
A Runtime Adaptation Framework for Native C and Bytecode Applications

Rean Griffith
Columbia University

rg2023@cs.columbia.edu

Gail Kaiser
Columbia University

kaiser@cs.columbia.edu

Abstract

The need for self-healing software to respond with a
reactive, proactive or preventative action as a result of
changes in its environment has added the non-functional
requirement of adaptation to the list of facilities expected
in self-managing systems. The adaptations we are con-
cerned with assist with problem detection, diagnosis and
remediation. Many existing computing systems do not in-
clude such adaptation mechanisms, as a result these sys-
tems either need to be re-designed to include them or there
needs to be a mechanism for retro-fitting these mechanisms.
The purpose of the adaptation mechanisms is to ease the
job of the system administrator with respect to managing
software systems. This paper introduces Kheiron, a frame-
work for facilitating adaptations in running programs in a
variety of execution environments without requiring the re-
design of the application. Kheiron manipulates compiled
C programs running in an unmanaged execution environ-
ment as well as programs running in Microsoft’s Common
Language Runtime and Sun Microsystems’ Java Virtual Ma-
chine. We present case-studies and experiments that demon-
strate the feasibility of using Kheiron to support self-healing
systems. We also describe the concepts and techniques used
to retro-fit adaptations onto existing systems in the various
execution environments.

1 Introduction

System adaptation has been highlighted as a necessary
feature of autonomic software systems [17]. In the realm
of self-healing software we are concerned primarily with
adaptations that effect problem diagnosis – via consistency
checks orghost transactions1 – and remediation – in the
form of reconfiguration or repair. In many situations adap-
tations must occur while the system executes so as to main-
tain some degree of availability. Having a critical software
system operate in a degraded mode is preferable to taking

1A ghost transaction is a special form of a self-test/diagnosis targeting
a specific subset of subsystems or components.

the system offline to perform scheduled (or unscheduled)
reconfiguration or repair activities [33, 18].

System designers have two alternatives when it comes to
realizing software systems capable of adaptation. Adapta-
tion mechanisms can be built into the system – as done in
the K42 operating system [2] – or such functionality can be
retro-fitted onto them using externalized architectures like
KX [11] or Rainbow [5]. While arguments can be made for
either approach, the retrofit approach provides more flexi-
bility. “Baked-in” adaptation mechanisms restrict the anal-
ysis and reuse of said mechanisms. Further, it is difficult
to evolve (via updates and extensions) the adaptation mech-
anisms without affecting the execution and deployment of
the target system [32].

With any system there is a spectrum of adaptations that
can be performed. Frameworks like KX perform coarse-
grained adaptations e.g. re-writing configuration files and
restarting/terminating operating system processes. In this
paper, we focus on fine-grained adaptations, those inter-
acting with individual components, sub-systems or meth-
ods e.g. restarting/refreshing individual components or sub-
systems, or augmenting methods.

Whereas the retro-fit approach is attractive because it
does not require a re-design of the system and it is possi-
ble to separately evolve the target system and the adapta-
tion mechanisms, it is not always easy to achieve. A ma-
jor challenge is that of actuallyretro-fitting fine-grained
adaptation mechanisms onto existing/legacy systems. 2

Managing the performance impact of the mechanisms
used to effect fine-grained adaptations in the running sys-
tem presents an additional challenge. Since we are inter-
acting with individual methods or components we must be
cognizant of the performance impact of effecting the adap-
tations e.g. inserting instrumentation into individual meth-
ods may slow down the system; being able to selectively
add/remove instrumentation allows the performance impact
to be tuned throughout the system’s execution.

This paper is primarily concerned with addressing the

2For purposes of discussion we define a legacy system as any system for
which the source code may not be available or for which it is undesirable
to engage in substantial re-design and development.

challenges of retro-fitting fine-grained adaptation mecha-
nisms onto existing software systems and managing the per-
formance impacts associated with retro-fitting these adapta-
tion mechanisms. In this paper we posit that we can lever-
age the the unmodified execution environment to transpar-
ently facilitate the adaptations of existing/legacy systems.
We describe three systems we have developed for this pur-
pose. Kheiron/C manipulates running compiled C pro-
grams on the Linux platform,Kheiron/CLR manipulates
running .NET applications and finallyKheiron/JVM ma-
nipulates running Java applications.

Our contribution is the ability to transparently retro-fit
new functionality (for the purpose of diagnosing problems
and resolving problems where possible) onto existing soft-
ware systems. The techniques used to facilitate the retro-
fit exhibit negligible performance overheads on the running
systems. Finally, our techniques address effecting adapta-
tions in a variety of contemporary execution environments.
New functionality, packaged in separate modules, collec-
tively referred to as anadaptation engine, is loaded by Khe-
iron. At runtime, Kheiron can transfer control over to the
adaptation engine, which effects the desired adaptations in
the running application.

The remainder of the paper is organized as follows;
§2 motivates retro-fitting fine-grained adaptation mecha-
nisms onto existing systems and presents a number of spe-
cific adaptations and their potential benefits.§3.1 gives
a working definition of an execution environment and de-
scribes two classes of execution environments –managed
andunmanaged. §3.2 outlines some challenges associated
with performing adaptations at the execution environment
level. §4 describes the mechanisms and concepts used to
adapt running bytecode-based applications, using our Khe-
iron/JVM implementation and its performance overhead.
Kheiron/CLR, our first adaptation framework, targets Mi-
crosoft Intermediate Language (MSIL) bytecode applica-
tions and is discussed in [14, 13, 15].§5 compares and
contrasts runtime adaptation in an unmanaged execution en-
vironment with runtime adaptation in a managed execution
environment. We also present Kheiron/C and discuss some
experimental results of the performance impact imposed on
target systems and§5.4 describes a special case of adap-
tation – dynamically adding fault detection and recovery
to running compiled C programs via selectively emulating
individual functions.§6 covers related work and finally§7
presents our conclusions.

2 Motivation

There are a number of specific fine-grained adaptations
that can be retro-fitted onto existing systems to aid prob-
lem detection, diagnosis and in some cases remediation via
performing reconfigurations or (temporary) repairs. In this

paper we describe how our Kheiron implementations can
be used to facilitate a number of fine-grained adaptations in
running systems via leveraging facilities and properties of
the execution environments hosting these systems.

These adaptations include (but are not limited to):In-
serting or removing system instrumentation[28] to dis-
cover performance bottlenecks in the application or detect
(and where possible repair) data-structure corruption. The
ability to remove instrumentation can decrease the perfor-
mance impact on the system associated with collection in-
formation. Periodic refreshing of data-structures, com-
ponents and subsystems. One example of this is amicro-
reboot [3], which could be performed at a fine granular-
ity e.g., restarting individual components or sub-systems,
or at a coarse granularity e.g., restarting entire processes
periodically.Replacingfailed, unavailable or suspect com-
ponents and subsystems (where possible) [15].Input filter-
ing/audit to detect misused APIs.Initiating ghost trans-
actions against select components or subsystems and col-
lecting the results to obtain more details about a problem.
Selective emulation of functions– effectively running por-
tions of computation in an emulator, rather than on the raw
hardware to detect errors and prevent them from crashing
the application.

3 Background

3.1 Execution Environments

At a bare minimum, an execution environment is respon-
sible for the preparation of distinguished entities –executa-
bles– such that they can be run. Preparation, in this context
involves the loading and laying out in memory of an ex-
ecutable. The level of sophistication, in terms of services
provided by the execution environment beyond loading, de-
pends largely on thetypeof executable.

We distinguish between two types of executables,man-
agedandunmanagedexecutables, each of which require or
make use of different services provided by the execution
environment. A managed executable, e.g. a Java bytecode
program, runs in amanaged execution environmentsuch
as Sun Microsystems’ JVM whereas an unmanaged exe-
cutable, e.g. a compiled C program, runs in anunmanaged
execution environmentwhich consists of the operating sys-
tem and the underlying processor. Both types of executables
consist of metadata and code. However the main differences
are the amount and specificity of the metadata present and
the representation of the instructions to be executed.

Managed executables/applications are represented in an
abstract intermediate form expected by the managed exe-
cution environment. This abstract intermediate form con-
sists of two main elements,metadataandmanaged code.
Metadata describes the structural aspects of the application

including classes, their members and attributes, and their
relationships with other classes [21]. Managed code repre-
sents the functionality of the application’s methods encoded
in an abstract binary format known asbytecode.

The metadata in unmanaged executables is not as rich
as the metadata found in managed executables. Compiled
C/C++ programs may contain symbol information, how-
ever there is neither a guarantee nor requirement that it be
present. Finally, unmanaged executables contain instruc-
tions that can be directly executed on the underlying pro-
cessor unlike the bytecode found in managed executables,
which must be interpreted or Just-In-Time (JIT) compiled
into native processor instructions.

Managed execution environments differ substantially
from unmanaged execution environments3. The major dif-
ferentiation points are the metadata available in each ex-
ecution context and the facilities exposed by the execution
environment for tracking program execution, receiving noti-
fications about important execution events including; thread
creation, type definition loading and garbage collection. In
managed execution environments built-in facilities also ex-
ist for augmenting program entities such as type definitions,
method bodies and inter-module references whereas in un-
managed execution environments such facilities are not as
well-defined.

3.2 Challenges of Runtime Adaptation via
the Execution Environment

There are a number of properties of execution environ-
ments that make them attractive for effecting adaptations on
running systems. They represent the lowest level (short of
the hardware) at which changes could be made to a running
program. Some may expose (reasonably standardized) fa-
cilities (e.g. profiling APIs [24, 26]) that allow the state of
the program to be queried and manipulated. Further, other
facilities (e.g. metadata APIs [23]) may support the discov-
ery, inspection and manipulation of program elements e.g.
type definitions and structures. Finally, there may be mech-
anisms which can be employed to alter to the execution of
the running system.

However, the low-level nature of execution environments
also makes effecting adaptations a risky (and potentially ar-
duous) exercise. Injecting and executing adaptations must
not corrupt the execution environment nor the system being
adapted. The execution environment’s rules for what con-
stitutes a “valid” program must be respected while guaran-
teeing consistency-preserving adaptations in the target soft-
ware system. Causing a crash in the execution environment
typically has the undesirable side-effect of crashing the tar-
get application and any other applications being hosted.

3The JVM and CLR also differ considerably even though they areboth
managed execution environments.

At the level of the execution environment the
programming-model used to specify adaptations may be
quite different from the one used to implement the origi-
nal system. For example, to effect changes via an execution
environment, those changes may have to be specified us-
ing assembly instructions (moves and jump statements), or
bytecode instructions where applicable, rather than higher
level language constructs. This disconnect may limit the
kinds of adaptations which can be performed and/or impact
the mechanism used to inject adaptations.

4 Adapting Managed Applications

Kheiron/JVM leverages facilities exposed by Sun Mi-
crosystems’ v1.5 implementation of the JVM, the Java
HotspotVM, to dynamically attach/detach an engine capa-
ble of performing adaptations. Examples of adaptations in-
clude: adding instrumentation and performing consistency
checks to improve problem detection and diagnosis, per-
forming reconfigurations such as component replacements
or component swaps, and performing repairs (where possi-
ble) to a target Java application while it executes.

4.1 Java HotspotVM Execution Model

The unit of execution (sometimes referred to as a mod-
ule) in the JVM is theclassfile. Classfiles contain both the
metadata and bytecode of a Java application. Two major
components of the Java HotspotVM interact with the meta-
data and bytecode contained in the classfile during execu-
tion, theclassloaderand theglobal native-code optimizer.

The classloader reads the classfile metadata and cre-
ates an in-memory representation and layout of the vari-
ous classes, members and methods on demand as each class
is referenced. The global native-code optimizer uses the
results of the classloader and compiles the bytecode for a
method into native assembly for the target platform.

The Java HotspotVM first runs the program using an
interpreter, while analyzing the code to detect the critical
hot spots in the program. Based on the statistics it gath-
ers, it then focuses the attention of the global native-code
optimizer on the hotspots to perform optimizations includ-
ing JIT-compilation and method inlining [25]. Compiled
methods remain cached in memory, and subsequent method
calls jump directly into the native (compiled) version of the
method.

The v1.5 implementation of the Java HotspotVM intro-
duces a new API for inspecting and controlling the execu-
tion of Java applications – the Java Virtual Machine Tool
Interface (JVMTI) [26]. JVMTI replaces both the Java Vir-
tual Machine Profiler Interface (JVMPI) and the Java Vir-
tual Machine Debug Interface (JVMDI) available in older
releases. The JVMTI is a two-way interface: clients of the

JVMTI, often calledagents, can receive notifications of ex-
ecution events in addition to being able to query and control
the application via functions either in response to events or
independent of events. JVMTI notification events include
(but are not limited to): classfile loading, class loading,
method entry/exit.

The Java HotspotVM does not have a built in API for
manipulating type definitions. As a result, to perform oper-
ations such as reading class and method attributes, parsing
method descriptors, defining new methods for types, emit-
ting/rewriting the bytecode for method implementations,
creating new type references and defining new strings we
were required to roll our own APIs based on information
provided in the Java Virtual Machine Specification [22].

4.2 Kheiron/JVM Operation

Kheiron/JVM is implemented as a single dynamic linked
library (DLL), which includes a JVMTI agent. It consists of
2658 lines of C++ code and is divided into four main com-
ponents. TheExecution Monitor receives classfile load,
class load and class prepare events from the JVM. The
Metadata Helper wraps our metadata import and interface,
which is used to parse and read the classfile format.Inter-
nal book-keeping structuresstore the results of metadata
resolutions. TheBytecode and Metadata Transformer
wraps our metadata emit interface to write new metadata,
e.g., adding new methods to a type, adding references to
other classes and methods. It also generates, inserts and
replaces bytecode in existing methods as directed by the
Execution Monitor. Bytecode changes are committed us-
ing the RedefineClasses function exposed by the JVMTI.
Active method invocations continue to use the old imple-
mentation of their method body while new invocations use
the latest version.

Kheiron/JVM performs operations on type definitions,
object instances and methods at various stages in the execu-
tion cycle to make them capable of interacting with an adap-
tation engine. In particular, to enable an adaptation engine
to interact with a class instance, Kheiron/JVM augments the
type definition to add the necessary “hooks”. Augmenting
the type definition is a two-step operation.

Step 1 occurs at classfile load time, signaled by the
ClassFileLoadHookJVMTI callback that precedes it. At
this point the VM has obtained the classfile data but has not
yet constructed the in-memory representation of the class.
Kheiron/JVM adds what we callshadow methodsfor each
of the original public and/or private methods. A shadow
method shares most of the properties – including a subset
of the attributes and the method descriptor – of the corre-
sponding original method. However, a shadow method gets
a unique name. Figure 1, transition A to B, shows an ex-
ample of adding a shadow methodSampleMethodfor the

original methodSampleMethod.
Extending the metadata of a type by adding new meth-

ods must be done before the type definition is installed in
the JVM. Once a type definition is installed, the JVM will
reject the addition or removal of methods. Attempts to call
RedefineClasses will fail if new methods or fields are added.
Similarly, changing method signatures, method modifiers or
inheritance relationships is also not allowed.

SampleMethod

Bytecode
Method

body

SampleMethod

Bytecode
Method
body

_SampleMethod SampleMethod

New
Bytecode
Method
Body

Call
_Sample
Method

_SampleMethod

Bytecode
Method

body

A B C

Prepare
Shadow

Create
Shadow

Figure 1. Preparing and Creating a Shadow Method

Step 2 of type augmentation occurs immediately af-
ter the shadow method has been added, while still in the
ClassFileLoadHook JVMTI callback. Kheiron/JVM uses
bytecode-rewriting techniques to convert the implementa-
tion of the original method into a thinwrapperthat calls the
shadow method, as shown in Figure 1, transition B to C.

SampleMethod(args)
<room for prolog>
push args
call _SampleMethod(args)
<room for epilog>
return value/void

Figure 2. Conceptual Diagram of a Wrapper

Kheiron/JVM’s wrappers and shadow methods facilitate
the adaptation of class instances. In particular, the regular
structure and single return statement of the wrapper method,
see Figure 2, enables Kheiron/JVM to easily inject adapta-
tion instructions into the wrapper as prologues and/or epi-
logues to shadow method calls.

To add a prologue to a method new bytecode instructions
must prefix the existing bytecode instructions. The level
of difficulty is the same whether we perform the insertion
in the wrapper or the original method. Adding epilogues,
however, presents more challenges. Intuitively, we want to
insert instructions before control leaves a method. In the
simple case, a method has a single return statement and the
epilogue can be inserted right before that point. However,
for methods with multiple return statements or exception
handling routines, finding every possible return point can
be an arduous task [27]. Using wrappers thus delivers a

cleaner approach since we can ignore all of the complexity
in the original method.

To initiate an adaptation, Kheiron/JVM augments the
wrapper to insert a jump into an adaptation engine at the
control point(s)before and/or after a shadow method call.
Effecting the jump into the adaptation engine is a three-
step process.Step 1: Extend the metadata of the class-
file currently executing in the JVM such that a reference
to the classfile containing the adaptation engine is added
using our IMetaDataEmit::DefineTypeRef and IMeta-
DataEmit::DefineNameAndTypeRef methods. Step 2:
Add references to the subset of the adaptation engine’s
methods that we wish to insert calls to, usingIMeta-
DataEmit::DefineMethodRef. Step 3: Augment the byte-
code and metadata of the wrapper function to insert byte-
code instructions to transfer control to the adaptation en-
gine before and/or after the existing bytecode that calls the
shadow method. The adaptation engine can then perform
any number of operations, such as inserting and removing
instrumentation, caching class instances, performing con-
sistency checks over class instances and components, or
reconfigurations and diagnostics of components. To per-
sist the bytecode changes made to the method bodies of the
wrappers, the Execution Monitor uses the RedefineClasses
method of the JVMTI.

4.3 Preliminary Results

We are able to show, that like our other framework for fa-
cilitating adaptations in a managed execution environment,
Kheiron/CLR, Kheiron/JVM imposes only a modest perfor-
mance impact on a target system when no adaptations, re-
pairs or reconfigurations are active. We have evaluated the
performance of our prototype by quantifying the overheads
on program execution using two separate benchmarks.

The experiments were run on a single Pentium III Mo-
bile Processor, 1.2 GHz with 1 GB RAM. The platform was
Windows XP SP2 running the Java HotspotVM v1.5 update
4. In our evaluation we used the Java benchmarks SciMark
v2.04 and Linpack5.

SciMark is a benchmark for scientific and numer-
ical computing. It includes five computation kernels:
Fast Fourier Transform (FFT), Jacobi Successive Over-
relaxation (SOR), Monte Carlo integration (Monte Carlo),
Sparse matrix multiply (Sparse MatMult) and dense LU ma-
trix factorization (LU).Linpack is a benchmark that uses
routines for solving common problems in numerical linear
algebra including linear systems of equations, eigenvalues
and eigenvectors, linear least squares and singular value de-
composition. In our tests we used a problem size of 1000.

4http://math.nist.gov/scimark2/
5http://www.shudo.net/jit/perf/Linpack.java

Running an application under the JVMTI profiler im-
poses some overhead on the application. Also, the use of
shadow methods and wrappers converts one method call
into two. Figure 3 shows the runtime overhead for running
the benchmarks with and without profiling enabled. We per-
formed five test runs for SciMark and Linpack each with
and without profiling enabled. Our Kheiron/JVM DLL pro-
filer implementation was compiled as an optimized release
build. For each benchmark, the bar on the left shows the
performance normalized to one, of the benchmark running
without profiling enabled. The bar on the right shows the
normalized performance with our profiler enabled.

Our measurements show that our profiler contributes
∼2% runtime overhead when no adaptations are active,
which we consider negligible. Note that we do not ask the
Java HotspotVM to notify us on method entry/exit events
since this can result in a slow down in some cases in ex-
cess of 5X. If adaptations were actually being performed
then we expect the overheads measured to depend on the
specific adaptations being performed.

Performance comparison - normalized to w/o profiler - no
repair active

98.60% 98.63%

0.8

0.85

0.9

0.95

1

1.05

1.1

SciMark Linpack

Benchmarks

P
e
rf

o
rm

a
n

c
e
 n

o
rm

a
li
ze

d

to
 w

/o
 p

ro
fi

le
r

without profiler

with profiler

Figure 3. Overheads when no repair active

By implementing Kheiron/JVM we are able to show that
our conceptual approach of leveraging facilities exposed by
the execution environment, specifically profiling and exe-
cution control services, and combining these facilities with
metadata APIs that respect the verification rules for types,
their metadata and their method implementations (byte-
code) is a sufficiently low-overhead approach for adapting
running programs in contemporary managed execution en-
vironments.

5 Adapting Unmanaged Applications

Effecting adaptations in unmanaged applications is
markedly different from effecting adaptations in their man-
aged counterparts, since they lack many of the character-
istics and facilities that make runtime adaptation qualita-
tively easier, in comparison, in managed execution environ-
ments. Unmanaged execution environments store/have ac-

cess to limited metadata, no built-in facilities for execution
tracing, and less structured rules on well-formed programs.

In this section we focus on using Kheiron/C to facili-
tate adaptations in running compiled C programs, built us-
ing standard compiler toolkits likegccandg++ , packaged
as Executable and Linking Format (ELF) [37] object files,
on the Linux platform.

5.1 Native Execution Model

One unit of execution in the Linux operating system is
the ELF executable. ELF is the specification of anobject
file format. Object files are binary representations of pro-
grams intended to execute directly on a processor as op-
posed to being run in an implementation of an abstract ma-
chine such as the JVM or CLR. The ELF format provides
parallel views of a file’s contents that reflects the differing
needs of program linking and program execution.

Program loading is the procedure by which the operat-
ing system creates or augments a process image. A pro-
cess image has segments that hold its text (instructions for
the processor), data and stack. On the Linux platform the
loader/linker maps ELF sections into memory as segments,
resolves symbolic references, runs some initialization code
(found in the.init section) and then transfers control to the
mainroutine in the.textsegment.

One approach to execution monitoring in an unmanaged
execution environment is to build binaries in such a way that
they emit profiler data. Special flags ,e.g. -pg, are passed
to the gcc compiler used to generate the binary. The exe-
cutable, when run, will also write out a file containing the
times spent in each function executed. Since a compile-
time/link-time flag is used to create an executable that has
logic built in to write out profiling information, it is not pos-
sible to augment the data collected without rebuilding the
application. Further, selectively profiling portions of the bi-
nary is not supported.

To gain control of a running unmanaged application on
the Linux operating system, tools use built-in facilities such
asptraceand the/proc file system. ptrace is a system call
that allows one process to attach to a running program to
monitor or control its execution and examine and modify its
address space. Several monitored events can be associated
with a traced program including; the end of execution of
a single assembly language instruction, entering/exitinga
system call, and receiving a signal. ptrace is primarily used
to implement breakpoint debuggers. Traced processes be-
have normally until a signal is caught – at which point the
traced process is suspended and the tracing process notified
[6]. The /proc filesystem is a virtual filesystem created by
the kernel in memory that contains information about the
system and the current processes in their various stages of
execution.

With respect to metadata, ELF binaries support various
processors with 8-bit bytes and 32-bit architectures. Com-
plex structures, etc. are represented as compositions of
32-bit, 16-bit and 8-bit “types”. The binary format also
uses special sections to hold descriptive information about
the program. Two important sections are the.debugand
.symtabsections, where information used for symbolic de-
bugging and the symbol table, respectively, are kept.

The symbol table contains the information needed to lo-
cate and relocate symbolic references and definitions. The
fields of interest in a symbol table entry (Figure 4) are
st name, which holds an index into the object file’s sym-
bol string table where the symbol name is stored,st size,
which contains the data object’s size in bytes andst info,
which specifies the symbol’s type and binding attributes.

Figure 4. ELF Symbol Table Entry [37]

Type information for symbols can be one of:
STT NOTYPE, when the symbol’s type is not defined,
STT OBJECT, when the symbol’s type is associated with
a data object such as variable or array, STTFUNC, for a
function or other executable code, and STTSECTION,
for symbols associated with a section. As we can see, the
metadata available in ELF object files is not as detailed or as
expressive as the metadata found in managed executables.

5.2 Kheiron/C Operation

Our current implementation of Kheiron/C relies on the
Dyninst API [1] (v4.2.1) to interact with target applications
while they execute. Dyninst presents an API for inserting
new code into a running program. The program being modi-
fied is able to continue execution and does not need to be re-
compiled or relinked. Uses for Dyninst include, but are not
limited to, runtime code-patching and performance steering
in large/long running applications.

Dyninst employs a number of abstractions to shield
clients from the details of the runtime assembly language
insertion that takes place behind the scenes. The main
abstractions arepoints and snippets. A point is a lo-
cation in a program where instrumentation can be in-
serted, whereas a snippet is a representation of the exe-
cutable code to be inserted. Examples of snippets include
BPatch funcCallExpr , which represents a function call,
andBPatch variableExpr , which represents a variable or
area of memory in a thread’s address space.

To use the Dyninst terminology, Kheiron/C is imple-
mented as amutator(Figure 5), which uses the Dyninst API
to attach to, and modify a running program. On the Linux
platform, where we conducted our experiments, Dyninst re-
lies on ptrace and the /proc filesystem facilities of the oper-
ating system to interact with running programs.

Kheiron/C

DyninstAPI

DyninstCode

ptrace/procfs

void foo(intx, inty)
{

intz = 0;
}

Snippets

C/C++
Runtime
Library

Points

ApplicationMutator

Figure 5. Kheiron/C

Kheiron/C uses the Dyninst API to search for global or
local variables/data structures (in the scope of the insertion
point) in the target program’s address space, read and write
values to existing variables, create new variables, load new
shared libraries into the address space of the target pro-
gram, and inject function calls to routines in loaded shared
libraries as prologues/epilogues (at the points shown in Fig-
ure 5) for existing function calls in the target application.
As an example, Kheiron/C could search for globally visible
data structures e.g. the head of a linked list of abstract data
types, and insert periodic checks of the list’s consistency
by injecting new function calls passing the linked-list head
variable as a parameter.

To initiate an adaptation Kheiron/C attaches to a running
application (or spawns a new application given the com-
mand line to use). The process of attaching causes the
thread of the target application to be suspended. It then
uses the Dyninst API to find the existing functions to in-
strument (each function abstraction has an associated call-
before instrumentation point and a call-after instrumenta-
tion point). The target application needs to be built with
symbol information for locating functions and variables to
work. If necessary, Kheiron/C locates any “interesting”
global structures or local variables in the scope of the in-
tended instrumentation points. It then loads any external li-
brary/libraries that contain the desired adaptation logicand
uses the Dyninst API to find the functions in the adaptation
libraries for which calls will be injected in the target ap-
plication. Next, Kheiron/C constructs function call expres-
sions (including passing any variables) and inserts them at
the instrumentation points. Finally, Kheiron/C allows the
target application to continue its execution.

5.3 Preliminary Results

We carry out a simple experiment to measure the perfor-
mance impact of Kheiron/C on a target system. Using the

C version of the SciMark v2.0 benchmark we compare the
time taken to execute the un-instrumented program, to the
time taken to execute the instrumented program – we in-
strumented the SORexecute and SORnum flops functions
such that a call to a function (AdaptMe) in a custom shared
library is inserted. The AdaptMe function is passed an in-
teger indicating the instrumented function that was called.
Our experiment was run on a single Pentium 4 Processor,
2.4 GHz with 1 GB RAM. The platform was Suse Linux 9.2
running a 2.6.8-24.18 kernel and using Dyninst v4.2.1. All
source files used in the experiment (including the Dyninst
v4.2.1 source tree) were compiled using gcc v3.3.4 and
glibc v2.3.3.

Performance comparison SciMark - normalized to
w/o Dyninst - simple jump into adaptation library

99
.4
9%

99
.9
5%

99
.0
1%

99
.2
6%

99
.3
0%

0.8

0.85

0.9

0.95

1

1.05

1.1

1 2 3 4 5

Run#

P
e

rf
o

rm
a

n
c

e
 n

o
rm

a
li

z
e

d

to
 w

/o
 D

y
n

in
s

t

Normalized w/o Dyninst

Normalized w/Dyninst

Figure 6. Overheads Simple Instrumentation

As shown in Figure 6 the overhead of the inserted func-
tion call is negligible,∼1%. This is expected since the x86
generated behind the scenes effects a simple jump into the
adaptation library followed by a return before executing the
bodies of SORexecute and SORnum flops. We expect that
the overhead on overall program execution would depend
largely on the operations performed while inside the adap-
tation library. Further, the time the SciMark process spends
suspended while Kheiron/C performs the instrumentation is
sub-second,∼684 msecs± 7.0686.

5.4 Injecting Selective Emulation

To enable applications to detect low-level faults and re-
cover at the function level or, to enable portions of an ap-
plication to be run in a computational sandbox, we describe
an approach that allows portions of an executable to be run
under the STEM x86 emulator. We use Kheiron/C to dy-
namically load the emulator into the target process’ address
space and emulate individual functions. STEM (Selective
Transactional EMulation) is an instruction-level emulator –
developed by Locasto et al. [34] – that can be selectively
invoked for arbitrary segments of code. The emulator can
be used to monitor applications for specific types of fail-
ure prior to executing an instruction, to undo any mem-

ory changes made by the function inside which the fault
occurred (by having the emulator track memory modifica-
tions) and, simulate an error return from the function (error
virtualization)[34].

The original implementation of STEM works at the
source-code level i.e. a programmer must inject the nec-
essary STEM “statements” into the portions of the appli-
cation’s source code expected to run under the emulator.
To inject STEM into a running compiled C application, we
need to make a few changes to STEM and Dyninst. The
change to STEM is purely cosmetic: The original version of
STEM is deployed as an GNU AR archive of the necessary
object files; however, since the final binary does not contain
an ELF header – needed for executables and shared object
(dynamically loadable) files – we need to change the way
STEM is built by using gcc with the -shared switch at the
final link step. Once the STEM emulator is built as a true
shared object, it can then be dynamically loaded into the
address space of a target program using the Dyninst API.

The changes to Dyninst to support STEM are a bit more
involved. Using the Dyninst API, Kheiron/C can inject
calls to theemulate beginandemulate end function calls,
which must surround the code to be run in the emulator.
However,emulate init (which must precede the call to em-
ulatebegin) andemulate term (which must come immedi-
ately after the call to emulateend) are macros, which save
the CPU state (registers) and restore or commit the emula-
tor registers to the CPU registers respectively. These macros
cannot be injected by Dyninst since they are intended to be
expanded inline by the C/C++ preprocessor before compi-
lation begins. In the original STEM implementation, these
macros expand into inline assembly, which moves the CPU
(x86) registers (eax, ebx, ecx, edx, esi, edi, ebp, esp, eflags)
and segment registers (cs,ds,es,fs,gs,ss) into/from STEM
data structures. STEM needs to store the contents of these
registers to record the previous state of the machine and to
calculate the address of the next instruction to fetch once it
is loaded.

To load STEM dynamically we need to support its regis-
ter save/restore process. To insert STEM Kheiron/C creates
an area of memory in the target program’s address space,
storage area, large enough to hold the 9 general purpose
(GP) x86 registers and the 6 segment registers. It uses the
Dyninst API to find the functions to be run under the emu-
lator and passes the address of storage area into Dyninst via
a field added to the BPatchpoint class, which is the con-
crete implementation of Dyninst’s point abstraction. When
Dyninst sets up thetrampoline6 used to inject x86 assem-
bly into running programs we cause it to also save the GP
registers and segment registers at offsets to the storage area.
Kheiron/C loads the STEM emulator shared library and a

6A trampoline is a small piece of code constructed on the fly on the
stack.

custom library (dynamically linked to the STEM shared li-
brary) that has a function (RegisterSave). RegisterSave is
passed the address of the storage area and copies data over
from the storage area into STEM registers – so that a sub-
sequent call to emulatebegin will work. Next it injects the
call to the RegisterSave function passing the address of the
storage area. Kheiron/C then uses Dyninst API to find and
inject calls to the emulatebegin and emulateend functions.
Finally, Kheiron/C injects a custom snippet – a class inherit-
ing from the BPatchsnippet class, which is the concrete im-
plementation of Dyninst’s snippet abstraction – to facilitate
the restore/commit of STEM registers to the CPU registers
and then allows the target program to continue.

At the end of this process, the instrumented function,
when invoked, will cause the STEM emulator to be loaded
and initialized with CPU and segment register values. Af-
ter the initialization, the injected call to emulatebegin will
cause STEM to being its instruction fetch-decode-execute
loop thus running the function under the emulator.

6 Related Work

Our Kheiron prototypes are concerned with facilitating
very fine-grained adaptations in existing/legacy systems,
whereas systems such as KX [11] and Rainbow [5] are
concerned with coarser-grained adaptations. However, the
Kheiron prototypes could be used as low-level mechanisms
orchestrated/directed by these larger frameworks.

One popular approach to performing fine-grained adap-
tations in managed applications is to use Aspect Oriented
Programming (AOP). AOP is an approach to designing
software that allows developers to modularize cross-cutting
concerns [12] that manifest themselves as non-functional
system requirements. In the context of self-managing sys-
tems AOP is an approach to designing the system such that
the non-functional requirement of having adaptation mech-
anisms available is cleanly separated from the logic that
meets the system’s functional requirements. An AOP en-
gine is still necessary to realize the final system. Unlike
Kheiron, which can facilitate adaptations in existing sys-
tems at the execution environment-level, the AOP approach
is a design-time approach, mainly relevant for new systems.

AOP enginesweavetogether the code that meets the
functional requirements of the system with the aspects that
encapsulate the non-functional system requirements. There
are three kinds of AOP engines: those that perform weaving
at compile time (static weaving) e.g. AspectJ [10], Aspect
C# [16], those that perform weaving after compile time but
before load time, e.g. Weave .NET [7], which pre-processes
managed executables, operating directly on bytecode and
metadata and those that perform weaving at runtime (dy-
namic weaving) using facilities of the execution environ-
ment, e.g. A dynamic AOP-Engine for .NET [9] and CLAW

[19]. Kheiron/JVM is similar to the dynamic weaving AOP
engines only in its use of the facilities of execution environ-
ment to effect adaptations in managed applications while
they run.

Adaptation concepts such as Micro-Reboots [3] and
adaptive systems such as the K42 operating system [2] re-
quire upfront design-time effort to build in adaptation mech-
anisms. Our Kheiron implementations do not require spe-
cial designed-in hooks, but they can take advantage of them
if they exist. In the absence of designed-in hooks, our Khe-
iron implementations could refresh components/data struc-
tures or restart components and sub-systems, provided that
the structure/architecture of the system is amenable to it,
i.e., reasonably well-defined APIs exist.

Georgia Tech’s ‘service morphing’ [29] involves
compiler-based techniques and operating system kernel
modifications for generating and deploying special code
modules, both to perform adaptation and to be selected
amongst during dynamic reconfigurations. A service that
supports service morphing is actually comprised of multi-
ple code modules, potentially spread across multiple ma-
chines. The assumption here is that the information flows
and the services applied to them are well specified and
known at runtime. Changes/adaptations take advantage of
meta-information about typed information flows, informa-
tion items, services and code modules. In contrast, Kheiron
operates entirely at runtime rather than compile time. Fur-
ther, Kheiron does not require a modified execution envi-
ronment, it uses existing facilities and characteristics of the
execution environment whereas service morphing makes
changes to a component of the unmanaged execution en-
vironment – the operating system.

Trap/J [31], Trap.NET [30] produce adapt-ready pro-
grams (statically) via a two-step process. An existing pro-
gram (compiled bytecode) is augmented with generic inter-
ceptors called “hooks” in its execution path, wrapper classes
and meta-level classes. These are then used by a weaver
to produce an adapt-ready set of bytecode modules. Khe-
iron/JVM, operates entirely at runtime and could use func-
tion call replacement (or delegation) to forward invocations
to specially produced adapt-ready implementations via run-
time bytecode re-writing.

For performing fine-grained adaptations on unmanaged
applications, a number of toolkits are available, however
many of them, including EEL [20] and ATOM [35], oper-
ate post-link time but before the application begins to run.
As a result, they cannot interact with systems in execu-
tion and the changes they make cannot be modified with-
out rebuilding/re-processing the object file on disk. Using
Dyninst as the foundation under Kheiron/C we are able to
interact with running programs – provided they have been
built to include symbol information.

Our Kheiron implementations specifically focus on facil-

itating fine-grained adaptations in applications rather than
in the operating system itself. KernInst [36] enables a user
to dynamically instrument an already-running unmodified
Solaris kernel in a fine-grained manner. KernInst can be
seen as implementing some autonomic functionality, i.e.,
kernel performance measurement and consequent runtime
optimization, while applications continue to run. DTrace
[4] dynamically inserts instrumentation code into a run-
ning Solaris kernel by implementing a simple virtual ma-
chine in kernel space that interprets bytecode generated by
a compiler for the ‘D’ language, a variant of C specif-
ically for writing instrumentation code. TOSKANA [8]
takes an aspect-oriented approach to deploying before, after
and around advice for in-kernel functions into the NetBSD
kernel. They describe some examples of self-configuration
(removal of physical devices while in use), self-healing
(adding new swap files when virtual memory is exhausted),
self-optimization (switching free block count to occur when
the free block bitmap is updated rather than read), and self-
protection (dynamically adding access control semantics as-
sociated with new authentication devices).

7 Conclusions

In this paper we describe the retro-fitting of fine-grained
adaptation mechanisms onto existing/legacy systems by
leveraging the facilities and characteristics of unmodified
execution environments. We describe two classes of ex-
ecution environments – managed and unmanaged – and
compare the performance overheads of adaptations and the
techniques used to effect adaptations in both contexts. We
demonstrate the feasibility of performing adaptations using
Kheiron/C and we describe a sophisticated adaptation, in-
jecting the selective emulation of functions into compiled
C applications. Given that few legacy systems are written
in managed languages (e.g. Java, C# etc.) whereas a sub-
stantial number of systems are written in C/C++, our tech-
niques and approaches for effecting the adaptation of native
systems may prove useful for retro-fitting new functionality
onto these systems.

8 Acknowledgments

The Programming Systems Laboratory is funded in part by Na-
tional Science Foundation grants CNS-0426623, CCR-0203876 and EIA-
0202063. We would also like to thank Matthew Legendre and Drew Bernat
of the Dyninst team for their assistance as we used and modified Dyninst.
We thank Michael Locasto and Stelios Sidiroglou-Douskos for their assis-
tance as we used STEM.

References

[1] B. Buck and J. K. Hollingsworth. An API for Runtime Code
Patching. The International Journal of High Performance

Computing Applications, 14(4):317–329, Winter 2000.
[2] C. Soules et. al. System Support for Online Reconfiguration.

In USENIX Annual Technical Conference., 2003.
[3] G. Candea, J. Cutler, and A. Fox. Improving Availabilitywith

Recursive Micro-Reboots: A Soft-State Case Study. InDe-
pendable systems and networks - performance and depend-
ability symposium (DNS-PDS), 2002.

[4] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
Instrumentation of Production Systems. InUSENIX Annual
Technical Conference, pages 15–28, 2004.

[5] S.-W. Cheng, A.-C. Huang, D. Garlan, B. R. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based Self-Adaptation
with Reusable Infrastructure.IEEE Computer, 37(10):46–54,
October 2004.

[6] Daniel P. Bovet and Marco Cesati.Understanding the Linux
Kernel 2nd Edition. O’Reilly, 2002.

[7] Donal Lafferty et al. Language Independent Aspect-Oriented
Programming. In18th ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages and Applica-
tions, October 2003.

[8] M. Engel and B. Freisleben. Supporting Autonomic Com-
puting Functionality via Dynamic Operating System Kernel
Aspects. In4th International Conference on Aspect-Oriented
Software Development, pages 51–62, 2005.

[9] A. Frei, P. Grawehr, and G. Alonso. A Dynamic AOP-Engine
for .NET. Tech Rep. 445, Dept. of Comp Sci. ETH Zurich,
2004.

[10] G. Kiczales et al. An Overview of AspectJ. InEuropean
Conference on Object-Object Programming, June 2001.

[11] Gail Kaiser et. al. Kinesthetics eXtreme: An External In-
frastructure for Monitoring Distributed Legacy Systems. In
The Autonomic Computing Workshop 5th Workshop on Ac-
tive Middleware Services (AMS), June 2003.

[12] Gregor Kiczales et. al. Aspect-Oriented Programming.In
Proceedings European Conference on Object-Oriented Pro-
gramming, volume LNCS 1241. Springer-Verlag, 1997.

[13] R. Griffith and G. Kaiser. Adding Self-healing Capabilities
to the Common Language Runtime. Technical Report CUCS-
005-05, Columbia University, 2005.

[14] R. Griffith and G. Kaiser. Manipulating Managed Execu-
tion Runtimes to Support Self-Healing Systems. InWorkshop
on Design and Evolution of Autonomic Application Software,
May 2005.

[15] R. Griffith, G. Valetto, and G. Kaiser. Effecting Runtime
Reconfiguration in Managed Execution Environments. In
M. Parishar and S. Hariri, editors,Autonomic Computing:
Concepts, Infrastructure, and Applications,. CRC, 2006.

[16] Howard Kim. AspectC#: An AOSD implementation for C#.
Technical Report TCD-CS-2002-55, Department of Com-
puter Science Trinity College, 2002.

[17] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing .Computer magazine, January 2003.

[18] P. Koopman. Elements of the Self-Healing Problem Space.
In ICSE Workshop on Architecting Dependable Systems,
2003.

[19] J. Lam. CLAW: Cross-Language Load-Time Aspect Weav-
ing on Microsoft’s CLR. Demonstration at AOSD 2002.

[20] J. R. Larus and E. Schnarr. EEL: machine-independent exe-
cutable editing. InACM SIGPLAN 1995 conference on Pro-
gramming language design and implementation, pages 291–
300, 1995.

[21] S. Lidin. Inside Microsoft .NET IL Assembler. Microsoft
Press, 2002.

[22] T. Lindholm and F. Yellin. The Java Vir-
tual Machine Specification Second Edition.
http://java.sun.com/docs/books/vmspec/2nd-
edition/html/VMSpecTOC.doc.html, 1999.

[23] Microsoft. Common Language Runtime Metadata Unman-
aged API, 2002.

[24] Microsoft. Common Language Runtime Profiling, 2002.
[25] S. Microsystems. The Java Hotspot Virtual Machine v1.4.1.

http://java.sun.com/products/hotspot/docs/whitepaper/
JavaHotspotv1.4.1/JavaHSpot WP v1.4.11002 4.html,
2002.

[26] S. Microsystems. The JVM Tool Interface Version 1.0.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html,
2004.

[27] A. Mikunov. Rewrite MSIL Code on
the Fly with the .NET Framework Profiling
API. http://msdn.microsoft.com/msdnmag/ is-
sues/03/09/NETProfilingAPI/, 2003.

[28] A. V. Mirgorodskiy and B. P. Miller. Autonomous Analy-
sis of Interactive Systems with Self-Propelled Instrumenta-
tion. In 12th Multimedia Computing and Networking, Jan-
uary 2005.

[29] C. Poellabauer, K. Schwan, S. Agarwala, A. Gavrilovska,
G. Eisenhauer, S. Pande, C. Pu, and M. Wolf. Service Mor-
phing: Integrated System- and Application-Level Service
Adaptation in Autonomic Systems. InAutonomic Comput-
ing Workshop, Fifth Annual International Workshop on Ac-
tive Middleware Services, June 2003.

[30] S. M. Sadjadi and P. K. McKinley. Using Transparent Shap-
ing and Web Services to Support Self-Management of Com-
posite Systems. InSecond IEEE International Conference on
Autonomic Computing (ICAC), June 2005.

[31] S. M. Sadjadi, P. K. McKinley, B. H. C. Cheng, and R. E. K.
Stirewalt. TRAP/J: Transparent Generation of Adaptable
Java Programs. InInternational Symposium on Distributed
Objects and Applications, October 2004.

[32] B. Schmerl and D. Garlan. Exploiting Architectural Design
Knowledge to Support Self-Repairing Systems. In14th Inter-
national Conference of Software Engineering and Knowledge
Engineering, 2002.

[33] C. Shelton and P. Koopman. Using Architectural Properties
to Model and Measure System-wide Graceful Degradation.
In Workshop on Architecting Dependable Systems, 2002.

[34] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a Reactive Immune System for Software
Services. InUSENIX Annual Technical Conference, pages
149–161, April 2005.

[35] A. Srivastava and A. Eustace. ATOM: a system for building
customized program analysis tools. InACM SIGPLAN 1994
conference on Programming language design and implemen-
tation, pages 196–205, 1994.

[36] A. Tamches and B. P. Miller. Fine-Grained Dynamic Instru-
mentation of Commodity Operating System Kernels. In3rd
Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 117–130, 1999.

[37] Tool Interface Standards (TIS) Committee. Tool
Interface Standard (TIS) Executable and Link-
ing Format (ELF) Specification Version 1.2.
http://www.x86.org/ftp/manuals/tools/elf.pdf, 1995.

