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Abstract

Machine learning provides techniques to monitor sys-
tem behavior and predict failures from sensor data. How-
ever, such algorithms are “scale resistant” — high com-
putational complexity and not parallelizable. The problem
then becomes identifying and delivering the relevant subset
of the vast amount of sensor data to each monitoring node,
despite the lack of explicit “relevance” labels. The simplest
solution is to deliver only the “closest” data items under
some distance metric.

We demonstrate a better approach using a more sophisti-
cated architecture: a scalable data aggregation and dissem-
ination overlay network uses an influence metric reflecting
the relative influence of one node’s data on another, to ef-
ficiently deliver a mix of raw and aggregated data to the
monitoring components, enabling the application of ma-
chine learning tools on real-world problems. We term our
architecture Level of Detail after an analogous computer
graphics technique.

1. Introduction

Organizations are deploying larger and larger numbers of

networked computational units, with node counts planned

to increase into the millions [1]. Examples include large

utilities (energy, telecoms) installing intelligent controls,

sensors, and home meters, military organizations giving

ruggedized Personal Digital Assistants to every soldier, as

well as the basic inventory of desktop PCs of large organi-

zations such as the U.S. federal government.

Monitoring and control of such massive distributed sys-

tems is a challenge. Ideally, we would like to be able to

proactively identify and prevent problems before they occur.

When we fail to do so, we need to characterize the problem

as rapidly and frequently as possible so we can take action

to maintain availability, reliability, response time, or other

desiderata. However, for these large systems and their ac-

companying flood of noisy sensor data, even confirming the

existence of a problem may be a challenge.

Further, there is the challenge of non-local component

interactions. A switch that would normally open to pro-

tect a minor piece of equipment, or a software component

that needs to reset the system to complete a reconfiguration,

may need to inhibit their default actions to avoid causing

problems for other, distant components. Such a decision to

inhibit needs to be taken quickly, and possibly in the pres-

ence of a partial system failure, which may have changed

the dynamics of the system.

Handling such higher-order behaviors requires a system

model, so that consequences for the wider system can be

evaluated. The inputs to such a model will be streams of

data coming from a variety of sources, from simple sensors

to intelligent components. Given the scale of the systems in

question, and the need to rapidly generate models (to adjust

to large-scale system problems, and also to simply keep up

with organic changes in the system), such models will need

to be automatically generated.

1.1 Machine and Reinforcement Learning

The field of Machine Learning (ML) has, in recent years,

developed algorithms such as Support Vector Machines [4]

and Adaboost [20] which are useful for characterization of

complex system behavior, e.g., classifying a component as

having a high risk of failure or not, given its current en-

vironment, or ranking a set of components according to

their susceptibility to failure. These models can be gen-

erated from the same data streams that are used to evalu-

ate current system state, are designed to generalize well,

even in the presence of noisy or missing data, and have a

sound theoretical basis [23]. Further, Reinforcement Learn-

ing (RL) algorithms can use these models to evaluate hypo-

thetical situations and establish a set of policies for future
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action [12]. Further discussion of RL is outside the scope

of this paper, which will focus on the dissemination of data

to model-generating ML algorithms.

However, these algorithms are themselves compute-

intensive operations, and are difficult to scale to very large

data sets [11, 24]. They are intrinsically iterative, prevent-

ing a parallel distributed solution across our many nodes as

with Adaboost, or have a fundamentally complex algorithm

in their core, as with the quadratic programming problem

within SVMs. This is problematic since we would like to

compute these models and policies as rapidly as possible,

to keep up with the current state of the system.

These scale-resistant algorithms are generally O(n2) or

worse, where n is the number of training examples for

ML. Additionally, direct implementations of some ML al-

gorithms, e.g., Support Vector Machines, will have O(n2)
space complexity as well, although more sophisticated im-

plementations avoid this at the cost of slower operation

[23, 6, 4, 11]. In the case of constructing models for moni-

toring or management of very large distributed systems, we

may have millions of nodes and a frequently-changing dy-

namic system, leading to values of n that are intractable for

these algorithms, regardless of computer power or memory

capacity. Note that simply evaluating an existing model, by

giving it a set of observed or hypothetical values for the in-

dependent variables and obtaining a result (e.g., to make

predictions from new sensor data), may itself be a non-

trivial operation, but is generally of a lower order of com-

plexity than the ML algorithms which actually construct the

models.

Since the computational complexities of these algo-

rithms are too high, one approach to making the problem of

automatic model generation tractable is to reduce the size

of the data set. For instance, while the problem of com-

puting a single global model is difficult to parallelize, we

could instead generate many smaller local models in paral-

lel. We would impose some distance metric on the nodes,

and then ignore any data coming from a source more dis-

tant than some short horizon h∞, ensuring that no node has

more data sources closer than h∞ than it can process within

the desired model generation time. For example, in the case

of monitoring electrical distribution infrastructure, a circuit

breaker might feed its models with data from directly con-

nected cables (at distance 1), from transformers and joints

connected to those (at distance 2), and ignore all data from

anywhere else.

However, this approach makes components blind to any

signals coming from outside their immediate neighborhood.

If our components are to deal intelligently with non-local

effects, they will require information on the state of the sys-

tem as a whole.

1.2. Level of Detail

In order to enable the distributed generation of broadly-

based, locally focused system models, we introduce an

aggregation-dependent approach which we call Level of De-
tail, as it is somewhat analogous to the computer graphics

technique of the same name [5]. This approach is built on

three main ideas: An influence metric describes the impor-

tance of a data source to a particular node, aggregation func-
tions reduce one or more streams to a single stream with a

bounded data rate, while preserving information, and a dis-
semination mechanism moves all data where it needs to go,

despite limited bandwidth in the underlying network. This

paper focuses on the influence metric and aggregation func-

tions, and briefly describes the data dissemination mecha-

nism.

An aggregation function may be something as simple as

returning the min or max value seen each time quantum,

or as complex as fitting a regression curve to the multiple

streams. Aggregations are characterized by their aggres-
siveness, which corresponds with their degree of data re-

duction. An aggregation that reduced a thousand high-speed

data streams to one low-speed stream would be very aggres-

sive, while one that down-sampled a single stream to 80%

of its previous rate would not be considered very aggressive.

In the Level of Detail approach, the data streams deliv-

ered to a particular node are aggregated inversely propor-

tional to their influence. Thus for a given node N, data

streams from nodes with low influence on N will be strongly

aggregated (i.e., subject to a large amount of data reduc-

tion), while data from nodes with high influence will be

lightly aggregated if at all.

We hypothesize that this approach of presenting local

model-generating algorithms with a mixture of data streams

derived from much or all of the full system will give useful

results, close enough to those obtained from actually ana-

lyzing the entire system, but within acceptable time bounds.

Our initial investigations seem to support these hypotheses.

The idea of Level of Detail is illustrated below. Instead

of simply taking all data with influence greater than some

threshold and nothing else, as in Figure 1, we take the most

influential data, along with information that comes from a

much wider span of the system, aggregated more and more

aggressively as it is estimated to be less and less influential

(Figure 2).

This entire framework, consisting of influence metrics,

aggregation functions, and distribution mechanism feeding

limited data streams to scale-resistant modeling algorithms,

enables the introduction of smart components that can take

broader system issues into account when making local de-

cisions.

We present results showing that when the Level of De-

tail technique is applied to actual data sets from the infras-
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Figure 1. A simple approach to reducing
model complexity is to accept all data from
as many nearby nodes as possible, and ig-
nore all other data.

Figure 2. The Level of Detail approach is to
accept all data from a smaller neighborhood,
and use our remaining model capacity on ag-
gregated data from a larger set of nodes.

tructure of a large electricity-distribution utility, not only

can intensive machine learning calculations be made more

tractable via a significant reduction in input size, but in

some cases, results actually showed improvement compared

with learning on all raw data, despite a general computa-

tional learning theory guideline that more training examples

give better results [23].

This paper is organized as follows: Section 2 describes

the design of our solution. Current results in the context of

ongoing joint research between Columbia and Consolidated

Edison Company of New York (ConEdison) are described

in section 3. Section 4 discusses past and current related

work as it relates to this problem. Finally, conclusions and

future work are in section 5.

2. Approach

To achieve a Level-of-Detail architecture we must over-

come two problems:

1. Algorithmic Complexity: The services of interest are

intractable when applied to a full system model. We

will need to make them tractable on a given node, us-

ing a reduced model of the system, while still produc-

ing useful results.

2. Dynamic System: The systems of interest are not

static—nodes are continually being added, failing, and

having their interconnections rearranged. Our solution

must be able to adapt to changes in the system struc-

ture, at a speed comparable to the rate at which signif-

icant changes occur.

The Level of Detail model is based on aggregation oper-
ations, varying aggressiveness of these aggregations, influ-
ence metrics, and a data dissemination mechanism, which

are described further below.

2.1 Aggregation

We define an aggregation as a function that takes one or

more data streams as input and outputs a single stream with

a bounded rate. The worst-case output rate will be less than

or equal to the worst-case sum of the input rates, although

for typical aggregations, as we shall see, the output rate will

be far lower.

Some examples of aggregations under this definition

would be sampling, SQL-style aggregations like MAX or

AVG, or using a bounded buffer and dropping incoming

data after the quota for a time quantum has been reached.

Different learning algorithms may work better with differ-

ent types of aggregation functions.
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For scalability, aggregation functions are required to be

incrementally calculable. This enables distributing the com-

putation of the aggregation, and avoids overwhelming a sin-

gle node with data to aggregate. For example, the maximum

over many readings can be found by repeatedly taking the

maximum over small subsets. Similarly, arithmetic means

can be found by accumulating the sum and count of each

subset, and then dividing at the very last step. The statis-

tical median of a set of data, on the other hand, cannot be

calculated from the results of local operations on subsets, so

it would not be suitable as an aggregation function.

Note that under this definition, aggregations are not nec-

essarily lossy, as this definition considers only the raw data

rate, not the information content. As a trivial example, du-

plicate input streams could be replaced with a single output

stream with no loss of information.

When generating models for use in monitoring and man-

agement, we need to balance the desire for information from

the wider system with an extremely limited data budget.

Aggregations provide the mechanism for simplifying and

shrinking the huge amounts of system-wide data to a size

the ML algorithm can handle.

2.2 Aggressiveness

We characterize the data reduction achieved by a par-

ticular aggregation as its aggressiveness. We indicate ag-

gressiveness with a parameter α ∈ [0, 1] representing the

reduction in data rate. Specifically, the value of α for an ag-

gregation function f operating on input streams s1, . . . , sn

with data rates r1, . . . , rn and producing an output stream

sout with rate rout is

α(f, {si}, sout) =
rout∑n
i=1 ri

Thus a value of α = 0 means that all input data is sim-

ply discarded, while α = 1 means that no aggregation is

occurring.

Stochastic, non-deterministic aggregators may take α as

a parameter, for instance letting a particular data item pass

with probability α, and otherwise dropping it.

For deterministic aggregators, α is inversely proportional

to the amount of input. If our aggregator is taking average

values across its set of input streams each time quantum,

giving it five input streams is less aggressive than giving it

twenty input streams, assuming equal output rates.

2.3 Influence

When a particular node is planning to run a scale-

resistant service, e.g., machine learning for failure predic-

tion, the service will require system data from which to con-

struct a model. The node running the service will have a par-

ticular input budget based on how much data the service can

consume while still producing results within a reasonable

time (with respect to the rate of change of the system). We

decide how to spend our input data budget based on a met-

ric we call influence. Influence is a function on node pairs,

Infl(Ns, Nt) → [0, 1], that should be efficient to compute

(or look up), and have a positive correlation with the amount

of impact that data from Ns will have on the outcome of a

computation by the scale-resistant service at our target node

Nt. The output value of this function can be used directly

as a value for α when determining aggregation aggressive-

ness. If Infl(Ns, Nt) = 0.5, then a stochastic aggregator

could drop a randomly selected half of Ns’s data on the way

to Nt.

Influence is how a particular learning algorithm running

on a particular node gives hints to the Level of Detail frame-

work about what data will likely be of greatest utility. Some

algorithms may work with outliers, others with averages,

some will give optimal results with raw, individual data

streams, while others need as wide and balanced a picture

of the whole system as possible. Influence gives the frame-

work guidance on how to allocate that component’s data

budget over the available data streams.

2.4 Influence Classes

While we could calculate all individual pairwise influ-

ence values, we can gain efficiencies by organizing the

world as seen from the perspective of a particular node into

k + 2 influence classes, where I0 is the class of nodes with

the most influence on us, I∞ is the class of nodes with no

influence, and I1, I2, . . . , Ik are classes of nodes with in-

termediate influence. Thus the number of distance pairs

among n nodes drops from O(n2) to O(k2), with k � n.

The notation of I0 for the most influential class and I∞ for

the least is intended to suggest Cartesian “distance” from

the target node, but the concept is more general, e.g., one

could use a pairwise measurement of component similarity

for influence, based on age, manufacturer, size, etc.

When describing computations from the perspective of

a scale-resistant service at a node, we use the notation

Infl(Ns, self) to represent the influence of node Ns’s data

on that service’s computation. Nodes N0 in class I0 are

defined to have Infl(N0, self) = 1, indicating that no

aggregation should be performed on the data from these

nodes. At the other extreme, nodes N∞ in class I∞ have

Infl(N∞, self) = 0, indicating that data from these nodes

should simply be discarded.

Each influence class may use different aggregation func-

tions, and a given influence class may be flat, with all nodes

in the class having the same influence on the target node, or

it may be a gradient, with influence varying among nodes

in the class. For instance, there may be other components

designed to pick up the load if a node fails, which might all
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be in its class I1. Further, there may be a weight associated

with each of these support components, indicating what per-

centage of the load it is expected to cover. We could then

make I1 a gradient class, with the pickup parameter assign-

ing relative influence among members of the class.

In all cases, the invariant holds for all nodes Nx ∈
Ix, Ny ∈ Iy ,

x < y ⇒ Infl(Nx, self) > Infl(Ny, self)

In English, all nodes in class I2, say, will have greater

influence than any node in class I3.

2.5 Data Dissemination Mechanism

The data dissemination mechanism needs to deliver

the appropriately-aggregated data to nodes running scale-

resistant services, once relationships under the influence

metric have been determined. The complexity of calcu-

lating all of the data dissemination paths, the continually

changing system, and the need for individual items of ag-

gregated data to be sent to many clients all indicate that

a publish-subscribe architecture would be most appropri-

ate. In order to support the potentially large numbers of

participants listening or sending to a single source, and po-

tentially high rates of data generation, we will need a data

dissemination architecture more sophisticated than a simple

reflector-based architecture, where a single node is respon-

sible for relaying all messages on a particular channel. A

number of very scalable, adaptable, overlay event systems

have been developed in the last several years, such as Scribe

[19], Bayeux [26], NICE [2], and OMNI [3] which can be

used for this purpose.

However, the data dissemination mechanism also needs

to funnel data from many sources into relatively few aggre-

gation nodes, aggregating it incrementally along the way.

In fact, such a data aggregation network looks like a typical

publish-subscribe network, but inverted, with many sources

leading to a single destination. The Level of Detail ap-

proach requires that the data dissemination system scale as

well for aggregation as it does for dissemination. We re-

fer to the combination of data funneling into an aggregation

node, and then out to many destination nodes as the “hour-

glass architecture,” illustrated in Figure 3.

Although the problems of data aggregation and dissem-

ination are basically symmetric, we are not aware of any

modern overlay publish-subscribe system designed to han-

dle aggregation with the same efficiency as dissemination.

An additional requirement is that subscribers and ag-

gregators need to find publishers in order to receive data.

Again, scalable, robust, distributed indicies are a well-

studied problem, and we are investigating existing Peer-to-

Peer (P2P) systems such as Chord [22], the Content Ad-

Figure 3. Hourglass Architecture

dressable Network (CAN) [16] or the recent work in using

Distributed Hash Tables as SIP resource locators [21] for

this purpose.

Our current work involves off-line simulation of the full

system, so for our current experiments we are able to stati-

cally compute the needed data connections. For the future

live deployment experiments, we are developing a system

that enables automatic configuration of a scalable aggrega-

tion network, as well as handling the more typical dissemi-

nation case.

3. Experimental Results

3.1 Context

Much of this work occurred in the context of joint re-

search between Columbia University and Consolidated Edi-

son Company of New York (ConEdison) to develop facili-

ties for managing the electrical distribution system in the

future. Electrical infrastructure has four main parts:

1. Generation: a prime mover, typically the force of wa-

ter, steam, or hot gasses on a turbine, spins an electro-

magnet, generating large amounts of electrical current

at a generating station.

2. Transmission: the current is sent at very high voltage

(hundreds of thousands of volts) from the generating

station to substations closer to the customers.

3. Primary Distribution: electricity is sent at mid-level

voltage (tens of thousands of volts) from substations to

local transformers, over cables called feeders, usually

10-20 km long, and with a few tens of transformers per
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feeder. Feeders are composed of many feeder sections
connected by joints and splices.

4. Secondary Distribution: sends electricity at normal

household voltages from local transformers to individ-

ual customers

The distribution grid of New York City is organized into

networks, each composed of a substation, its attached pri-

mary feeders, and a secondary grid. The networks are

largely electrically isolated from each other, to limit the cas-

cading of problems.

These components are illustrated below.

Figure 4. The Electrical Distribution Grid

Our work with ConEdison has focused on the feeders

of the primary grid of New York City, as they are system

critical and have a significant failure rate. Thus much of

the daily work of the ConEdison field workforce involves

the monitoring and maintenance of primary feeders, as well

as their speedy repair on failure. Note that the system is

designed as a 2-connected or 3-connected graph, and so a

single feeder failure almost never causes an actual loss of

power to a customer. However, the system is at greater risk

until it is fixed.

3.2 Susceptibility ranking

A continually-updated estimate of the health of each

feeder is therefore an important tool for system manage-

ment and maintenance, so one of our first goals was to see if

machine learning techniques could accurately estimate each

feeder’s relative likelihood of failure, or “susceptibility in-

dex.” This is a ranking problem, as opposed to the more

typical classification problem, but many of the same algo-

rithms can be used. We trained the machine learning algo-

rithms on data sets that use each feeder as one example. The

feeders are described with several hundred attributes, some

of which are derived from static data, such as cable length

and installation date, while others are derived from dynamic

data streams, such as power and voltage measurements. Fi-

nally, the response variable is the number times that feeder

has had unscheduled, spontaneous outages. The predicted

number of future outages is used to rank the feeders.

The machine learning algorithms attempt to create gen-

eralizable models based on this training data, such that if

given new, previously unseen data on a set of feeders, they

will be able to rank them in order of their susceptibility

to failure. For our initial experiments, we chose the well-

known Support Vector Machines (SVMs) algorithm [4],

and a new algorithm called Martingale Boosting (Marti-

boost) [13] specifically developed (by others involved in the

project, not the authors of this paper) for the ConEd suscep-

tibility ranking problem.

3.3 AUC Scoring

In order to evaluate different approaches to the ranking

problem, we need some mechanism to compare the gener-

ated rankings, to determine if one is “better” than another.

We evaluate based on a test set of data, disjoint from our

training set. We put the data from the test set into each

model we would like to compare, and from each we get a

ranking of all feeders, as if each had processed a new set of

sensor readings and was making its predictions about like-

lihood of future failure. We now have each model’s predic-

tions, and we also know what the actual outcomes were in

the test period. If all actual feeder failures in the test period

are at the top of a test ranking, we consider it to be the best

possible ranking. If all are at the bottom, it’s the worst pos-

sible. But given two rankings that seem to have similarly

distributed the failures, we would like to determine if one is

doing a better job than another.

To obtain a single score for ranking comparison, we use

a well-established ML scoring technique, based on a graph

known as a Receiver Operating Characteristic (ROC) curve

[9]. On an ROC graph, the Y-axis is the number of actual

failures. The X-axis is our ranked test data. At each step

along the X-axis, the Y value is the number of actual fail-

ures accounted for up to that point. Thus the curve always

starts at (0,0) (no failures yet), ends in the upper right hand

corner (by the bottom of the ranking, all failures have been

accounted for), and increases monotonically (the number of

accounted-for failures increases as we move down the rank-

ing).

In the best-possible ranking described above, with all

failures at the top of the ranking, the curve would rise

sharply to the maximum value, and then continue hori-

zontally. If our predictions are completely random, we

would expect the actual failures to be uniformly distributed

throughout the ranking, giving a straight diagonal line. A

“good” ranking would have an ROC curve mostly above

the diagonal. In the worst-case scenario, with all failures
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at the bottom of the ranking, the curve would move along

the X-axis (zero failures accounted for) until the last possi-

ble point, then rise sharply to the upper-right corner. These

cases are illustrated in Figure 5 assuming 30 feeders with

five actual outages.
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Figure 5. ROC Chart Comparison of Example
Rankings

Note that if we normalize the area covered by this graph

to one, the area under these four shapes are: nearly one, 0.5,

somewhat greater than 0.5, and nearly zero, respectively.

Thus the Area Under the ROC Curve (AUC) can function

as our scoring metric, with anything above 0.5 indicating

better-than-random performance (and with complex real-

world systems, slightly better than random may be the best

that can be achieved).

3.4 Aggregation by network results

The set of experiments described here were performed

offline on recorded data. The goal of our experiments was to

test the hypothesis that influence-based aggregation of data

would not have a substantially negative effect on the qual-

ity of the Machine Learning results relative to models de-

veloped with full system data, while substantially increas-

ing scalability by enabling parallel evaluation of quickly-

computable small models. ConEdison is primarily inter-

ested in susceptibility rankings for the summer, which is

when the system sees its highest loads. Demand for electric-

ity is much lower in the winter, and feeder failures are much

rarer. The training data included historical data from June

and July 2005, a period during which there were around

300 feeder failures. We compared the AUCs of the gener-

ated rankings based on the count of actual failures in first

three weeks of August 2005. There were about 70 failures

in this period.

We used ConEdison’s existing administrative hierarchy

of networks to define the influence classes, both because

the electrical distribution system had been physically con-

structed around this hierarchy, and because it corresponds

to a planned future broadband-over-powerline sensor data

transmission network.

We tried applying two very simple aggregation func-

tions, averaging and root-mean-square, over the values from

each network, as earlier investigations had shown that the

algorithms seemed to give better results with averages as

opposed to outliers, e.g., min or max. We ran the machine

learning algorithms (both Martiboost and SVMs) indepen-

dently on each network, training them on a two-influence-

class system, with the raw data from that network combined

with aggregated data from other networks. We also trained

a model on the unaggregated, full data set, and looked at

that model’s performance in each network. We compared

the AUC results from per-network training on aggregated

data to the per-network results from training on all (unag-

gregated) data. The results are summarized in Tables 1 and

2 below.

Each row shows the various AUC scores for a particular

network (networks are identified by a number and district,

where district ∈ {B, Q, M, X}, for Brooklyn, Queens,

Manhattan, and the Bronx). Each pair of columns shows

the results for Martiboost and SVMs under a particular data

reduction technique. We can see that the aggregations do

not seem to impair the learning.

We have a number of ideas about why the experimen-

tal results show a possible improvement. One hypothesis

is that some feeders in distant boroughs randomly resemble

feeders in the network being modeled, and are incorrectly

given extra weight in the training, and then prove to be mis-

leading examples. The aggregation process eliminates these

spurious matches, while still giving valid training examples.

The key benefit we were looking for was improved speed

of computation as a consequence of smaller input set size,

about one-twentieth of the full set, and that is what we ob-

served. Running on a 3GHz Pentium4 system with 4GB of

RAM, computing a global model took an average of 118s,

while the localized models never took more than 6s, and

averaged 1.4s on the same machine.

4. Related Work

4.1 Level of Detail in Graphics

As long ago as 1976, J. Clark suggested rendering ob-

jects with varying degrees of detail based on their apparent

size to the viewer, allowing the display of many more ob-

jects than would otherwise be possible [5]. This technique,

known as Level of Detail, has been refined over the years by

computer graphics researchers to support automatic gener-

ation of appropriately simplified models based on distance

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00  © 2006



Table 1. Comparison of Level of Detail ap-
proach to training on full unaggregated data
set using Martingale Boosting

Net Average RMS Unaggr.
1Q 0.738 0.667 0.464

1X 0.818 0.833 0.455

2B 0.467 0.600 0.356

2M 0.491 0.667 0.565

2X 0.571 0.500 0.357

3B 0.545 0.518 0.607

3M 0.179 0.143 0.571

3Q 0.733 0.533 0.067

3X 0.881 1.000 0.524

4B 0.311 0.511 0.583

4M 0.870 0.870 0.478

5B 0.364 0.455 0.318

5M 0.400 0.689 0.289

5Q 0.546 0.554 0.565

5X 0.636 0.400 0.400

6B 0.721 0.721 0.784

6M 0.435 0.391 0.261

6Q 0.464 0.464 0.500

7B 0.909 0.818 0.818

7M 0.491 0.491 0.534

7Q 0.511 0.576 0.630

9B 1.000 1.000 0.889

9Q 0.333 0.556 0.222

10M 0.933 1.000 0.800

11M 0.608 0.765 0.441

13M 0.692 0.296 0.462

16M 0.217 0.217 0.087

18M 0.375 0.250 0.375

19M 1.000 1.000 0.818

20M 0.636 0.750 0.273

24M 0.500 0.409 0.909

26M 0.636 0.636 0.364

27M 0.957 0.761 0.891

28M 0.364 0.455 0.667

34M 0.500 0.500 0.545

Avg 0.583 0.607 0.489
Stdev 0.216 0.203 0.195

from the viewer [10, 14].

4.2 Distributed Monitoring

Numerous distributed monitoring systems have been de-

veloped, some of them supporting some form of aggrega-

tion. The topic is of keen interest to multiple industries,

Table 2. Comparison of Level of Detail ap-
proach to training on full unaggregated data
set using Support Vector Machines

Net Average RMS Unaggr.
1Q 0.492 0.595 0.571

1X 0.773 0.818 0.682

2B 0.467 0.489 0.356

2M 0.509 0.537 0.519

2X 0.393 0.071 0.714

3B 0.476 0.500 0.518

3M 0.179 0.000 0.536

3Q 0.667 0.067 0.667

3X 0.667 0.810 0.571

4B 0.267 0.467 0.289

4M 0.667 0.623 0.652

5B 0.455 0.500 0.545

5M 0.689 0.578 0.733

5Q 0.583 0.596 0.648

5X 0.600 0.300 0.400

6B 0.662 0.725 0.804

6M 0.435 0.565 0.565

6Q 0.464 0.464 0.857

7B 0.727 0.818 1.000

7M 0.497 0.578 0.416

7Q 0.500 0.638 0.449

9B 0.765 0.765 0.824

9Q 0.778 0.889 0.444

10M 1.000 0.933 0.733

11M 0.559 0.804 0.686

13M 0.615 0.731 0.731

16M 0.522 0.783 0.826

18M 0.000 0.429 0.143

19M 0.909 0.909 1.000

20M 0.545 0.273 0.818

24M 0.391 0.727 0.545

26M 0.000 0.364 0.167

27M 0.917 0.729 0.792

28M 0.091 0.091 0.364

34M 0.545 0.545 0.500

Avg 0.553 0.539 0.598
Stdev 0.158 0.240 0.174

including utilities, power, oil and gas, telecom, industrial,

water and public utilities, agriculture and facilities manage-

ment [17]. We mention only a few examples.

Ganglia [15] is a hierarchical distributed monitoring sys-

tem designed for monitoring federations of parallel comput-

ing clusters. Its focus is on extremely low latency and over-

head for basic logging and monitoring, and it is in use at
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hundreds of sites. In contrast, the Level of Detail framework

is oriented towards intelligent data aggregation for the con-

sumption of advanced learning algorithms, at the expense

of higher latency and overhead.

Astrolabe [18] is a distributed information management

system using administratively-defined hierarchical aggrega-

tion to make vast amounts of data tractable. Latency is

higher than with systems using event distribution trees, as

it uses a gossip protocol for data dissemination. Nonethe-

less, it is highly scalable, robust, and secure. SDIMS [25] is

also a distributed information management system inspired

by Astrolabe, but replacing its underlying gossip protocol

data dissemination mechanism with a sophisticated hierar-

chical Distributed Hash Table system. The dissemination

strategy for aggregated information is based on popularity

and the ratio of reads to writes. It might be possible to adapt

either Astrolabe or SDIMS to support Level of Detail’s data

dissemination, replacing their aggregation criteria with our

influence classes.

5. Future Work and Conclusions

5.1 Future Work

A near term goal is to apply the techniques described

here to much larger data sets to better evaluate their scal-

ability. We plan to look at feeders again, but now broken

down into their components. A single feeder may be com-

posed of dozens of distribution transformers and hundreds

of cable sections and connecting joints. Analyzing feeders

at this level will increase the problem size by two orders of

magnitude, giving more insight into scaling issues.

Two important areas for future work are identifying op-

timal aggregation functions for a particular application, and

investigating the relationship between various aggregation

functions and different machine learning algorithms. There

are many other machine learning algorithms beside the two

we used in these experiments, such as the popular AdaBoost

[8] Ideally, we would like the system to autonomically de-

termine the optimal functions, chosen from some predefined

set, and self-configure.

Another interesting area for future research is in the in-

terplay between Level of Detail and the scale-resistant ser-

vices. The system in this paper is designed to bend the data

to the needs of the algorithm, but conceivably there are al-

gorithms that could be made “Level of Detail-Friendly”.

For instance, the machine learning technique of Boost-

ing takes a large number of “weak learners”, classifiers that

do barely better than random, and iteratively combines them

into an effective learning tool. Some recent work has inves-

tigated using similar techniques for combining many pair-

wise rankings (including many contradictory ones) into an

overall ranking, such as the RankBoost algorithm [7].

Aggregations based on a partition of a system cannot be

combined in this way — there’s no overlap to guide the al-

gorithm. However, we could use several different influence

metrics (including random assignment) to induce multiple,

overlapping partitions of a system. Each model trained on

some small portion of the system, as defined by one of the

metrics, would be a weak learner. Conceivably, the result-

ing models could be combined to give an excellent model

of the entire system.

5.2 Conclusion

Advanced machine learning algorithms hold much

promise for automatic model generation for distributed sys-

tem monitoring and management. Bringing these compu-

tationally complex algorithms to bear on large scale sys-

tems will require advanced data aggregation and dissemi-

nation techniques. Using the Level of Detail approach de-

scribed in this paper, it is possible to deliver a relevant,

customized data stream, including information from a wide

portion of the entire system, to nodes running scale-resistant

services. Our preliminary investigation has shown that ma-

chine learning applied to these “locally influential” data sets

gives results comparable to applying the algorithms to the

system as a whole, with an order-of-magnitude speed in-

crease.
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