
Cluster Comput (2006) 9: 141–159

DOI 10.1007/s10586-006-7560-6

Retrofitting autonomic capabilities onto legacy systems
Janak Parekh · Gail Kaiser · Philip Gross ·
Giuseppe Valetto

Received: October 2003 / Revised: May 2004 / Accepted: January 2005
C© Springer Science + Business Media, LLC 2006

Abstract Autonomic computing—self-configuring,

self-healing, self-managing applications, systems and

networks—is a promising solution to ever-increasing system

complexity and the spiraling costs of human management

as systems scale to global proportions. Most results to date,

however, suggest ways to architect new software designed

from the ground up as autonomic systems, whereas in

the real world organizations continue to use stovepipe

legacy systems and/or build “systems of systems” that draw

from a gamut of disparate technologies from numerous

vendors. Our goal is to retrofit autonomic computing onto

such systems, externally, without any need to understand,

modify or even recompile the target system’s code. We

present an autonomic infrastructure that operates similarly

to active middleware, to explicitly add autonomic services

to pre-existing systems via continual monitoring and a

feedback loop that performs reconfiguration and/or repair as

needed. Our lightweight design and separation of concerns

enables easy adoption of individual components for use with

a variety of target systems, independent of the rest of the full

infrastructure. This work has been validated by several case

studies spanning multiple real-world application domains.

J. Parekh (�) . G. Kaiser . P. Gross . G. Valetto
Department of Computer Science, Columbia University, z New
York, NY 10027, United States
e-mail: {janak, kaiser, phil, valetto}@cs.columbia.edu

G. Valetto
Telecom Italia Lab, V. Reiss Romoli 247-10148, Torino, Italy

1. Introduction

The increasing complexity of networked computer systems

and applications has led to a tremendous interest in what some

have termed autonomic computing [1]: in particular, the no-

tion of self-managing software is an attractive approach to

reducing the time and effort costs of operating and maintain-

ing software systems, and to increasing their dependability

and assurance levels [2]. Related solutions are already being

promoted commercially; several major vendors sell enter-

prise applications that require little help from IT staff to run

and maintain [3]. However, most approaches described in the

literature for developing autonomic software systems (e.g.,

see [4]) ignore legacy software and the increasingly common

assembly of large scale systems from components supplied

by multiple sources, instead assuming the customer or user

will be willing and able to migrate to this new generation of

systems. A New York Times article [5] describes the “trailing

edge” industry, where migration usually is not an option. The

article is primarily concerned with electronic assemblies and

other hardware used by the military, but the author notes

similar factors are at play in civilian telecommunications

equipment, medical devices, etc.—many of which also run

old software. Even when not mandated by archaic hardware,

legacy software may persist indefinitely—even though it was

implemented in “unsafe” languages like C, or in languages

no longer in common use where many expert maintainers are

now past retirement age [6], making the need for autonomic

repair even greater [7].

Note that by specifying a legacy system here, we mean any

system, no matter how recent, that does not include its own

built-in self-management capabilities. Further, some subsys-

tems of the “systems of systems” of interest may indeed in-

clude their own autonomic or analogous previous-generation

142 Cluster Comput (2006) 9: 141–159

fault-tolerance, dependability, reliability, survivability, etc.

facilities, but these alone will not necessarily provide an

“end-to-end” self-management capability for the compos-

ite system as a whole (this issue is argued in greater detail

in [8]).

A few general-purpose facilities have been developed to

automate problem detection and/or problem correction for

pre-existing software. For example, some new operating sys-

tems include engines to automate the collection of crash

data [9]; other tools help detect anomalous behavior by mon-

itoring system and application logs [10]; and a few tools pro-

vide administrative control over application behavior [11].

However, these tools generally leave analysis of what the

system is doing (or not doing), how and why, to a human

administrator, who must then determine, plan and carry out

the reconfiguration or repair.

In an attempt to do better, we have developed a generic

framework for not just collecting but also interpreting
application-specific behavioral and performance data at run-

time. We tailor this interpretation to the application and/or

domain by the introduction of system models that can de-

scribe expected correct behaviors and possibly anticipate

error situations (that can automatically be recognized as

having occurred, or not occurred). The models may be

relatively simple as well as incremental in the sense that

new rules for system behavior (or misbehavior) can eas-

ily be added as they are gleaned; deep analysis and formal

representation of the target system is not required, but of

course would increase value if available. Further, the frame-

work includes a (software) feedback control loop [12] to

automatically decide when corrections are required, select

and instantiate repair plans, and coordinate the execution

(and handle contingencies) of the possibly many interdepen-

dent elements required for target system reconfiguration—

ideally with no downtime, while the system continues

operation (possibly at a temporarily reduced level of

service).

Our autonomic computing framework consists of four

main kinds of components: sensors, gauges, controllers, and

effectors—as one rendition of a reference architecture we

developed together with a consortium of researchers, as ex-

plained in [13].1 The gauges and controllers are informed

by models of the target system, and thus may be themselves

rather generic, with the same components usable over a range

of target systems, whereas the sensors and effectors are typ-

ically more tightly coupled to the target system and/or its

operating environment.

1 The consortium included BBN, CMU, OBJS, Teknowledge and WPI
as well as Columbia.

Sensors2 watch the target system to collect primitive data,

while separate gauges aggregate, filter and interpret the

sensor data according to system models. This monitoring

framework can be used with or without a feedback loop that

automatically performs dynamic adaptations. Without the

feedback loop, gauges would typically generate alerts and/or

be visualized on a human systems management console—but

providing deeper understanding and more of a “big picture”

of the target system’s activities than earlier human-oriented

systems management.

The automated adaptation framework, which we have pre-

viously presented in [14], supplements the monitoring frame-

work with decision, coordination and actuation capabilities.

Based on the coalesced and interpreted sensor data relayed by

gauges and on modeled information about the target system,

a controller makes decisions on what adaptations (if any)

need to be done. This triggers a controller facility to orches-

trate the work of one or more effectors—which interact with

the target system to carry out the low-level tweaks and tun-

ing, and/or coarser subsystem restarts and reconfigurations,

as directed by the adaptation plan. This adaptation frame-

work can also work from a different diagnostic input, such

as a traditional management console operated by a human

expert, as opposed to the automated monitoring framework

presented in this paper.

Our implementation of this approach is called Kinesthet-

ics eXtreme, or KX (pronounced “kicks”). KX runs as a

lightweight, decentralized, easily integrable collection of ac-

tive middleware components, loosely coupled via a publish-

subscribe event notification facility. We show how KX can be

used to monitor, analyze, and consequently repair a variety

of target applications employing models of application-level

semantics, protocols and performance requirements, thus ef-

fectively achieving the self-configuring, self-healing, self-

managing goals of autonomic computing—but for legacy

systems and/or systems of systems, rather than applying

only to new systems with autonomic properties explicitly

designed-in.

Of course, our autonomic computing framework, and KX

in particular, do not necessarily work for all legacy systems.

Our approach is limited by the degree to which the target sys-

tem enables placement of sensors and effectors and by the

availability of application-specific models that can support

analysis of sensor data and definition of repair plans using

the effectors. Further, the configuration of KX itself viz-a-viz
the (distributed) target system can become rather compli-

cated under some circumstances. In the full implementation,

2 In earlier papers we used the term “probe” instead of “sensor”, but
this terminology became confusing when we embarked on an intrusion
detection application—where “probe” refers to an attacker scan of open
ports.

Cluster Comput (2006) 9: 141–159 143

the controller component is responsible for the initial con-

figuration and possible dynamic reconfiguration of the KX

components; in a partial frontend monitoring application, the

KX components must be set up manually. Further discussion

of this topic is outside the scope of this paper.

This paper starts with an overview and functional model

of our approach to an external autonomic computing in-

frastructure, added onto a posteori and independent of the

computations and communications performed by the target

system or system of systems. We then present the architec-

ture and implementation, covering the main components of

the infrastructure. We describe highlights of several example

applications conducted to date. We compare to related work,

and then summarize the contributions of this research and di-

rections for future work. An extended abstract of this paper

appeared in [15].

2. Model

The underlying vision of our approach is that of an end-to-

end closed control loop superimposed onto a pre-existing

software system. The lowest-level observation and actua-

tor components of the feedback loop necessarily rely on se-

lecting technologies, and sometimes ad hoc mechanisms—

“whatever works,” peculiar to the target system. Our goal

is to devise a common platform that abstracts those compo-

nents and enables a generic infrastructure for the rest of the

feedback loop that can operate across a wide variety of target

systems.

The model for the common “reference architecture” plat-

form noted above was developed together with other partici-

pants in the DARPA Dynamic Assembly for Systems Adapt-

ability, Dependability, and Assurance (DASADA) program

[16]. This platform is explicitly conceived to be lightweight

and modular. It comprises several first-class entities, as

shown in Figure 1. Data and control flow among components

are indicated by solid lines and dashed lines, respectively.

The target system refers to the legacy (or new) system, or

system of systems, that is being monitored and, when needed,

automatically reconfigured or repaired. Note the target sys-

tem may itself be distributed, in which case the platform

components—at least the sensors and effectors—would typ-

ically be distributed along with it.

Sensors watch target environment elements to produce

time series of data reflecting the state of (that part of) the sys-

tem, by instrumenting its constituents (as defined by architec-

tural components and connectors, or even finer-grained mod-

ules), and collecting local data about their execution. Sensors

may emit relatively simple events corresponding to system

activities as they occur, more complex events reflecting sub-

stantive summaries of log updates, or alerts generated via an

internal analysis. Sensors are typically small, constrained,

ideally noninvasive pieces of code which get installed in or

around the target application system.

Gauges interpret and analyze data originating from one

or more sensors. Gauges are intended to recognize abstract

semantic events (complex event patterns [17]), which signify

whether certain conditions or incidents of interest have oc-

curred (or perhaps are about to occur) in the target system—or

alternatively have not occurred within a required time-bound,

and in some cases may point out their root cause. Gauges may

potentially operate according to an effective hierarchy where

higher-level gauges interpret aggregate partial analyses from

lower-level gauges.

Controllers encompass decision and coordination capa-

bilities. Decision involves the ability to determine if certain

semantic events (as detected by gauges) warrant system adap-

tation, and selection of the most suitable adaptation strategy

amongst those known. Coordination, in turn, involves the

ability to recruit, instantiate, direct and orchestrate suitable

effectors in an organized fashion as dictated by the selected

dynamic adaptation strategy, which might include ordering,

synchronization, or other dependencies among the effec-

tors’ tasks. Controllers therefore interpret gauge output, per-

form decision analysis, and coordinate appropriately. While

Fig. 1 Reference architecture

144 Cluster Comput (2006) 9: 141–159

decision and coordination could, in principle, be separated

in the architecture (and were separated in one experimen-

tal implementation of this reference architecture discussed

in [18]), the rationale for combining them is to simplify

continual analysis during adaptation: the controller can then

consider intermediate outputs from effector activities as well

as gauges, possibly leading in some cases to rollback, retry

and/or reconstruction of the adaptation plan, analogous to

workflow exception handling [19].

Effectors3 are target-specific code modules that are in-

voked by controllers once the latter determine an appropriate

system adaptation strategy, which may consist of the use of

several different effectors. Effectors must be capable of tun-

ing the target system via its exposed configuration parame-

ters. They may also perform partial replacements by initiating

and retiring system components, invoke special utilities such

as process migration [20] and, in general, carry out nearly

any feasible form of adaptation to individual components

and connectors of the running system permitted by that tar-

get system. Effectors are necessarily more tightly coupled to

the target system than the rest of the reference architecture.

Behavioral Models (e.g., architectural models as in [21])

constitute an implicit component necessary to provide rele-

vant information about the target system or its environment:

what is its architecture and communication topology, how it

is supposed to operate, what are its performance or security

requirements or characteristics, and so on, possibly including

negative models indicating expectations about what might go

wrong. These models are used to customize generic gauges

and controllers to the specific target system, e.g., to indicate

what to look for and what to do about it. System models

could also tailor sensors and effectors, but more typically the

sensors and effectors would be customized in selection of

technology and/or within their implementations. The mod-

els do not necessarily have to be known a priori, and could

possibly be derived while the system runs (e.g., as in [22]).

The set of models is intended to be open-ended, with new

ones added or old ones updated or removed incrementally.

Behavioral models need not exist as separate runtime entities,

but would usually be deployed into the other components.

Notice how this model, depicted in Figure 1, keeps the

autonomic infrastructure logically distinct and largely phys-

ically separate from its target—although some infrastructure

components may be co-located with target elements. In par-

ticular, the sensors and effectors represent the contact points

between the autonomic platform and the target system and

thus some may run on the same host as some portion of the

target system, possibly within the same operating system pro-

cess. However, since the feedback loop is otherwise entirely

outside of the target application, it is possible to maintain

3 Some authors instead use the term “actuators”; we consider these
terms interchangeable.

a clear separation between the target system specifics and

the analysis and adaptation mechanisms employed, enabling

commonality and reuse.

The reference architecture is still in its early stages, with

respect to both the components and the interfaces among

them. We have proposed a common event format for the data

flow from sensors to gauges and from gauges to controllers,

an XML dialect called “smart events” [23]. Preliminary work

has also been done by ourselves and others on target- and

implementation-independent APIs for control flow to sen-

sors [24], gauges [25] and effectors [18]. The role of con-

trollers and their interaction with the rest of the infrastruc-

ture are less well understood. For simplicity in exposition,

as well as generality, we do not discuss or assume any of

these formats or APIs in this paper; in any case, it is far too

early to evaluate the reference architecture itself, since as

far as we know KX is the only complete implementation of

the reference architecture. Instead, we focus on our designs

and implementations for the infrastructure components, and

the infrastructure as a whole, and then discuss our system’s

application to several experimental case studies.

3. Architecture

Our Kinesthetics eXtreme (KX) architecture, shown in Fig-

ure 2, covers the entire “autonomizing legacy systems” ref-

erence architecture end-to-end for adding autonomic capa-

bilities to the target legacy system or system of systems.

As an externalized platform, KX is not intertwined and

tries to avoid interfering with the target system’s conven-

tional functional and extra-functional communications and

Fig. 2 KX architectural overview

Cluster Comput (2006) 9: 141–159 145

computations. Since the gauges and controllers typically run

on separate hosts, the only direct points of possible impact

are sensors and effectors; there is more potential of inter-

ference with continuously or periodically active sensors than

with effectors, which normally remain dormant until invoked

to perform repairs. Communications among KX components

could possibly affect local resource utilization and available

network bandwidth. Careful sensor/effector placement can

mitigate this, e.g., placing sensors on the “outside” of com-

ponents or as taps on inter-component network communi-

cations/connectors, although insight into the target system’s

operations may then be reduced. The only a priori knowl-

edge of the specific target system comes from the behav-

ioral models: system-specific models must necessarily be

supplied to a given KX instance in order for it to monitor

and/or dynamically adapt in accordance with those models.

Most runtime knowledge is collected by sensors, although it

is sometimes possible for effectors to perform the equivalent

of (limited) sensing duties when their repair tasks involve

localized checks.

Figure 1 depicted the data flow among autonomic infras-

tructure components as what appears to be a pair of buses,

one among sensors and gauges and the other among gauges

and controllers. That is a conceptual diagram: these buses

might be unified, separate, or there may be no bus at all, e.g.,

point-to-point connections could be used. The reference ar-

chitecture intentionally leaves open this issue.

In KX we chose to communicate among sensors, gauges

and controllers solely via publish/subscribe event notifica-

tion, using content-based4 asynchronous messaging middle-

ware. KX does not separate the buses: in principle sensor

events could be subscribed to directly by controllers with-

out gauge intermediaries. By leveraging event notification

middleware, KX components can be easily rearranged on-

the-fly, with multiple instances of KX gauges and controllers

introduced as needed to address scalability requirements.

Any of several available event notification systems could be

used [26]. We initially chose Siena (Scalable Internet Event

Notification Architecture) from U. Colorado at Boulder [27],

as among the most advanced distributed event propagation

systems where both source code and support were read-

ily available, but later added support for alternatives (e.g.,

Elvin [28]). We have recently developed our own event sys-

tem specifically for KX, discussed briefly in [29], but since

it was not used in the experiments presented here we do

not consider it further in this paper. Although we have ex-

perimented with publish/subscribe communication between

controllers and effectors, point-to-point communication is

normally employed because the controller usually invokes

specific effectors, who must report back unambiguously to

4 Subject-based publish/subscribe messaging might have worked just
as well for the example applications in this paper.

that controller to achieve coordination (although this com-

munication may sometimes be asynchronous, as explained

in [18]).

No particular sensor or effector technology is formally

part of the KX infrastructure, as the best selection among

potential technologies must consider the implementation de-

tails of the target system and can vary widely. We have to

date used mainly our own Worklets mobile agent technology

for effectors [30]. Our development of the Worklets platform

was originally intended for other purposes [31] and preceded

the rest of KX, but it applied nicely to the reconfiguration and

repair requirements of our case studies. Other techniques we

have experimented with for effectors include JMX manage-

ment beans [32] and SOAP-based interfaces for synchronous

remote calls.

We have employed a number of different sensor solu-

tions developed by others. Some of these inject callbacks into

source code (when source code is available and recompilation

is feasible), such as WPI’s AIDE [33]. Others modify byte-

codes or binaries, such as OBJS’ ProbeMeister [34]; replace

DLLs or other dynamic libraries, such as Teknowledge’s me-

diator connectors [35]; operate in the surrounding environ-

ment, e.g., to inspect network traffic, such as System Detec-

tion’s Antura [36]; or monitor operating system resource us-

age. We have also experimented with using Worklet mobile

agents to deploy and modify sensors, dubbed “Probelets”.

Many other instrumentation technologies are described in

the literature, with some commercially available.

Since the various sensor technologies do not necessarily

output the event format presumed by our gauges, we intro-

duced the Event Packager component as a preprocessor event

translation service to transform into a common format. The

Event Packager also removes duplicates, timestamps sen-

sor events according to a globally synchronized clock (using

NTP [37]) and acts as a “flight recorder” to persistently log

the event streams, for later replay or data mining.

The Event Distiller is our main gauge component. It per-

forms sophisticated, possibly cross-stream temporal event

pattern analysis and correlation across continuous data

streams from multiple sensors, to monitor desirable and un-

desirable behaviors. When undesirable behaviors occur (or

desired behaviors do not occur within the requisite time-

bound), the Event Distiller generates meta-level events in-

dicating this interpretation; these higher-level notification

events also carry information about the lower-level sensor

data that contributed to the analysis. The Event Distiller is dy-

namically configured with the rules defining complex event

patterns of interest—that is, the behavioral models regarding

what to monitor—so new models can be added and previous

models replaced or removed on the fly.

KX fulfills the controller role by employing our workflow

technology called Workflakes [14,18]. Workflakes is a de-

centralized process enactment engine, specialized towards

146 Cluster Comput (2006) 9: 141–159

automated coordination of software entities as previously

suggested in [38], as opposed to the more conventional use

of workflow to organize human activities (e.g., see [39]).

Workflakes is triggered by gauge outputs to select and tailor

a dynamic adaptation plan to the problem at hand, then in-

stantiates and superintends a collection of effectors to enact

the tasks specified in the workflow.

Our motivation for employing the workflow paradigm to

close the autonomic feedback loop originates from the obser-

vation that adapting real-world, complex, systems of systems

requires in most cases a multiplicity of fine-grained inter-

ventions, impacting separate target elements. Those inter-

ventions can be regarded as a set of interdependent activities

that may have well-defined causal relationships: they may be

conditional (or otherwise dependent) on others; during the

course of their enactment, certain activities may fail, calling

for some form of contingency planning; etc. In general, the

more complex the adaptation policy and the more involved

the impact on the target, the more concerted the correspond-

ing plan needs to be. Therefore, a sophisticated coordination

mechanism is needed to ensure that the adaptation of the

target system occurs in a coherent and consistent way. We

argue further in [14] that process workflow technology is a

promising approach to addressing that complexity both at the

specification and the execution level.

A comprehensive description of Workflakes can be found

in [18]. Workflakes is constructed on top of the open-source

Cougaar large-scale multi-agent platform [40], adding about

2,200 lines of Java code.

It is important to note that all of the KX components are

separately usable. Depending on the problem domain, one or

more of these components may be used. For example, if only

a few very well-defined repair scenarios are to be performed,

or if KX is being used only to do high-level monitoring and

report to a human systems management console, one may

choose to omit the Workflakes controller component. If only

one source of events is being monitored, the Event Packager

component may be redundant. For instance, we describe in

[41] one dynamic adaptation application using Workflakes,

and target-specific sensors and effectors, but without the rest

of KX.

The Event Packager and Event Distiller components are

discussed in greater detail in the next few sections, which to-

gether with the experiments presented in Section 4 constitute

the main contributions of this paper.

3.1. Adapting events from sensors to gauges

The Event Packager (EP) component is architected to support

a number of event input services, such as duplicate removal

and persistent spooling. It utilizes a plug-in architecture to

support a broad variety of incoming event formats (inputs);

a variety of transformations, including timestamping; and a

variety of output event formats and other options (outputs).

New plugins can easily be synthesized; for example, Instant

Messaging (IM) messages can be represented as a form of

event input.

The various plugins are coordinated via a user-definable

metabase (metadata database) that dictates what should be

done to the data (transforms) and where the data should be

sent. Transforms can include single-event processing tasks,

such as event clock/timestamp synchronization, static event

reformatting/rewriting, augmentation, and selective or com-

plete event persistence. Typically, the goal is to have a number

of different input formats streamlined, spooled, and aggre-

gated onto one event stream for the other KX components.

The Event Packager implementation (see Fig. 3) was de-

signed from the ground up to be easy to extend. Developing

a new input, output, transform or store only requires that one

Java class be extended, and some simple methods filled in.

This enables the quick and easy creation of wrappers around

existing sensors and middleware. The Event Packager uses

its own opaque event format container to allow future sup-

port for new event formats without breaking compatibility

with existing plugins (although for optimal performance, cer-

tain plugins might support introspection into event formats

for specialized processing). By using opaque event contain-

ers, minimal per-event decision-making is needed, which en-

ables the creation of fast pseudo-pipelined datapaths. If more

complex processing is needed, a transform can be applied,

although this may affect event processing speed.

We have developed input plugins that support and stan-

dardize Siena and Elvin messaging, TCP socket streams

(transporting both serialized Java objects and XML mes-

sages), console input, email (via sendmail), and AOL Instant

Messaging (AIM) messaging as event sources. A broad array

of output formats closely mirrors these inputs. Transforms in-

clude event conversion (from Siena and flat ASCII formats)

and event timestamp synchronization (to compensate for dis-

tributed clock environments).

EP also supports in-memory, JDBC-backed SQL, and flat-

file (serialized object) stores. Persistent logging enables the

Event Packager to support “latecomer” analysis, or reanalysis

of previously-received event streams, as new Event Distiller

gauges are deployed. Multiple persistence techniques may

be simultaneously employed via the plug-in model, so that

rules can specify persistence to one or more data repositories,

such as an SQL database, enabling the use of efficient offline

analysis and data mining.

The above components are arranged on-the-fly. Upon

startup, the Event Packager reads its configuration file and

instantiates the necessary plugins and begins routing events.

However, plugins can be added (via Java late-binding reflec-

tion mechanisms) and removed during runtime.

EP currently consists of about 9,000 lines of Java code;

the core engine that coordinates inputs, transforms, outputs

Cluster Comput (2006) 9: 141–159 147

Fig. 3 Event packager internal
architecture

and stores is about 2,000 lines, while the bundled plugins

to deal with input, output, transform and store comprise the

rest. Some C glue code handles legacy integration. A typical

rulebase is usually a few hundred lines of XML; a small

example is given in the Appendix.

Flexible XML (FleXML) is an XML-based technology

used by the Event Packager as an optional plugin, to intel-

ligently convert from XML-formatted sensor output to the

XML or non-XML event vocabulary expected by the Event

Distiller—currently Siena events consisting of unordered se-

quences of typed attribute/value pairs. Siena supports a naı̈ve

translation from XML data into its flat event namespace, but

cannot handle hierarchical formats [42]. The next section

on FleXML is included for completeness, but can be skipped

without loss of continuity. The optional FleXML facility adds

2,200 lines of C++ and Java plus some XML files for the

Metaparser and Oracle, and about 4,500 lines of Java for the

accompanying Tag Processor architecture.

3.2. FleXML

FleXML (Flexible XML) is an extension of XML that loosens

various restrictions of standard XML. It enables XML data

from different vocabularies to be treated as if it was all part

of the same language for the purpose of cross-application,

cross-domain, and cross-version filtering, aggregation and

correlation. Our approach is to delay binding of both syntax

(schema) and semantics (tag processors) for XML fragments

until needed (“on demand”). In particular, FleXML supports

what we call “cocktail” XML Schemas, where placeholders

(processor instructions) are left to fill in new grammatical

fragments on demand, smooth handling of data correspond-

ing to older and newer versions of the same XML Schema,

and introduction of special-purpose transformations and pro-

cessing code for individual XML tags and attributes.

A full treatment of FleXML and its applications is outside

the scope of this paper; we address here only the aspects rel-

evant for KX. FleXML’s primary use in KX to date has been

as an optional plugin for the Event Packager, to intelligently

convert from XML-formatted sensor output (such as gener-

ated by AIDE [43]) to the XML or non-XML Siena event

vocabulary expected by the Event Distiller.

3.2.1. The metaparser

The Metaparser first performs a validating parse of a

FleXML message (event). Like typical XML parsers, it per-

forms syntax and validity checks on the XML document to

148 Cluster Comput (2006) 9: 141–159

make sure that it is well-formed and corresponds to a known

schema. If either or both of these fail, a typical XML parser

declares the document malformed or invalid, respectively,

and stops parsing it. While FleXML documents, like XML

documents, must be well-formed, the metaparser will not im-

mediately fail in the second error case (e.g., when the next

element tag is unknown or not recognized at that point in the

schema); instead, it will attempt to resolve the problem auto-

nomically. The apparently erroneous XML fragment, along

with namespace and XPath context, is passed to a separate

component (the Oracle) that contains a repository of schema

information. If a matching subschema is found, it is installed

into the Metaparser, which can then continue with its val-

idation of the document. Note the problem fragment could

appear in the “middle” of an otherwise valid message, so in

effect the subschema is inserted into the parent schema at the

relevant location.

Composition of multiple schemas within the same mes-

sage, with dynamic handling of the subschema discovery, is

desirable in several situations. Schemas may have been mod-

ified, the schema may be inherently “pluggable,” as with the

SOAP envelope schema [44], or the message format may

have been designed as an elaborate composition of separate

grammatical components (using the FleXML placeholders

mentioned above).

As it parses each message fragment, the Metaparser calls

the corresponding Tag Processors, if any happen to be as-

sociated with elements or attributes in the message. This is

usually to rewrite or augment the original message, e.g., to

standardize the format or highlight important attributes. Both

tasks use the Oracle to allow adaptive, autonomic behavior

in an environment of potentially changing message formats

and their meaning. Note this autonomic behavior is with re-

spect to the KX infrastructure itself, as opposed to the target

system.

3.2.2. Tag processors

Tag Processors are XSLT or mobile code components. When

the Metaparser hands off a message fragment to a Tag Pro-

cessor, it also passes an “environment” associated with the

message, where the Tag Processor can write its results as

well as read results of previous Tag Processors. This allows

state to be maintained as the message is processed by multiple

components; the Metaparser and Tag Processors are stateless

across messages, however, to reduce complexity and size and

to improve performance. The Tag Processors, like the schema

snippets, are discovered dynamically by querying the Or-

acle, allowing new Tag Processors to be deployed on the

fly.

Tag Processors use a combination of XSLT patterns and

XML-specified rules to write values to the environment and

possibly rewrite portions of the message. The XSLT “rule

template” can apply conventional XSLT transforms and/or

add “virtual tags” to the message to identify particular side

effects that should occur. An XML rule set describes the

various possible effects that should occur, including writing

of a particular attribute-value pair to the environment, and/or

executing an arbitrary piece of code. Tag Processors are com-

monly used to standardize different message formats into a

single format, to augment messages with higher-level infor-

mation, and to run arbitrary legacy code modules against

messages. The first two uses greatly reduce the burden on

the Event Distiller.

3.2.3. The oracle

The Oracle is a support database for the Metaparser and Tag

Processors. When presented with an unfamiliar tag and the

context in which it appeared (namespace and XPath), the Or-

acle will attempt to find and return an appropriate schema

or schema fragment, along with associated tag processors.

Ideally, an extended context (beyond namespace and XPath)

would be provided, and uncertainly and ambiguity dealt with

intelligently; multiple matches or “near matches” could be

returned. These issues, and other such as caching, replica-

tion, eager vs. lazy propagation of updates, centralized vs.

decentralized implementation, etc., are outside the scope of

this paper.

3.3. Recognizing event sequences

The Event Distiller (ED) is responsible for detecting prob-

lematic or anomalous system activities by matching (gaug-
ing) sequences of events emitted by one or more sen-

sors. An event sequence is defined here as being a non-

deterministic ordering of events ultimately indicating cor-

rect vs. incorrect behavior. Such event sequences’ transi-

tions (i.e., between subsequent events) will almost always

have timebounds so as to emphasize the real-time nature

of the application domain and to act as a check on the

nondeterminism.

ED rules define the event patterns of interest as derived

from behavioral models, in an XML vocabulary; the full no-

tation is given in the Appendix. Note that Event Distiller

rules are not related to the Event Packager rulebase speci-

fying plugin configuration. Each ED rule is partitioned into

“states” and “actions”, where matches amongst the former

are mapped to (meta-)events that are emitted corresponding

to the latter. This state/transition representation closely cor-

responds to a nondeterministic finite automaton—the idea

is that one event may lead to many different possible sub-

sidiary events, and one wants to match whichever ones are

Cluster Comput (2006) 9: 141–159 149

appropriate. Transitions are inherently timebound to pro-

vide a control on the size of the nondeterministic match-

ing problem—an expiration implies that a transition is no

longer possible, and KX can then garbage collect from the

pool of potential matches for incoming events, to reduce the

amount of system state required during execution. An alter-

native approach would be to provide backtracking, but this is

impractical given the runtime requirements of such a system

and the potentially huge number of events it may witness at

any given time.

The Event Distiller internal architecture (see Figure 5)

supports several additional first-level constructs as defined

in the rule language:� Rule chaining is accomplished by allowing published ac-

tions from one rule to match other rules’ states. This late-

binding approach enables dynamic rules to be created and

to immediately support chaining.� Looping provides Kleene star-like functionality, but can

also match a specific number of times.� Success and failure actions can be made at any matched

state. A success action is published immediately upon

reaching the state. A failure action is one where all the

transitions from that state to another state are eliminated

and no further transitions can be done, and is sent upon

successful garbage collection of the current rule instance.

Multiple success and failure states can be specified at each

state if desired. Such actions may trigger a rule chaining

within the Event Distiller architecture, may be used by

other interested components (such as controllers that be-

gin applying a repair or reconfiguration workflow), or may

even trigger human notification via some immediate com-

munication channel, such as a pager.� Absorption enables a given state match to be exclusive,

e.g., if a particular state of a particular rule enables ab-

sorption, all rules below it will not match state, even if

they specify the exact same criteria as the first matched

rule. Note that this implies a partial ordering upon the

rulebase—rules at the top have absorption capability over

all other rules in the rulebase, whereas rules at the bot-

tom can declare absorption but such a declaration has no

effect.� Variable binding enables conditional matching—a value

can be bound by the first match, and further states in a rule

may require that value to appear in subsequent events. This

is useful for any sequence of events that refer to a common

shared value, such as the name or unique identifier of a

service being monitored.

Internally, the Event Distiller uses a collection of nonde-

terministic state engines for temporal complex event pattern

matching. The rulebase is loaded into memory, and forms a

series of “state machine templates”; once an event matches

the first state of one of these templates, an instance of the

Fig. 4 FleXML internal architecture

Fig. 5 Event distiller internal architecture

template is automatically created to keep progress of the

matching through the state machine. While this is memory-

intensive, it allows a richer representation of event sequences:

logic constructs are supported, as are loops, rule chaining,

and variable binding as required by the architecture. Mem-

ory usage is mitigated by supporting timeouts and automatic

150 Cluster Comput (2006) 9: 141–159

garbage collection. Timestamped event reordering is also

supported, so if events arrive out-of-order within a certain

window (1 second by default), the Event Distiller will rear-

range them appropriately so that sequences, and causality,

can still be recognized correctly. Note that such reordering,

if done with many sources, requires some authoritative time

declaration as close as possible to the sources themselves,

as network latencies may be unpredictable. If the generator

of the events being matched doesn’t support timestamping,

Event Packagers may be placed at the generation point or at

its immediate network peer to create timestamps to enable

reordering.

ED’s repertoire of event patterns may be populated in one

of several ways: First, an XML-format rulebase is supported,

where event sequence patterns are specified, along with time-

bound parameters among sequence elements as well as suc-

cess and failure notifications. There is also a GUI to assist a

KX integrator; it also works as a systems management con-

sole for human engineers, although a major goal of the effort

has been to automate many repairs within a KX feedback

loop (via notifications to Workflakes). Second, the Event

Distiller supports dynamic rule generation—messages can

be sent to the Event Distiller with XML snippets specifying

a rule or a segment of a rule (e.g., to construct new rules on

the fly or modify existing rules). Currently, such rule modifi-

cations are received through the publish-subscribe channel,

potentially containing an XML snippet that contains a full

rule (e.g., states and actions) to be matched from hereon.

Such rule changes affect templates for future matches and

not currently-matching rules. Third, as with the Event Pack-

ager, other sources can be easily integrated: For instance,

support for CMU’s Acme architectural description language

constraints [21] has been partially integrated: The Event Dis-

tiller can act as a “reporting gauge” onto the Acme Gauge

Bus [45], thereby providing feedback to the corresponding

architecturally-oriented repair tools.

The Event Distiller implementation is currently about

7,000 lines of Java code. The event pattern rulebase may

vary in length depending on the complexity of the behav-

ioral model, but in experiments were typically a few hundred

lines of XML.

4. Example applications

In order to validate our approach to introducing autonomic

properties into legacy systems, we developed several scenar-

ios and corresponding experiments with real, deployed com-

plex distributed software. We describe three such scenarios

in this section, dealing with service failures, load balancing,

and quality of service across two different legacy systems

(additional applications are discussed in [14] and [41]). Be-

cause the authors were not involved in the prior development,

deployment and systems management of these real-world

systems, it is not possible to offer full “before” and “after”

comparisons with detailed quantitative data. However, these

case studies demonstrate that it is possible and advantageous

to apply our approach to real-world legacy systems. To

show the diversity of plausible application domains, we also

discuss a simple “toy” example that detects and blocks email

spam.

4.1. Service failures

We integrated KX with a complex GIS (Geographical Infor-

mation System) intelligence analysis tool developed at the

USC Information Sciences Institute (ISI) and used experi-

mentally at the US PACOM (Pacific Command), known as

GeoWorlds [46]. GeoWorlds uses a distributed set of ser-

vices glued together by Jini [47]. While the system gen-

erally works well, services sometimes stop running, with

no recourse except to wait for the request to time out

and to manually restart the appropriate backend subsys-

tem. For example, GeoWorlds’ reliance on harvesting ex-

ternal websites (e.g., www.bbc.co.uk)—for news items that

it then maps to locations in the GIS system—is subject

to frequent glitches (DDoS, server failure, etc.), requiring

restart of the GeoWorlds service that is trying to access the

external website, possibly substituting an alternative news

site.

Using WPI’s AIDE (Active Interface Development En-

vironment) sensor technology [33], we were able to au-

tomatically instrument the GeoWorlds Java source code,

and in particular the mechanism that dealt with request-

to-service dispatch, with sensors that would monitor the

start and end of method calls that were relevant to con-

tacting external services. The Event Distiller incorporated

rules to monitor a variety of method calls, making sure that

a “termination” call matched up with each “initiation” call

within an appropriate timebound (ranging from seconds to

a minute). AIDE reports method calls in an XML format;

these calls were then translated to a simple attribute/value

set via the FleXML Metaparser and fed into the Event

Distiller.

Figure 6 shows an example of a simple event pattern

used to perform such failure detection. The incoming sen-

sors reporting Status and State values track method comple-

tion. If for some reason a “FINISHED STATE” is not re-

ceived within 15 seconds after a method had initiated, the

system sends out the “Crash” event; otherwise, the “De-

bug” notification is emitted, signifying a “success” and act-

ing as a record of the operation for future debugging pur-

poses if desired. Note that the strings prefixed with an as-

terisk (“*”) designate a variable binding, e.g., the Event

Distiller substitutes all instances of “*service” by the first

Cluster Comput (2006) 9: 141–159 151

Fig. 6 Failure detection pattern

source that it sees for this instance of the rule. Thus, this

one rule can match a large number of different sources and

subjects.

When the repair system (Workflakes) received a “Crash”

event, the repair involved a simple restart of the service

as specified in the message generated by the Event Dis-

tiller. A more sophisticated repair (which was not imple-

mented) would have coordinated multiple services to pre-

vent having to restart a long transaction from scratch, in-

stead using partial results leading up to the individual ser-

vice failure. Even with the simple repair, however, we were

able to automate a process that previously had been done

manually.

4.2. Load balancing

Several GeoWorlds execution scripts rely on computa-

tionally-intensive backend services hosted at ISI, such as

a noun phraser that would analyze incoming news ar-

ticles and extract nouns for mapping to GIS attributes;

crash avoidance and performance maximization through re-

quest relocation was clearly desirable. To accomplish this,

the relocatability of Jini services was exploited to build

a load-balancing solution for GeoWorlds. A system mon-

itor sensor was built in C# to measure the overall load

on the backend system(s) running the noun phraser, and

results were piped into a custom plugin for the Event

Packager.

CMU’s Acme architectural description language [48] was

used to specify GeoWorlds’ architectural composition and

system load constraints on the various services. The Acme

Gauge Extractor then constructed Event Distiller rules based

on these constraints. During the execution of various ser-

vices, if this load exceeded a predetermined threshold for

an extended period of time, the Event Distiller detected

and reported it as a violation of the architectural con-

straints. The triggered repair caused the service to move

to a different Jini-enabled host. We were able to visualize

the load and service state using AcmeStudio’s architectural

diagram visualization tools [49], so one could watch the

feedback loop in action, in concert with the architectural

model.

Additional logic was programmed into the Event Dis-

tiller rulebase to detect oscillation, utilizing the feature

whereby ED can listen to itself (more generally, a hier-

archy of EDs could be constructed to analyze meta-level

events). In particular, if many (outgoing) Event Distiller

messages requesting a load-balance were detected within a

short timespan, one of two strategies could be selected: ei-

ther eliminate load balancing between the two oscillating

hosts for future repair plans (by notifying the Workflakes

controller), or increase the load threshold in the architec-

tural constraints (either by patching ED’s own rulebase or

by manipulating the Acme constraints used to generate the

rulebase). We implemented only the former, but the latter ap-

proach presents a more flexible long-term solution for future

work.

4.3. Quality of service

We had the opportunity to experiment with a commercial

J2EE-based multi-channel Instant Messaging (IM) service

used daily by thousands of real-world end-users. First, on-

demand scalability was added: by monitoring user sign-on

events and server request queues, KX was able to determine

the load of each member of the IM server farm and take ap-

propriate actions whenever needed. Repairs, selected on the

basis of inferences carried out using Event Distiller rules,

encompassed modifications to the threading model of active

servers, or even on-the-fly deployment and activation of addi-

tional server instances and corresponding reconfiguration of

the commercial load-balancer of the IM server farm to redi-

rect client traffic to these new servers. Failure detection was

also supported from a load-balancing standpoint: informa-

tion on server failures and interconnections between servers

and backend DBMS entities was similarly captured to facil-

itate load balancer reconfiguration to direct client traffic to

still-functional servers. The same set of sensors and effectors,

152 Cluster Comput (2006) 9: 141–159

Fig. 7 Sample pattern to detect
repeated emails

coupled with slightly different Event Distiller gauge rules and

Workflakes repairs, were also used to support controlled and

graceful staging of the service infrastructure; this enabled

automated software release deployment without necessitat-

ing a complete shutdown (and service interruption) during

transitions.

A set of quantitative results were derived from running

and observing the adapted IM system in lab conditions, with

both manual and automated traffic simulation that reproduced

in-the-field demands on the IM service. These results focus

on the improvement via automation in the support, mainte-

nance and management activities typically carried out on the

IM service under field conditions. Also, some measurements

about the development and integration effort necessary to

implement the case study were taken. The most significant

results are:� Substantial reduction in effort for deployment and

configuration of an IM service in the field, originally

approximately 1/2 person-days, with locally present

experts. With KX, that was reduced to 1–2 minutes from

a remote location.� Reduced monitoring and maintenance effort necessary

to ensure the health of the running service. KX com-

pletely automated the 24/7/365 monitoring of a set

of major service parameters, as well as the counter-

measures to be taken for a set of well-known critical

conditions.� Reduced reaction times and improved reliability: for

example, KX recognized the overload of an IM server

in 1–2 seconds and deployed an additional server replica

in approximately 40 seconds. Overload detection was

originally manual, starting with accumulated applica-

tion logs—a clearly error-prone approach, potentially

endangering service availability.� Manageable coding complexity: KX sensors, gauges and

effectors were derived from generic code instrumentation

templates that were then customized with situational

logic. This resulted in rather compact code: 15 lines of

Java code on average for sensors, and usually less than

100 lines for effectors. The total code written for this

specific case experiment on top of the generic monitoring

and dynamic adaptation facilities provided by the KX

infrastructure was approximately 2,000 lines of Java and

XML.

This study demonstrated the utility of a KX end-to-end

feedback loop for service management and application-level

QoS in an industrial context. Traditional application manage-

ment practices report warnings, alarms and other information

to some knowledgeable human operator who can recognize

situations as they occur and take actions as needed—with

very limited automation in the management platform. In-

stead, our approach offers a high level of guidance, coordi-

nation and automation to enforce what is a complex but often

repeatable and codifiable process.

4.4. Spam detecting and blocking

In order to demonstrate KX’s flexibility beyond the more

conventional system management cases above, we instru-

mented Sendmail [50], a popular email Message Transfer

Agent (MTA), to capture messages being received in a target

network. More precisely, a Sendmail milter [51] was created

and installed to capture incoming traffic. Specific attributes

about each message (such as source address, subject, and

Message-ID) were captured by sensors, encapsulated into

events by the Event Packager, and sent to the Event Dis-

tiller. The Event Distiller rules (see Figure 7) would trigger

if multiple (3+) messages containing the same source and

Message-ID were received in a very short timespan (less

than 10 seconds). Once detection occurred, a mobile agent

effector was dispatched to reconfigure the Sendmail MTA

in the target network to block all further messages from that

source address by rewriting the configuration file and sending

a hangup signal (SIGHUP) to Sendmail to reload its config-

uration.

This solution worked for simple spam—i.e., one mes-

sage sent by a spammer to sufficient people in the same

organization would verifiably get caught and future com-

munication from that spammer would be blocked. Of

course, the organizational newsletter might also be blocked.

While this technique is superceded by better spam-specific

technologies, such as SpamAssassin [52], which uses dy-

namic rules and Bayesian learning to distinguish more

“stealthy” spam, this example demonstrates the broad util-

ity of our Event Distiller’s timebound-based pattern match-

ing, in this case with email-specific semantics. In essence,

we were able to add (limited) autonomic behavior to

Sendmail.

Cluster Comput (2006) 9: 141–159 153

5. Related work

Other projects in the DARPA DASADA program more di-

rectly addressed the technical details of specific environ-

ments; our main goal was to provide a generic, reusable

infrastructure to extend their gauges to on-line operation,

while the target system remained running (i.e., without

bringing it “down”). For example, Spitznagel [53] dis-

cusses static model checking to analyze the compositional-

ityand traceability properties of component wrappers, while

Geib [54] combines multiple interacting constraint satisfac-

tion algorithms to verify component composability, validity

and adaptability a priori. Combs [55], Cobleigh [56] and

Wolf [57] were other projects that investigated reconfigu-

ration workflow; we address these and other reconfigura-

tion tools and their relation to the KX controller in [13].

Oreizy [58] also took an end-to-end approach, but applied

only to target systems exhibiting the C2 architectural style

[59].

A number of other projects also take a middleware ap-

proach to autonomic computing. Cornell’s Astrolabe system

[60,61] acts as a distributed hierarchical information reposi-

tory, using a replicated DNS-like infrastructure to support a

number of applications. They provide an SQL-like interface

as a base model, and define solutions, including manage-

ment, as manipulations on top of this repository. While they

have developed system monitoring solutions on the Astrolabe

infrastructure, their implementation benefits environments

where a large number of nodes may need to know specific

application-specific information and where short latencies

are less critical. KX could be adapted to adopt a solution like

Astrolabe to store and replicate its behavioral models across

the Internet into specific application domains, within which

it would do low-latency, fast-response model and system

monitoring. The JAGR project [62] adds self-recoverability

to the open-source JBoss J2EE application server, thereby

providing a middleware autonomic layer for J2EE busi-

ness logic components (known as Enterprise Java Beans, or

EJBs).

In the commercial arena, OC Systems has an analo-

gous platform to DASADA sensors and monitors with their

AProbe [63] and RootCause [64] products, while SMARTS

offers their Automated Business Assurance service with

“Codebook Correlation Technology.” [65] These technolo-

gies are generally noninvasive and rely on quickly match-

ing against static or predetermined analysis, as compared

to our intent to integrate with application semantics, where

new success or failure rules can be introduced on the

fly.

Both the network and fault management communities

have some autonomic behavior as well. The NESTOR

project [66] takes a network-layer approach to monitor-

ing. Additionally, JSpoon [67] is a language developed

for the NESTOR project that adds “management” at-

tributes to a network architecture. KX may benefit from

JSpoon-like semantics in an attempt to enrich our behav-

ioral models with lower-level network information. Fault

management systems [68,69] are also closely-integrated

at the systems level, for telecommunications-level reliabil-

ity. These systems are largely static, designed for verti-

cal solutions, and not for complex distributed “systems of

systems”.

Intrusion detection systems [70,71] usually focus on

system- or network-level security, and are not gener-

ally useful for application reliability or self-management.

We are actively investigating the migration of our work

towards intrusion detection to better support specific

application-level security semantics, in particular based on

semantic models gleaned from machine learning systems

[72,73].

A number of academic and commercial generalized event

correlation systems exist [17, 74], which correspond, to some

extent, to our Event Distiller gauges. These generally use a

coding and compilation approach to defining event patterns;

in contrast, our dynamic-at-runtime rules are better adapted

to embedding solutions in continuously running systems, al-

beit at potentially lower performance levels. We are in the

process of investigating these tradeoffs further.

Several sensor and gauge technologies have been inte-

grated into the event propagation [75] and network layers,

often in hardware via SNMP [76]. These tend to be opti-

mized for lower-level, high-volume general-purpose packet

streams. They can easily be utilized by KX, which can pro-

vide higher-level semantics to simple matches found in these

lower layers.

“Grid Computing” attempts to make distributed comput-

ing resources visible as a single virtual computer. Features

such as system configuration management and autonomic

management have been listed as desiderata for commercial

Grid computing [77], but are not currently part of the Grid

computing standards. IBM’s OptimalGrid [78] approach sup-

ports instrumentation and self-optimization in a Grid com-

puting environment, but requires a customized implemen-

tation which it can then assemble and coordinate, as op-

posed to supporting legacy software. Similarly, the AutoMate

project [79] defines autonomic system components as being

built on a particular framework known as Distributed Interac-

tive Object Substrate, or DIOS, and tightly controls execution

of these components. KX does not provide grid computing

semantics, and as a result can rely on a legacy framework,

instead building a late-binding management layer on top of

it. In fact, we consider grid computing to be a natural match

for the automated distributed management capabilities of our

KX architecture.

154 Cluster Comput (2006) 9: 141–159

A number of systems that address repair, reconfigura-

tion or other adaptation issues exist, either in the context

of autonomic computing platforms or on their own account.

What distinguishes our work is once again its externalized

stance. In fact, many solutions that could fulfill the role of

the controller in our model present significant structural de-

pendencies with respect to their target system. One of the

most common approaches is represented by an environment

or middleware with native adaptation capabilities. Exam-

ples include Conic [80], Polylith [81], 2K / dynamicTao [82]

and many others; they all offer a set of dynamic adaptation

primitives as a premium for applications built with and op-

erating on top of themselves. Georgia Tech [83] defines a

concept called service morphing, which refers to dynamic

service assembly, deployment, and coordination. They also

employ middleware and event-based detection to rearrange

services for better QoS, but focus on newly-engineered ser-

vices, whereas KX relies on manipulating existing service

architectures.

Minsky [84] defines a formalism to define whether or not

a complex, distributed system can be termed self-healing; the

principal concept is that the system must have regularities.

Further research might help determine if the addition of KX

to an “irregular” legacy architecture can “smoothen” it and

provide the regularities needed to enable such self-healing

behavior.

6. Conclusions, limitations and future work

We have presented a general approach to retrofitting au-

tonomic capabilities onto pre-existing systems designed

and developed without monitoring and dynamic adapta-

tion in mind. The generic reference architecture, consist-

ing of sensors, gauges, controllers and effectors, and tai-

lored by system-specific behavioral models, can be imple-

mented in many different ways. Our KX implementation

provides sample components for gauges (Event Distiller)

and controllers (Workflakes), as well as additional compo-

nents (Event Packager and FleXML) that act as adaptors for

diverse sensor technologies developed by others. Our pri-

mary experience with effectors utilizes our own Worklets

mobile agents. KX has been used to add self-management and

self-healing functionality to several legacy systems and sys-

tems of systems, spanning service failures, load balancing,

quality of service and an experiment in spam detection and

blocking.

It is important to note that not all legacy systems are

amenable to our approach. It must be possible to place suf-

ficient sensors into and around the target system’s compo-

nents in order to monitor it, and the target system must

expose sufficient “control knobs” for effectors to recon-

figure it. In some cases, sensors may be limited to prob-

ing operating system and network activities that only indi-

rectly indicate target system operations, whereas effectors

may sometimes be restricted to coarse-grained component

restarts and replacements. The latter was indeed the case

for portions of our experimental applications as discussed

above.

Although gauges could be restricted to always specify

maximum time bounds, event propagation delays and re-

pair plans (allowing for contingencies) may not always

be predictable. KX is therefore not currently suitable for

hard real-time systems. However, some of the KX com-

ponents have been applied to a soft real-time multime-

dia application, where delays were explicitly accounted for

(see [41]).

Further, most of the behavioral models employed to date

have been relatively ad hoc, based on the authors’ under-

standing of the external behaviors of each system as opposed

to formal models—which are difficult to obtain for many

real-world legacy systems. However, preliminary work with

a posteori architectural models of GeoWorlds, defined in an

architectural description language, shows promise. We are in-

vestigating avenues for automatic derivation of gauges, that

is, Event Distiller complex event pattern rules, from those

and other kinds of system and behavioral models. We are

also considering a wider range of application domains. One

particularly intriguing application area is autonomic service

survivability in the face of insider and outsider security at-

tacks, to coordinate what would otherwise be isolated, in-

dependently operating security mechanisms, as we propose

in [20].

Appendix: Example event packager and event
distiller rulesets

A1. Event packager

A1.1. Event packager rule language

The full Event Packager documentation may be found at

http://www.psl.cs.columbia.edu/xues/EventPackager.html.

A1.2. Event packager example

We give an example here of a configuration that subscribes

to one event bus (Siena) for events which have the attribute-

value pair (“TestAttribute”, “TestValue”), stores the results in

a SQL database, and finally copies the results to another event

bus. The references to the Console are needed if console-level

control is desired of the Event Packager; it perceives the user

console to be yet another source (and, potentially, a sink) for

events.

Cluster Comput (2006) 9: 141–159 155

A2. Event distiller

The full Event Distiller documentation may be found at

http://www.psl.cs.columbia.edu/xues/EventDistiller.html.

A2.1. Event distiller rule language

<rulebase xmlns="http://
www.psl.cs.columbia.edu/2001/01/
DistillerRule.xsd">
This line is the top-level XML rulebase declaration, and is

required.

<rule name="rule name">
This is the top-level rule declarator, is declared within

ruleBase, and is repeated at the beginning of each rule.

The following parameters may be supplied:� name (required): Rule names are used primarily for

disambiguation at this time; they are not referred else-

where.� position (optional): the position where this rule is in-

serted, starting with 0. The position specifies the pri-

ority of this rule in receiving events: higher priority

rules (smaller numbers) receive events first. This is

useful in the case of event absorption on the part of a

state (see the absorb attribute in state).

� instantiation (optional): the criterion for instantiating

this rule. Legal values are: 0, 1, 2. ‘0’ means the rule

will only be instantiated once. ‘1’ means there will

always be only one instance at any given time, so a

new instance is created as the previous succeeds or

one times out. ‘2’ means a new instance is created

whenever a previous instance starts (i.e. receives its

first event), so that there will always be one instance

listening for the starting event(s).

<states>
This declarator, contained in a rule, signifies the be-

ginning of state declarations (of which there may be

many). Note: There can be only one “states” declara-

tion in a rule.

<state name="state name"
timebound="milliseconds"
children="CSV-list of children
names" actions="CSV-list of ac-
tions" fail actions="CSV-list of
actions" absorb="boolean value"
count="integer value">
This is the beginning of declarator for a single

state in the state-list (pattern) to be matched for

this rule. A number of parameters are supplied

alongside the rule declarator:

156 Cluster Comput (2006) 9: 141–159� name (required): specifies the state name. This

name should not conflict with other state names

within this rule.� timebound (required): specifies the timebound

in which this event can happen relative to the

previous event. For the first event, the time-

bound is generally set to −1 (e.g. no time limit);

for subsequent timebounds it is recommended,

although not required, that the timebound be

positive. If the first state of a rule has positive

timebound, it is measured against the time at

which the rule is created. (Note that timebound

is not precise—a fudge factor is present in the

Event Distiller to take care of race conditions.)� children (optional): specifies (in a comma-

delimited list, no spaces) states that can follow

this particular state.� actions (optional): specifies the notification(s)

to be sent out when this state is matched. Usu-

ally, this is intended for the last state in a rule,

which would signify as the “rule matching”,

but intermediate notifications can be sent out.� fail actions (optional): specifies the notifica-

tion(s) to be sent out if this state times out

while waiting for input. Unlike actions, this is

intended for each state, so a different notifica-

tion may be sent out for a failure at any given

point in the state machine. Note that if a rule

allows multiple paths between states (so that at

one given time multiple states are subscribed),

failure notifications for one of the states that

timed out will be sent, only if all currently sub-

scribed states time out.� absorb (optional): Whether this state will ab-

sorb the events that match it. If this is set

to true, when an event matches this state,

the event will not be passes on to any other

state currently subscribed. If this field is not

specified, a default value of ‘false’ will be

used.� count (optional): the number of times this event

will need to be matched before it passes. A

default value of ‘1’ is used if this field is not

specified. If the value specified is greater than

‘1’ (say, n, children and actions will only ap-

ply to the nth time that the state is matched;

while fail actions, if specified, will apply at

all times. The special value ‘−1’ indicates

that the event may occur any number of times

(within the specified timebound), until one of

the children is matched, thus terminating the

loop.

<attribute name="attribute
name" value="attribute value"
op="comparison operator"
type="value type" />

Declarator for an attribute-value pair required

in this particular state. Note that there may be

many attributes per state, and they are ANDed

together in the filter that matches incoming no-

tifications to this state. Since there are no em-

bedded tags within this tag, you can use the

compact end-tag notation (e.g. “/>”). The com-

parison operator is a string representation of the

operator to be used for matching the value. For

instance, you would specify op=“>” to match

all values greater than the one that the specified

value. The default operator is the equality op-

erator. Type needs to be specified since some

operators only make sense for certain types; the

default type is the string type. Note that the value

field here is matched using a string-equals com-

parison, unless a special wildcard-binding no-

tation is used (see below).
</state>

</states>

<actions>

This declarator, contained in a rule, signifies the be-

ginning of action declarations (of which there may be

many). Note: There can be only one “actions” decla-

ration in a rule.

<notification name="notification
name">
This is the beginning of the notification (action)

declarator. There is one parameter, name, which

corresponds to the actions and fail actions refer-

ences above. It is strongly recommended that this

name be one contiguous phrase without whites-

pace or punctuation to avoid conflicts in the CSV-

lists referenced above.

<attribute
name="attribute name"
value="attribute value" />
Declarator for an attribute-value pair to be in-

cluded in this particular notification. Note that

there may be many attributes per notification.

Since there are no embedded tags within this

tag, you can use the compact end-tag nota-

tion (e.g. “/>”). If you use wildcard-binding

above, you may use the same wildcard-binding

Cluster Comput (2006) 9: 141–159 157

tag here—it will be substituted with the actual

bound value (again, see below).

</notification>

</actions>

</rule>
</rulebase>

A2.2. Event distiller example

We provide here an extended view of the rules presented

in Figure 6, including the corresponding notifications if the

pattern is matched.

In this case, we allocated 15 seconds for the method to

complete, and in the case of a crash, both static and dynamic

(i.e., wildcard-bound) data were reported (note that we ab-

breviated a few URLs for readability).

Acknowledgments We would like to thank the other members of
the Programming Systems Lab for their contributions to this ef-
fort; we would particularly like to thank Jinghua Yan for his the-
oretical work on the power and limitations of FleXML as a lan-

guage formalism, and Gaurav Kc and Dan Phung for their efforts
on Worklets. Our outside colleagues alternately provided criticism
and encouragement—Bob Balzer, Dave Wile, David Garlan, Bradley
Schmerl, David Wells, Nathan Combs, George Heineman, Bob Neches,
Lee Osterweil, Alex Wolf and John Salasin. We would particularly
like to thank Joe Hellerstein of IBM for his insightful discussions re-
garding control theory issues, which we anticipate will be reflected
more fully in a future version of KX. During this effort, the Program-
ming Systems Lab was funded in part by Defense Advanced Research
Project Agency under DARPA Order K503 monitored by Air Force
Research Laboratory F30602-00-2-0611, by National Science Foun-
dation grants CCR-0203876, EIA-0202063, EIA-0071954 and CCR-
9970790, and by Microsoft Research and IBM. The software described
here can be downloaded for research and education purposes from
http://www.psl.cs.columbia.edu/software.html.

References

1. IBM Research. Autonomic computing. http://www.research.ibm.
com/autonomic.

2. D.J. Smith, D. Schuff and St.R. Louis, Managing your total IT cost
of ownership, Communications of the ACM, 45(1) (January 2002)
101–106.

3. A. Gonsalves, IBM releases blueprint for automated computing,
TechWeb News, (April 4, 2003).

158 Cluster Comput (2006) 9: 141–159

4. IEEE. Autonomic computing workshop: Fifth annual international
workshop on active middleware services, (June 2003).

5. B.J. Feder, On the trailing edge of the arms industry, by Choice.
The New York Times, (March 30, 2003).

6. I. DeBare, Programmers in the driver’s seat: Companies clamor for
Year 2000 programmers. Dr. Dobb’s Journal, (Spring 1998).

7. V. Raijlich, N. Wilde, M. Buckellew and H. Page, Software cultures
and evolution. IEEE Computer, Vol. 34(9) (Sep. 2001) 24–28.

8. G. Valetto, Orchestrating the dynamic adaptation of distributed soft-
ware with process technology. PhD Thesis, Columbia University,
(April 2004).

9. S. Bekker, Microsoft error reporting drives bug efforts, ENT News,
(October 3, 2002).

10. SANS, what is host-based intrusion detection? Intrusion Detection
FAQ, http://www.sans.org/resources/idfaq/host based.php.

11. LANDesk Software, LANDesk Management Software,
http://www.landesksoftware.com/.

12. J.L. Hellerstein, Y. Diao, S. Parekh and D. Tilbury, Feedback control
of computing systems Wiley, (2004).

13. G. Kaiser, P. Gross, G. Kc, J. Parekh and G. Valetto, An approach to
autonomizing legacy systems. Workshop on self-healing, adaptive
and self-managed systems, (June 2002).

14. G. Valetto, and G. Kaiser, Using process technology to control
and coordinate software adaptation. International Conference on
Software Engineering, May 2003.

15. G. Kaiser, J. Parekh, P. Gross and G. Valetto, Kinesthetics eX-
treme: An external infrastructure for monitoring distributed legacy
systems. Fifth Annual International Active Middleware Workshop,
(June 2003).

16. J. Salasin, DARPA DASADA Program, http://www.rl.af.mil/tech/
programs/dasada/program-overview.html.

17. D. Luckham, The power of events: An introduction to complex
event processing in distributed enterprise systems. Addison-Wesley,
(2002).

18. G. Valetto, Orchestrating the dynamic adaptation of distributed soft-
ware with process technology. PhD Thesis, Columbia University,
(April 2004).

19. C. Hagen and G. Alonso, Exception handling in workflow manage-
ment systems. IEEE Transactions on Software Engineering, 26(10)
(October 2000) 943–958.

20. A. Keromytis, J. Parekh, P.N. Gross, G. Kaiser, V. Misra, J. Nieh,
D. Rubenstein and S. Stolfo, A holistic approach to service surviv-
ability. First ACM Workshop on Survivable and Self-Regenerative
Systems, (October 2003) 11–22.

21. G. Garlan, S.W. Cheng and B. Schmerl, Increasing system de-
pendability through architecture-based self-repair. In de Lemos,
R., Gacek, C. and Romanovsky (eds.), Architecting Dependable
Systems, Springer-Verlag, (2003).

22. D.L. Wells and P. Pazandak, Taming cyber incognito: Tools for
surveying Dynamic/Reconfigurable software landscapes. Working
conference on complex and dynamic systems architectures, (De-
cember 2001).

23. P.N. Gross, S. Gupta, G.E. Kaiser, G.S. Kc and J.P. Parekh, An
active events model for systems monitoring. Working conference
on complex and dynamic systems architecture, (December 2001).

24. B. Balzer, Probe technology adaptor design. (February 2001).
http://schafercorp-ballston.com/dasada/2001WinterPI/
ProbeTechnologyAdaptorDesign.ppt.

25. B. Schmerl, A proposal for a DASADA gauge infrastructure. June
2001. http://www-2.cs.cmu.edu/afs/cs.cmu.edu/
project/able/www/presentations/gauge.html.

26. D.S. Rosenblum and A. L. Wolf, Survey: Internet scale event noti-
fication.” Workshop on internet scale event notication, (July 1998).
http://www.isr.uci.edu/events/twist/wisen98/presentations/
Rosenblum/Rosenblum.PPT.

27. A. Carzaniga, D.S. Rosenblum and A.L. Wolf, Design and
evaluation of a Wide-Area event notification service. ACM
Transactions on Computer Systems, 19(3) (Aug. 2001) 332–
383.

28. B. Segall, D. Arnold, J. Boot, M. Henderson and T. Phelps,
Content-based routing with Elvin4. Australian UNIX and Open
Systems User Group Winter Conference (AUUG2K), (June
2000).

29. P. Gross, J. Parekh and G. Kaiser, Secure selecticast for collabo-
rative intrusion detection systems. International Workshop on Dis-
tributed Event-Based Systems, (May 2004).

30. G. Valetto, G.E. Kaiser and G. Kc, A mobile agent approach
to process-based dynamic adaptation of complex software sys-
tems. Eighth European Workshop on Software Process Technology,
LNCS 2077, (June 2001).

31. G. Kaiser, A. Stone and S. Dossick, A mobile agent approach to
lightweight process workflow. International Process Technology
Workshop, (September 1999).

32. Sun. Java management extensions (JMX). http://java.sun.com/
products/JavaManagement/

33. G. Heineman, P. Calnan, B. Kurtz, et. al. Active interface develop-
ment environment (AIDE). http://www.cs.wpi.edu/
∼heineman/dasada/.

34. P. Pazandak and D. Wells, ProbeMeister: Distributed runtime soft-
ware instrumentation. First international workshop on unantici-
pated software evolution, (June 2002).

35. R.M. Balzer and N.M. Goldman, Mediating connectors: A non-
bypassable process wrapping technology. DARPA Information Sur-
vivability Conference & Exposition, Vol. 2, (January 2000).

36. S. Robertson, E.V. Siegel, M. Miller and S.J. Stolfo, Surveillance
detection in high bandwidth environments. DARPA DISCEX III
Conference, (April, 2003).

37. D.L. Mills, Network time protocol. RFC 958. 1985.
http://www.faqs.org/rfcs/rfc958.html.

38. S. Wise, A.G. Cass, B.S. Lerner, E.K. McCall and L.J. Osterweil, Jr.
S.M. Sutton, Using Little-JIL to coordinate agents in software engi-
neering. Automated Software Engineering Conference, (September
2000).

39. The workflow management coalition. http://www.wfmc.org/.
40. Cougaar: An open source agent architecture for large-scale, Dis-

tributed multi-agent systems. http://www.cougaar.org/.
41. D. Phung, G. Valetto, G. Kaiser, and S. Gupta, Optimizing

quality for collaborative video viewing. Columbia University
Department of Computer Science, CUCS-009-04, (April 2003).
http://www.cs.columbia.edu/∼library/TR-repository/reports/
reports-2004/cucs-009-04.pdf.

42. J.R. Erenkrantz, Handling hierarchical events in an internet-scale
event service, March 2001. http://www.ucf.ics.uci.edu/∼jerenk/
siena-xml/SienaPaper.html.

43. P.W. Gill, Probing for a continual validation prototype.
MS Thesis, Worcester Polytechnic Institute, May 2001.
http://www.wpi.edu/Pubs/ETD/Available/etd-0826101-235008/.

44. W3C. SOAP Version 1.2 Part 1: Messaging Framework: W3C Rec-
ommendation 24 June 2003. http://www.w3.org/TR/2003/REC-
soap12-part1-20030624/.

45. Carnegie mellon university ABLE Group. DASADA gauge infras-
tructure. http://www-2.cs.cmu.edu/∼able/rainbow/gaugeinf.html

46. ISI. GeoWorlds GIS system. http://www.isi.edu/geoworlds/.
47. Sun. Jini technology. http://www.sun.com/software/jini/.
48. Carnegie mellon university ABLE group. Acme architectural de-

scription language. http://www-2.cs.cmu.edu/∼acme/
49. Carnegie mellon university ABLE Group. AcmeStudio develop-

ment environment. http://www-2.cs.cmu.edu/∼
acme/AcmeStudio/AcmeStudio.html.

50. Sendmail Inc. Sendmail mail server, http://www.sendmail.org/.

Cluster Comput (2006) 9: 141–159 159

51. Sendmail Inc., Sendmail mail filter API,
http://www.sendmail.com/partner/resources/development/milter
api/.

52. SpamAssasin. Spam filter. http://www.spamassassin.org.
53. B. Spitznagel and D. Garlan, A compositional formalization of

connector wrappers. International Conference on Software Engi-
neering, (May 2003).

54. C. Geib, S. Vestal and P. Binns, Webpage for HTC’s DASADA
project. http://www.htc.honeywell.com/projects/DASADA/.

55. N. Combs and J. Vagle, Adaptive mirroring of system of sys-
tems architectures. Workshop on Self-Healing Systems, (November
2002).

56. J. Cobleigh, L. Osterweil, A. Wise and B. Lerner, Containment
Units: A hierarchically composable architecture for adaptive sys-
tems. Tenth International Symposium on the Foundations of Soft-
ware Engineering, (November 2002).

57. A. Wolf, D. Heimbigner, J.C. Knight, P.T. Devanbu, M. Gertz, A.
Carzaniga, Bend, Don’t Break: Using Reconfiguration to Achieve
Survivability. Third Information Survivability Workshop—ISW-
2000, (October 2000).

58. P. Oreizy, M. Gorlick, R.N. Taylor, D. Heimbigner, G. John-
son, N. Medvidovic, A. Quilici, D. Rosenblum and A. Wolf, An
architecture-based approach to self-adaptive software. IEEE Intel-
ligent Systems, 14(2):54-62, May/(June 1999).

59. R.N. Taylor, N. Medvidovic, K.M. Anderson, Jr. E.J. Whitehead,
J.E. Robbins, K.A. Nies, P. Oreizy, and D.L. Dubrow, A component-
and message-based architectural style for GUI software. IEEE
Transactions on Software Engineering, 22(6) (June 1996) 390–406.

60. R.van Renesse, K. Birman and W. Vogels, Astrolabe: A robust and
scalable technology for distributed system monitoring, manage-
ment, and data mining. ACM Transactions on Computer Systems,
21(2) (May 2003) 164–206.

61. K. Birman, R.van Renesse and W. Vogels, Navigating in the
storm: Using astrolabe for distributed self-configuration, monitor-
ing and adaptation. Autonomic Computing Workshop, Fifth An-
nual International Workshop on Active Middleware Services, (June
2003).

62. G. Candea and E. Kiciman, et. al. JAGR: An autonomous self-
recovering application server. Autonomic Computing Workshop,
Fifth Annual International Workshop on Active Middleware Ser-
vices, (June 2003).

63. OC Systems. Aprobe: A new approach for testing web applications.
http://www.ocsystems.com/aprobe web testing.html

64. OC Systems. Improving availability of enterprise applica-
tions with rootcause. http://www.ocsystems.com/rootcause white
paper.html.

65. System Management ARTS. http://www.smarts.com.
66. A.V. Konstantinou, Y. Yemini and D. Florissi, Towards self-

configuring networks. DARPA Active Networks Conference and
Exposition (DANCE),(May 2002).

67. A. Konstantinou, and Y. Yemini, Programming systems for auton-
omy. Autonomic Computing Workshop, Fifth Annual International
Workshop on Active Middleware Services, (June 2003).

68. R. Sterritt, C.M. Shapcott, K. Adamson and E.P. Curran, High speed
network first-stage alarm correlator. International Conference on
Intelligent Systems and Control, (2000).

69. M. Steinder and A.S. Sethi, Probabilistic event-driven fault diag-
nosis through incremental hypothesis updating. IFIP/IEEE Sympo-
sium on Integrated Network Management, (2003).

70. Internet Security Systems. RealSecure network protection.
http://www.iss.net/products services/enterprise protection/
rsnetwork/.

71. Cisco. Cisco intrusion detection system. http://www.cisco.com/
univercd/cc/td/doc/pcat/nerg.htm.

72. W. Lee, S.J. Stolfo and P.K. Chan, Learning patterns from unix pro-
cess execution traces for intrusion detection. AAAI-97 Workshop
on AI Methods in Fraud and Risk Management, (1997).

73. S.A. Yemini, S. Kliger, E. Mozes, Y. Yemini and D. Ohsie, High
speed and robust event correlation. IEEE Communications Maga-
zine, 34(5) (May 1996) 82–90.

74. D.C. Luckham, and J. Vera, An event-based architecture defini-
tion language. IEEE Transactions on Software Engineering, 21(9)
(September 1995) 717–734.

75. Y. Zhao and R. Strom, Exploiting event stream interpretation in
publish-subscribe systems. Principles of Distributed Computing,
(2001).

76. M. Rose, ed. RFC 1052: A convention for defining traps for use
with the SNMP, (1991). http://www.ietf.org/rfc/rfc1215.txt.

77. H. Kishimoto, A. Savva, and D. Snelling, OGSA fundamental ser-
vices: Requirements for commercial GRID systems. Global Grid
Forum Draft, (October 3, 2002).

78. G. Deen, T. Lehman and J. Kaufman, The Almaden OptimalGrid
Project. Autonomic Computing Workshop, Fifth Annual Interna-
tional Workshop on Active Middleware Services, June 2003.

79. M. Agarwal, V. Bhat, et. al. automate: Enabling autonomic ap-
plications on the grid. Autonomic Computing Workshop, Fifth An-
nual International Workshop on Active Middleware Services, (June
2003).

80. J. Magee, J. Kramer and M. Sloman, Constructing distributed sys-
tems in conic. IEEE Transactions on Software Engineering, 15(6)
(June 1989) 663–675.

81. C.R Hofmeister and J.M. Purtilo, Dynamic reconfiguration in dis-
tributed systems: Adapting software modules for replacement. Thir-
teenth International Conference on Distributed Computing Sys-
tems, (May 1993).

82. F. Kon, R. Campbell, M.D. Mickunas, K. Nahrstedt and F.J. Balles-
teros, 2K, A distributed operating system for dynamic heteroge-
neous environments. Ninth IEEE International Symposium on High
Performance Distributed Computing, (August 2000).

83. C. Poellabauer, K. Schwan, et. al. Service Morphing: Integrated
system- and application-level service adaptation in autonomic sys-
tems. Autonomic Computing Workshop, Fifth Annual International
Workshop on Active Middleware Services, (June 2003).

84. N.H. Minsky, On conditions for self-healing in distributed software
systems. Autonomic Computing Workshop, Fifth Annual Interna-
tional Workshop on Active Middleware Services, (June 2003).

