in or-
der to determine the answer in the first place. There would
be no need to write such programs, if the correct answer
were known” [37].

One approach to testing such applications is to use a
“pseudo-oracle” [15], in which multiple implementations
of an algorithm process an input and the results are com-
pared; if the results are not the same, then one or both of the
implementations contains a defect. This is not always feasi-
ble, though, since multiple implementations may not exist,
or they may have been created by the same developers, or
by groups of developers who are prone to making the same
types of mistakes [24].

In the absence of multiple implementations, however,
metamorphic testing [8] can be used to produce a similar
effect. Metamorphic testing is designed as a general tech-
nique for creating follow-up test cases based on existing
ones, particularly those that have not revealed any failure, in
order to try to find uncovered flaws. Instead of being an ap-
proach for test case selection, it is a methodology of reusing
input test data to create additional test cases whose outputs
can be predicted. In metamorphic testing, if input x pro-
duces an output f(x), the function’s metamorphic properties
can then be used to guide the creation of a transformation
function t, which can then be applied to the input to pro-
duce t(x); this transformation then allows us to predict the
output f(t(x)), based on the (already known) value of f(x).
If the output is not as expected, then a defect must exist.
Of course, this can only show the existence of defects and
cannot demonstrate their absence, since the correct output
cannot be known in advance (and even if the outputs are as
expected, both could be incorrect), but metamorphic test-
ing provides a powerful technique to reveal defects in such
non-testable programs by use of a built-in pseudo-oracle.

To automate this process in a general-purpose implemen-

1

tation, it is necessary to specify the metamorphic proper-
ties so that a test engine can generate the test case inputs
and know how to compare the outputs. Here, we present
an extension to the Java Modeling Language (JML) [25],
a behavioral interface specification language that is used to
support the “design by contract” paradigm in Java appli-
cations. In JML, an application designer or developer can
formally specify a module’s behavior by adding annotation
comments within the Java source code, such as its assump-
tions (preconditions) or guarantees (postconditions), as well
as any invariant properties. Numerous JML tools support
“runtime assertion checking” [4] for ensuring that the spec-
ifications hold during program execution. However, to date
none address the particular needs of functions that do not
have a reliable test oracle, and JML itself does not support
the mechanisms needed for metamorphic testing. Checking
that the functions meet their preconditions and postcondi-
tions is not sufficient to demonstrate that the return value of
the function is correct (or, rather, not incorrect) for the par-
ticular input, especially given that the correct output cannot
be known in advance, and thus cannot be specified as part
of the postcondition in terms of the input or precondition.

This paper makes four contributions: (1) a testing ap-
proach that performs runtime metamorphic testing of func-
tions in applications that do not have test oracles; (2) an
extension to the JML specification language that allows for
the specification of a function’s metamorphic properties; (3)
an implementation framework called Corduroy, which con-
verts the specification of metamorphic properties into test
methods, which can then be executed using JML runtime
assertion checking (see Figure 1); and (4), case studies in
which we apply our approach to non-testable programs and
demonstrate the effectiveness of the technique.

2. Background

We have previously explored an approach in which input
was manually manipulated to perform metamorphic testing
of applications without test oracles, particularly in the do-
main of machine learning [26]. Here, we improve on that
work in two ways. First, we refine the approach to perform
metamorphic testing of individual functions, rather than of
the application as a whole, to allow for the investigation
of more metamorphic properties (and thus more test cases)
and better fault localization; although applying system test-
ing techniques to smaller units is standard testing practice,
new issues arise when considering the metamorphic prop-
erties of individual functions. Second, rather than using
one-off, ad-hoc scripts to modify the input data for meta-
morphic testing and to compare the outputs, we introduce
an extension to the Java Modeling Language (JML) [25] to
specify the functions’ metamorphic properties. These ex-
tensions, combined with the automatic generation of test

code and translation into plain JML that invokes that test
code, allow us to combine JML’s powerful specification ca-
pabilities with its “runtime assertion checking” [4] feature
to check that the properties hold when provided any test
input, which is assumed to previously exist.1 If the specifi-
cations are not met, then a defect has been detected.

A simple example - for exposition purposes only - of
a function to which metamorphic testing could be applied
would be one that calculates the standard deviation of a set
of numbers. Certain transformations of the set would be ex-
pected to produce the same result. For instance, permuting
the order of the elements should not affect the calculation;
nor would multiplying each value by -1, since the devation
from the mean would still be the same.

Figure 1. Corduroy converts metamorphic
properties into test methods and JML spec-
ifications that can be checked at runtime

Furthermore, we know that there are other transforma-
tions that will alter the output, but in a predictable way. For
instance, if each value in the set is multipled by 2, then the
standard deviation should be twice as much as that of the
original set, since the values on the number line are just
“stretched out” and their deviation from the mean becomes
twice as great. Thus, given one set of numbers, we can cre-
ate three more sets (one with the elements permuted, one
with each multiplied by -1, and another with each multi-
plied by 2), and get a total of four test cases; moreover,
given the result of only the first test case, we can predict
what the other three should be.

Metamorphic testing generally would not be needed for
this trivial example, but clearly can be very useful in the ab-
sence of an oracle: regardless of the values in the data set,
and even if the correct output of an application or function
could not be known in advance, if the outputs are not as ex-
pected, then there must be a defect in the implementation of
the function. Although the use of these simple identities for
testing numerical functions is not unique to metamorphic

1This could be real-world user input, but we assume for the purposes
of this paper that the initial input is produced somehow in the lab.

testing [5] [13], the approach can be used on a broader do-
main of any functions that display metamorphic properties.

Machine learning applications are a good example of
non-testable programs that can be tested using this ap-
proach. For instance, anomaly-based network intrusion
detection systems build up a model of “normal” behavior
based on what has previously been observed; this model
may be created, for instance, according to the byte distribu-
tion of incoming network payloads [36]. When a new pay-
load arrives, its byte distribution is then compared to that
model, and anything deemed anomalous causes an alert. For
a particular input, it may not be possible to know a priori
whether it should raise an alert, since in this case that is en-
tirely dependent on the model. However, if we take the new
payload and randomly permute the order of its bytes, the re-
sult (anomalous or not) should be the same, since the model
only concerns the distribution, not the order. If the result is
not the same, then a defect must exist.

3. Related Work

Applying metamorphic testing to situations in which
there is no test oracle has previously been studied by Chen
et al. [9]. In some cases, these works have looked at sit-
uations in which there cannot be an oracle for a partic-
ular application [10]; in others, the work has considered
the case in which the oracle is simply absent or difficult
to implement [7]. However, this previous work has mostly
looked at system-level testing as opposed to internal unit-
and integration-level testing as we present here. Addition-
ally, their work did not use any notation for specifying the
metamorphic properties, but rather relied on a tester to man-
ually perform the transformations; in this work, we auto-
mate those transformations using a specification language.

Other formal specification languages, such as Alloy [22],
Z [1], etc. could also be used as starting points for the spec-
ification of metamorphic properties. We have chosen JML
as an implementation vehicle because it was already famil-
iar to the authors, though in principle our approach could
apply to any analogous assertion checking system.

Metamorphic properties are similar in some ways to al-
gebraic specifications [13], though algebraic specifications
often declare legal sequences of function calls that will pro-
duce a known result, typically within a given data structure
(e.g. pop(push(X)) == X in a Stack), but do not describe
how an arbitrary function should react when its input is
changed. The runtime checking of algebraic specifications
has been explored in [29] and [32], though neither work
considered the specification of metamorphic properties, and
the particular issues that arise from testing without oracles.
Others have looked at the automatic detection of algebraic
specifications, in particular [21], and of program invariants
in general (e.g. DIDUCE [20], Daikon [16], etc.). Even in

the cases in which program invariants, algebraic specifica-
tions, or formal specification languages are used to act as
oracles (assuming they are complete, which may be an un-
decidable problem [33]), work to date has focused primarily
on consistency checking of abstract data types [33] and has
not sought to create oracles for applications and functions
that do not otherwise have them.

Previous work on using JML for runtime assertion
checking includes Cheon and Leavens’ initial description of
JML [11] and the JML4 extension to Eclipse [6], as well as
tools like JAJML for handling loop annotations [19], DSD-
Crasher for creating test cases based on invariant detection
and both dynamic and static analysis [14], and JMLAu-
toTest for automatically generating and executing unit tests
from JML specifications [39]. Our work adds to and com-
plements this list by presenting a tool that is focused on
metamorphic testing and applied in particular to programs
without test oracles.

4. Approach

The approach we describe here is a variant of metamor-
phic testing in which the metamorphic properties of a func-
tion are specified using an extension to JML, converted to
test code, and then checked as the program runs on test input
data. Although this approach could conceivably be applied
to any type of application or function, it is most useful for
those without a test oracle.

For instance, as in the standard deviation example de-
scribed above in Section 2, whenever the function is called,
its argument can be passed along to a test method, which
will multiply each element in the array by -1 and check that
the two calculated output values are equal. This does not re-
quire a test oracle for the particular input; the metamorphic
relationship specifies its own test oracle. It is true that if the
two outputs are equal, they are not necessarily correct, but
if they are not equal, then a defect must exist.

Our testing approach entails three steps:
1. Specify metamorphic properties. For each function

to be tested, the software developer specifies its metamor-
phic properties using our extension to the JML specification
language, described in Section 5. These specifications can
either be placed directly into the code, or into separate files,
as permitted by JML.

In [26] we enumerated six classes of metamorphic prop-
erties, as summarized in Table 1, which can be used as
guidelines for the specifications to be written in JML; al-
though these represent only a sample set that were particular
to the domain of machine learning applications, and other
classes may exist, they should also hold for applications in
other domains, and we have used those classes to guide the
types of metamorphic properties that can be expressed in
our extension to JML.

additive Increase (or decrease) numerical values
by a constant

multiplicative Multiply numerical values by a constant
permutative Permute the order of elements in a set
invertive Reverse the order of elements in a set
inclusive Add a new element to a set
exclusive Remove an element from a set

Table 1. Classes of metamorphic properties

2. Convert the specifications into tests. In this step,
the developer uses our tool, called Corduroy, to process the
specifications and convert them into test methods. These
test methods will be added to the original source code, as
described in Section 6. Additionally, JML post-conditions
will be added to each function’s specification so that the
tests can be executed and the results can be compared.

3. Compile and execute the code. Using any JML-
compliant tool, such as [6] or [11], the developer can then
compile the code and execute it with its regular test cases. If
the JML virtual machine supports runtime assertion check-
ing and it is enabled, the functions’ post-condition checks
will invoke the test methods generated in Step 2. If a test
fails, then a defect has been detected.

5. Extensions to JML Syntax

Our approach extends the JML syntax to allow for the
specification of metamorphic properties. As in JML, the
properties are specified in annotations in the comments pre-
ceding the method with which they are associated, or in a
separate file. In our extension, the metamorphic properties
are specified in a line starting with the tag “@meta” and
then are followed by a Java boolean expression that states
the property.

/*@
@meta sine(x + 2 * Math.PI) == \result;
@meta -1 * sine(-x) == \result;
*/
public double sine (double x) { ... }

Figure 2. Example of specification of meta-
morphic properties for sine using JML

Figure 2 shows a basic example for the sine function.
It uses the metamorphic properties sin(α) = sin(α + 2π)
and sin(α) = -sin(-α). Note that, assuming the method re-
turns a non-void value, the JML keyword “\result” can be
used to represent the method’s return value when specify-
ing the metamorphic property, which is to be checked after
the function has completed, so that the function need not be
called again with the original input.

In this particular example, the property could in fact be
specified without any modification to JML (using the “@en-
sures” keyword to specify it as a post-condition), but only

if the function is pure, i.e. has no side effects. Our exten-
sion to JML not only allows for the inclusion of functions
that have limited side effects (by restoring some parts of
the state after the properties have been checked), but also
adds additional syntax and built-in functions that facilitate
the specification of metamorphic properties.

5.1. Comparing values

As it is written, the above example may fail even if the
function is working correctly, due to imprecision in Java’s
floating point calculations. For instance, the Math.sin func-
tion computes the sine of 6.02 radians and the sine of (6.02
+ 2 * Math.PI) radians as having a difference of 7 * 10-15,
which in most applications is probably close enough, but is
not exactly the same when compared using double-equals
in Java, which would lead to a false positive in many cases.
In order to simplify the specification of the metamorphic
properties, our extension to JML allows floating point val-
ues to be compared using a built-in tolerance level, and the
comparison returns true if the values are within that toler-
ance. Of course, if developers want finer control over the
tolerance, they can explicitly take the absolute value of the
difference and then comparing it to a tolerance, as is cus-
tomary in JML.

5.2. Array functions

To simplify the specification of some of the types of
metamorphic properties that we feel would be typical, based
on our evaluation in [26], we have also added special key-
words to the JML syntax, using the JML style of starting
keywords and operators with a backslash. These allow for
the execution of operations on arrays (of Objects or primi-
tives) or on classes that implement the Java Collection inter-
face that would used during the test; Table 2 explains these
built-in functions.

\add(A , c) Adds a constant c to each element in
array or Collection A

\multiply(A , c) Multiplies each element in array
or Collection A by a constant c

\shuffle(A) Randomly permutes the order of the
elements in array or Collection A

\reverse(A) Reverses the order of the elements in
array or Collection A

\negate(A) If the elements in A are numeric,
multiplies each by -1

\include(A , x) Inserts an element x into array A
\exclude(A , x) Removes an element x from array A

Table 2. Additional keywords added to JML
for manipulating arrays

An example of the use of these keywords appears in Fig-
ure 3. When calculating the standard deviation for an array
of integers, shuffling the values should not affect the result,
since the calculation does not depend on the initial ordering
of the elements. However, multiplying each element by 2 is
expected to double the calculated standard deviation.

/*@
@meta standardDev(\shuffle(A)) == \result;
@meta standardDev(\multiply(A , 2)) == \result * 2;

*/
public double standardDev (int[] A) { ... }

Figure 3. Example of using built-in array func-
tions for specifying metamorphic properties

5.3. Conditionals

Some metamorphic properties may only hold under cer-
tain conditions or certain values for the input, for exam-
ple if the input is positive or non-null. We allow for the
inclusion of conditional statements when specifiying meta-
morphic properties, using if/else notation as opposed to the
question mark-colon notation currently supported in JML.
Figure 4 shows an example.

5.4. Handling non-determinism

Functions that are non-deterministic may still have meta-
morphic properties, though these would be 1-to-many rela-
tionships of inputs to possible outputs, rather than 1-to-1
mappings as we have discussed so far. For instance, a func-
tion that solves a quadratic equation may return the two
possible values in an array, where either [x1, x2] or [x2,
x1] is correct. Thus, the metamorphic property would need
to check that the new output is equal to one of these two
possibilities. In other cases, the new output might be ex-
pected to fall within some range of numbers. To make these
properties easier to express, we add two additional boolean
functions, as described in Table 3.

Consider, for example, a function in a personal finance
application that simulates market conditions and predicts
the value of the user’s portfolio after a certain amount of
time. This function may use a Monte Carlo algorithm that
uses randomness to simulate many possibilities and then re-
ports the average as its output. If the value of each holding
in the portfolio is doubled, we cannot expect that the pre-
dicted value will exactly be doubled, since the function is

/*@
@meta if (A != null && A.length > 0)

average(\multiply(A, 2)) == 2 * \result;
*/
public double average (double[] A) { ... }

Figure 4. Conditional metamorphic property

non-deterministic, but we may be able to specify that the
value should not be less than the original output, and per-
haps should not be more than four times that value. Thus,
we can specify this metamorphic property as demonstrated
in Figure 5.

\in { x ; S } Returns true if the value x is
equal to a member of set S

\inrange { x ; x1 ; x2 } Returns true if x >= x1

and x <= x2

Table 3. Additional keywords for handling
non-determinism in specifications

/*@
@meta \inrange { predict(\multiply(holdings, 2) ;

\result ; \result * 4 };
*/
public double predict (ArrayList holdings) { ... }

Figure 5. Example of metamorphic properties
specifying a range of values

Although some of these metamorphic properties can be
expressed in JML using boolean operators (such as logical
AND and OR) within the relationship specification, these
extensions should make the notation simpler and easier to
understand, and reduce the chance of incorrectly specifying
the metamorphic relationship.

6. Implementation

In this section we describe the implementation of our
approach, called Corduroy. Rather than modify or extend
any existing JML implementation, Corduroy acts as a pre-
processor that converts the specification of metamorphic
properties into corresponding test functions and pure JML
specifications, so that the code can then be compiled by any
JML-compliant tool. When the code is executed, if run-
time assertion checking is enabled in the virtual machine,
the JML specifications will invoke the test functions, and
the metamorphic properties can then be evaluated.

Note that after Corduroy has pre-processed the code,
runtime assertion checking can easily be disabled in the
JML runtime environment, so that recompilation is not nec-
essary; Corduroy does not “force” any runtime checking, it
only enables it. However, as Corduroy is not a compiler, but
rather relies on the JML compiler tools, it does assume that
the application code is free of syntax and semantic errors
before it creates the metamorphic tests.

Corduroy starts its processing by making a backup of the
Java source code, and then creates a new Java file. It then
begins parsing the original source code: any code without
corresponding JML specifications, as well as plain (non-
JML) comments, is written to the new file as-is. When

JML specifications are detected before a method declara-
tion, they are temporarily put aside until the method has
been completely read by Corduroy.

To enable the metamorphic testing for a given function,
Corduroy creates a new method that will execute all its tests.
If the name of the original method was “foo”, Corduroy cre-
ates a method “metaTestFoo” which returns boolean (to in-
dicate whether it succeeded) and takes the same parameters
as the original method “foo”, so that they may be passed to
“metaTestFoo” for the testing. Also, if the method “foo”
returns anything other than void, the test method also takes
a parameter called “result” which is the result of the execu-
tion of the original method; since “metaTestFoo” is called
after “foo” has completed, the return value of “foo” can be
used in the metamorphic testing without having to call the
method again. The “metaTestFoo” method is declared pro-
tected so that subclasses may use it in their own testing.

Corduroy will then start to write the necessary code to
the new Java source file. JML specifications and Java com-
ments are written first; then lines containing the metamor-
phic properties are written as regular Java comments. Next,
Corduroy adds a JML “ensures” clause (or an “also ensures”
if the method overrides one in a superclass) that calls the
test method and checks that it returns true, indicating suc-
cess. There is only one call to the test method, regardless of
the number of metamorphic properties, and the single test
method checks all the metamorphic properties. By using an
“ensures” clause to invoke the metamorphic tests, we con-
vert the specification of metamorphic properties (using our
extension to JML) to pure JML such that no modification
to the JML implementation is necessary. At this point, Cor-
duroy writes out the code for both the original method and
new test method to the Java source file.

To allow for limited side effects in the tests, the new test
code makes local copies of the variables that are listed as
“assignable” (or “modifiable”, which is a synonym) in the
JML specification of the original method, and then restores
them to their old values when the test method is done. For
Objects, we check that they are Cloneable, so that the test
code can use the “clone” method; if the class is not Clone-
able, then it cannot be backed up. The test method is also
declared as synchronized, so as to avoid any possible race
conditions on these variables that may be caused by multi-
ple threads accessing the same test method.

Although Corduroy allows for side effects with respect
to variables labeled as “assignable”, it does not actually en-
sure that the method is “pure”, i.e. has no other side effects
due to calling other methods. Obviously, it is possible that
the runtime assertion checking may affect other parts of the
application during its testing, so that other defects would be
hidden or false positives would be revealed. To address this
limitation, we are currently integrating Corduroy with In-
vite [12], a testing framework that allows for the execution

of tests from within a running application, but in a separate
sandbox so as not to affect its state. This will allow this
approach to be used not only for testing in the development
environment, but also for runtime testing in the deployment
environment as well.

/*@
@meta principal * calcInterest(P, r, n, 2 * t)

== \result * \result;
@assignable balance;

*/
public double calcInterest (double P, double r,

double n, double t) { ... }

Figure 6. Example of metamorphic property
expressed by extended JML specification.

/*@
@meta principal * calcInterest(P, r, n, 2 * t)

== \result * \result;
@assignable balance;
@ensures metaTestCalcInterest(P, r, n, t, \result) == true;

*/
public double calcInterest (double P, double r,

double n, double t) { ... }

protected synchronized boolean metaTestCalcInterest
(double P, double r, double n, double t, double result)

{
double balance = balance;
try {

if ((principal * calcInterest(P, r, n, 2 * t)
== result * result) == false)
return false;

return true;
}
catch (Exception e) {

return false;
}
finally {

balance = balance;
}

}

Figure 7. Example of specification from Fig-
ure 6 after processing by Corduroy.

Each metamorphic property as specified for the origi-
nal method is translated into valid Java that checks that the
boolean expression is true. To support the keywords added
to JML by our approach, we use calls to a built-in Corduroy
library of static methods. Each property is checked indi-
vidually, and if an expression returns false, the test method
returns false immediately. This means that the “ensures”
clause in the original method will fail, and if runtime asser-
tion checking is enabled, the JML runtime environment will
handle it accordingly.

As an example, consider a function in a BankAccount
class that calculates compound interest, but as a side effect
also updates the BankAccount’s balance. One of its meta-
morphic properties is that if the amount of time is doubled
and the value is multiplied by the principal, the result will
be equal to the square of the original amount of interest.
Figure 6 demonstrates an example of the specification writ-

ten using our extension to JML; Figure 7 shows the code
after it has been processed by Corduroy.

Note that our approach intentionally does not dictate
what action the application should take if a defect is discov-
ered through the testing, i.e. if the post-condition assertion
check fails. Rather, this is handled by the JML runtime en-
vironment, and would typically result in an exception being
thrown; the stack trace of the exception would then indicate
which metamorphic property did not hold. In this way, we
have truly extended JML rather than modifying or overwrit-
ing a particular implementation.

7. Case Studies

To demonstrate the feasibility of our approach, we ap-
plied it to some open-source Java applications that fall into
the category of “non-testable programs”. In particular, we
looked at WEKA [38] and RapidMiner [31], which both
provide Java implementations for numerous machine learn-
ing and data mining algorithms, and are popular tools for
the development of Java machine learning applications.

Our testing involved the Naive Bayes, Support Vector
Machines, K-Nearest Neighbors, and C4.5 implementations
in WEKA 3.5.8, and the Naive Bayes implementation in
RapidMiner 4.1. For each of these five applications, we first
determined its metamorphic properties, using the approach
described in [26]; note that this step did not even require
viewing the source code or having knowledge of implemen-
tation details. We then annotated the corresponding meth-
ods with specifications using our extension to JML, used
Corduroy to pre-process the source code, and then compiled
it using the JML 5.6 compiler. Last, we used some of the
data sets from the UC-Irvine Machine Learning Repository
[28] to perform our testing, using the JML 5.6 runtime en-
vironment to execute the code; no command line options
were set for the machine learning applications, so all de-
faults were used. Our approach did not require the mod-
ification of any of the original application code, however
some code needed to be added to facilitate our testing (see
“Observations and Analysis” below).

7.1. Machine Learning Fundamentals

In supervised machine learning, data sets consist of a
collection of examples, each of which has a number of at-
tribute values and, in some cases, a label. The examples
can be thought of as rows in a table, each of which repre-
sents one item from which to learn, and the attributes are the
columns of the table. The label indicates how the example
is categorized. These applications execute in two phases.
The first phase (called the training phase) analyzes a set
of training data; the result of this analysis is a model that
attempts to make generalizations about how the attributes

relate to the label. In the second phase (called the classifi-
cation phase), the model is applied to another, previously-
unseen data set where the labels are unknown. In a clas-
sification algorithm such as the ones we have investigated,
the system attempts to predict the label of each individual
example.

The algorithms that we selected were chosen to rep-
resent different approaches to machine learning classifi-
cation. Support Vector Machines (SVM) [35] and K-
Nearest Neighbors (KNN) [2] are numerical approaches
that treat each example in the training data as a point in
N-dimensional space (where N is the number of attributes).
When SVM generates a model, it creates a hyperplane that
separates the points into classes, and then in the classifica-
tion phase sees where each point in the data lies with respect
to that hyperplane (i.e. which “side” of the hyperplane it
is on). In KNN, the model is simply the coordinates of the
points representing the training data, and an example is clas-
sified by looking at the K closest points (in N-dimensional
space) and using a majority rules approach to decide on the
classification.

Naive Bayes [23], by comparison, is a probabilistic ap-
proach that assumes independence between the attributes;
the model is a formula that considers each attribute value
and weighs it by its likelihood of correlating with the label.
Lastly, C4.5 [30] is an approach that builds a decision tree,
in which branches represent conjunctions of attribute values
and leaves represent how the example is to be classified.

7.2. Findings

We specified a total of 25 metamorphic properties for the
five applications we investigated. This section describes our
most interesting findings; further details are available in our
tech report [27].

Our analysis of all the algorithms indicates that, in the
training phase, they theoretically should produce the same
model regardless of the input data order. That is, permut-
ing the order of the examples should not affect the model,
which only is concerned with the group as a whole. How-
ever, we did discover an inconsistency in WEKA’s SVM
implementation in which permuting the training data causes
it to create different models for different input orders. For
any non-trivial data set, in fact, this occurred even when all
attributes and labels were distinct - thus removing the pos-
sibility that ties between equal values would be broken de-
pending on the input order. An ML researcher familiar with
this algorithm told us that because it is inefficient to run the
quadratic optimization algorithm on the full data set all at
once, most implementations perform “chunking” whereby
the optimization algorithm runs on subsets of the data and
then merges the results [34]. However, this is one important
area, revealed by metamorphic testing, in which the imple-

mentation deviates from the expected behavior.
Additionally, the KNN and Naive Bayes implementa-

tions in WEKA both provide an API for updating a model
after it has been created by adding a new instance to the
training data: we would expect that if training data set T
produces model M, and if there is an example e such that
training data set T’ = T - e, and T’ produces model M’,
then when M’ is updated using e, it becomes equal to M.
We discovered that the KNN implementation exhibits this
property, but in WEKA’s Naive Bayes implementation, the
model created from a data set after it is updated with one ex-
ample is sometimes (but not always) different from a model
created from a data set containing that original example.
Moreover, we observed that if a data set is updated with
multiple examples, the number of differences between the
updated model and a model created from a data set already
including those examples had no correlation to the number
of updates. When we inspected the code, we discovered that
the update method does not correctly update the probability
estimates, thus causing a difference compared to the model
built using the entire data set.

We also detected a defect in the calculation of confidence
in RapidMiner’s Naive Bayes classifier. The confidence
value is a (normalized) indication of how sure the algorithm
is about the classification it makes of examples in the clas-
sification phase. One would expect that if an example being
classified had previously existed in the training data set and
its confidence was c, and if the training data were modi-
fied so that the example existed twice, then upon classifica-
tion the confidence should be c/2, since the algorithm would
be twice as confident about its classification (a lower value
means “more confident”). However, this turned out not to
be the case. Further investigation revealed an error in one
of the normalization calculations; this was a known defect
in the version we tested, and was fixed in a later release.

Our testing did not demonstrate any defects in the KNN
or C4.5 implementations in WEKA; although the tests can-
not demonstrate correctness, either, since the correct output
cannot be known in advance, the fact that the tests passed at
least increases confidence in the implementations.

7.3. Observations and Analysis

The use of JML to specify metamorphic properties
would seem to work best for methods that both take in-
put and produce output, so that changes to the input of a
function can produce an output that can be predicted and
then analyzed easily. For instance, in both WEKA and
RapidMiner, all of the classes we evaluated contained meth-
ods that took a single example as input and produced a
classification as output. However, in the WEKA applica-
tions’ training phase, there was no single method that took
the training data as input and produced a model as output.

Rather, the training data was input as a parameter but the
model was represented by one or more member variables in
the class, modified by a side effect. Thus, to compare the
models after changing the input, a call to a separate method
was required, and there was no way to call all of the neces-
sary methods in one single-line JML specification.

However, to work around this restriction, we found that
it was rather straightforward to write a new test method that
would take as its arguments the example to be classified
and the result from the original method call, perform the
metamorphic transformation, call the necessary method(s),
and then compare the results. This method could then be
invoked via a JML “ensures” clause. Although the Cor-
duroy framework was not used in these particular cases to
generate the test code from the JML specification (the two
WEKA defects were found using this approach, in fact), the
overall testing approach of using metamorphic testing on a
“non-testable program”, enabled by JML runtime assertion
checking, still proved to be useful.

Similarly, our current extension to JML only supports
identity functions, and does not support metamorphic prop-
erties such as “ShortestPath(a, b) = ShortestPath(a, c) +
ShortestPath(c, b) where c is some point in the path”, i.e.,
properties that depend on the result. However, as with the
above workaround, a developer could easily write a test
method that takes the result of ShortestPath(a, b), finds a
point c, and then does the other calculations. This test could
still be invoked using JML runtime assertion and thus could
be useful with our approach.

In summary, with very little new code, and no modi-
fication of existing code, we were able to create complex
metamorphic tests for the five applications and demonstrate
some inconsistencies and defects in three of them. Al-
though in this case we have only focused on machine learn-
ing classification algorithms, in [26] we demonstrated that
the metamorphic testing approach would also work for su-
pervised ranking algorithms and for unsupervised machine
learning, such as intrusion detection systems.

7.4. Effect on Testing Time

Given that (depending on the size of the input) some ma-
chine learning applications can take hours or even days to
run, and given that our approach calls for methods to be ex-
ecuted multiple times, the impact on testing time becomes
an immediate concern. It would appear undesirable to have
an approach which could conceivably multiply the overall
processing time by doing everything over and over.

However, we note that by specifying the metamorphic
properties of individual functions, rather than of the whole
application, it is only those functions that are executed mul-
tiple times, so the overall impact may not be as great.

For instance, we conducted an experiment using the

UC-Irvine Machine Learning Repository “Census Income”
training data set, which contains 32,581 examples. To de-
termine which phase of the algorithms complete faster, we
did both training and classification using this data set for the
four WEKA algorithms investigated (tests were done on a
Linux Ubuntu 2.7.1 server with a dual-core 3GHz CPU and
1 GB of memory). Table 4 demonstrates that C4.5 and SVM
spend much of their time in the training phase, whereas
KNN and Naive Bayes spend more time in the classifica-
tion phase, though all to different extents. This indicates
that the overall impact on testing time will be reduced if
the metamorphic testing is focused on the portions that take
less time, and our own testing reflected similar behavior (see
[27] for more details).

Algorithm Total time Training time Classification time
KNN 276.91s 1.07s (0.3%) 275.84s (99.7%)
Naive Bayes 1.95s 0.59s (30.2%) 1.36s (69.8%)
C4.5 9.29s 8.74s (94.0%) 0.55s (6.0%)
SVM 4694.08s 4693.05s (99.9%) 1.03s (0.1%)

Table 4. Training and classification times for
“Census Income” data set

Note that if JML runtime assertion checking is disabled,
or if the application code is compiled using a regular com-
piler (i.e. not the JML compiler), then there is no testing
performed as the application executes, so there is no perfor-
mance overhead whatsoever.

8. Limitations and Future Work

To address the issues (described in Section 7) with exist-
ing code that is not written in a pure input/output fashion,
we are considering modifying the extensions to JML so that
a developer can specify a more complex sequence of meta-
morphic properties, instead of one simple boolean state-
ment. However, given the workaround described above, we
feel that the current approach itself is still sufficient to al-
low for metamorphic testing of such functions, albeit with
some extra burden on the developers. Also, our approach
currently only considers the metamorphic properties of in-
dividual methods. We are planning on extending the frame-
work so that the metamorphic properties of an entire appli-
cation can also be specified, perhaps using a more complex
language than what is permissible in JML.

Of course, JML only applies to Java, but we are currently
investigating the development of a Corduroy framework for
C programs, perhaps based on a specification language like
SpecC [17]. And due to our use of JML, our current ap-
proach requires access to the source code so that it can be
recompiled with the specifications in place to enable run-
time assertion checking. A system like [18] could conceiv-
ably be used to dynamically insert the Corduroy-generated
metamorphic tests into already-compiled code.

Additional future work may also include the automatic
detection of metamorphic relationships, similar to the work
that has been done in discovering likely program invariants
[16] and algebraic properties [21]. It could also be argued
that static analysis of the code may be able to determine
whether these properties hold, and we have begun prelim-
inary investigations. Further research will be required to
determine what are the limits for such approaches when de-
tecting and checking these metamorphic properties.

9. Conclusion

In this paper we have presented an approach to testing
software without test oracles that combines metamorphic
testing, runtime assertion checking, and the JML specifi-
cation language. We have also presented an implementa-
tion called Corduroy, and have demonstrated its feasibility
in testing applications in the domain of machine learning;
others have shown that metamorphic testing is suitable for
other types of non-testable programs as well [9], and our
work here improves on that by building upon a well-known,
widely available specification language in order to specify
the metamorphic properties, and automating the generation
of test input data and invocation of the tests. This approach
could also be used in the testing of applications for which
there is a test oracle, and in particular would assist in creat-
ing new test cases (based on previous failed tests) for future
regression testing and program evolution.

Addressing the testing of applications without oracles
has been identified as a future challenge for the software
testing community [3]. We hope that our findings here help
others who are also concerned with the quality and depend-
ability of such non-testable programs.

10. Acknowledgments

The authors would like to thank T.Y. Chen and Steve
Lianoglou for their assistance. Murphy and Kaiser are
members of the Programming Systems Lab, funded in part
by NSF CNS-0717544, CNS-0627473 and CNS-0426623,
and NIH 1 U54 CA121852-01A1.

References

[1] J. R. Abrial. Specification Language Z. Oxford Univ Press,
1980.

[2] D. Aha and D. Kibler. Instance-based learning algorithms.
Machine Learning, 6:37–66, 1991.

[3] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In Proc. of ICSE Future of Software
Engineering (FOSE), pages 85–103, May 2007.

[4] A. Bhorkar. A run-time assertion checker for java using
JML. Technical Report TR00-08, Iowa State University
Dept. of Computer Science, 2000.

[5] M. Blum and S. Kannan. Designing programs that check
their work. Journal of the ACM, 42(1):269–291, Jan. 1995.

[6] P. Chalin, P. R. James, and G. Karabotsos. An integrated
verification environment for JML: architecture and early re-
sults. In Proc of the 2007 conference on Specification and
verification of component-based systems, pages 47–53.

[7] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. A
metamorphic testing approach for online testing of service-
oriented software applications. International Journal of Web
Services Research, 4(1):60–80, April-June 2007.

[8] T. Y. Chen, S. C. Cheung, and S. Yiu. Metamorphic testing:
a new approach for generating next test cases. Technical Re-
port HKUST-CS98-01, Department of Computer Science,
Hong Kong University of Science and Technology, 1998.

[9] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based test-
ing without the need of oracles. Information and Software
Technology, 44(15):923–931, 2002.

[10] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Semi-proving: an
integrated method based on global symbolic evaluation and
metamorphic testing. In Proc. of the 2002 ACM SIGSOFT
international symposium on software testing and analysis
(ISSTA), pages 191–195, 2002.

[11] Y. Cheon and G. T. Leavens. A runtime assertion checker
for the Java Modeling Language (JML). In Proc of the In-
ternational Conference on Software Engineering Research
and Practice (SERP ’02), pages 322–328, June 2002.

[12] M. Chu, C. Murphy, and G. Kaiser. Distributed in vivo test-
ing of software applications. In Proc. of the First Interna-
tional Conference on Software Testing, Verification and Val-
idation, April 2008.

[13] W. J. Cody Jr. and W. Waite. Software Manual for the Ele-
mentary Functions. Prentice Hall, 1980.

[14] C. Csallner and Y. Smaragdakis. DSD-Crasher: A hybrid
analysis tool for bug finding. In Proc of the 2006 Interna-
tional Symposium on Software Testing and Analysis (ISSTA),
pages 245–254, 2006.

[15] M. D. Davis and E. J. Weyuker. Pseudo-oracles for non-
testable programs. In Proc. of the ACM ’81 Conference,
pages 254–257, 1981.

[16] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely programming invariants to
support program evolution. In Proc. of the 21st Interna-
tional Conference on Software Engineering (ICSE), pages
213–224, 1999.

[17] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao.
SpecC. Springer, 2000.

[18] R. Griffith and G. Kaiser. Adding self-healing capabilities
to the common language runtime. Technical Report CUCS-
005-05, Columbia University, Dept. of Computer Science,
January 2005.

[19] G. Haddad and G. T. Leavens. Extensible dynamic analy-
sis for JML: A case study with loop annotations. Technical
Report CS-TR-08-05, School of Electrical Engineering and
Computer Science, University of Central Florida, 2008.

[20] S. Hangal and M. S. Lam. Tracking down software bugs us-
ing automatic anomaly detection. In Proc. of the 24th Inter-
national Conference on Software Engineering (ICSE), pages
291–301, 2002.

[21] J. Henkel and A. Diwan. Discovering algebraic specifica-
tions from Java classes. In Proc. of the 17th European Con-
ference on Object-Oriented Programming ECOOP, 2003.

[22] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodol-
ogy, 11(2):256–290, 2002.

[23] G. H. John and P. Langley. Estimating continuous distribu-
tions in bayesian classifiers. In Proc of the Eleventh Confer-
ence on Uncertainty in Artificial Intelligence, 1995.

[24] J. Knight and N. Leveson. An experimental evaluation of the
assumption of independence in multi-version programming.
IEEE Transactions on Software Engineering, 12(1):96–109,
1986.

[25] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: a behavioral interface specification language for
Java. ACM SIGSOFT Software Engineering Notes, 31(3):1–
38, May 2006.

[26] C. Murphy, G. Kaiser, L. Hu, and L. Wu. Properties of ma-
chine learning applications for use in metamorphic testing.
In Proc. of the 20th international conference on software en-
gineering and knowledge engineering (SEKE), pages 867–
872, 2008.

[27] C. Murphy, K. Shen, and G. Kaiser. Using JML runtime as-
sertion checking to automate metamorphic testing in appli-
cations without test oracles. Technical Report CUCS-044-
08, Columbia Univ. Dept. of Computer Science, 2008.

[28] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI
repository of machine learning databases. University of Cal-
ifornia, Dept of Information and Computer Science, 1998.

[29] I. Nunes, A. Lopes, V. Vasconcelos, J. Abreu, and L. S. Reis.
Checking the conformance of java classes against algebraic
specifications. In In Proceedings of ICFEM06, volume 4260
of LNCS, pages 494–513. Springer-Verlag, 2006.

[30] R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993.

[31] RapidMiner. http://rapid-i.com/.
[32] S. Sankar. Run-time consistency checking of algebraic spec-

ifications. In Proceedings of the 1991 international sympo-
sium on software testing, analysis, and verification, pages
123–129, 1991.

[33] S. Sankar, A. Goyal, and P. Sikchi. Software testing using
algebraic specification based test oracles. Technical Report
CSL-TR-93-566, Stanford Univ., 1993.

[34] R. Servedio. Personal communication, 2006.
[35] V. N. Vapnik. The Nature of Statistical Learning Theory.

Springer, 1995.
[36] K. Wang and S. Stolfo. Anomalous payload-based network

intrusion detection. In Proc. of Recent Advances in Intrusion
Detection (RAID), Sept. 2004.

[37] E. J. Weyuker. On testing non-testable programs. Computer
Journal, 25(4):465–470, November 1982.

[38] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques, 2nd Edition. Morgan Kauf-
mann, 2005.

[39] G. Xu and Z. Yang. JMLAutoTest: A novel automated test-
ing framework based on JML and JUnit. In Proc of the 3rd
IEEE ASE workshop on Formal Approaches to Testing of
Software (FATES 03), 2003.

