Automating Content Extraction of HTML Documents

Automating Content Extraction of HTML Documents

Suhit Gupta Gail E. Kaiser Peter Grimm
Columbia University Columbia University Columbia University
Dept. of Comp. Sci. Dept. of Comp. Sci. Dept. of Elec. Eng.

New York, NY 10027, US New York, NY 10027, US New York, NY 10027, US
001-212-939-7184 001-212-939-7000 001-212-939-7000

suhit@cs.columbia.edu kaiser@cs.columbia.edu pmg23@columbia.edu

Michael F. Chiang Justin Starren
Columbia University Columbia University
Depts. of Ophthalmology Depts. of Biomedical

and Biomedical Informatics Informatics and Radiology
New York, NY 10032, US New York, NY 10032, US
001-212-305-9535 001-212-305-3443
chiang@dbmi.columbia.edu starren@dbmi.columbia.edu

Abstract. Web pages often contain clutter (such as unnecessary images and extraneous links) around the
body of an article that distracts a user from actual content. Extraction of “useful and relevant” content
from web pages has many applications, including cell phone and PDA browsing, speech rendering for
the visually impaired, and text summarization. Most approaches to making content more readable
involve changing font size or removing HTML and data components such as images, which takes away
from a webpage’s inherent look and feel. Unlike “Content Reformatting”, which aims to reproduce the
entire webpage in a more convenient form, our solution directly addresses “Content Extraction”. We
have developed a framework that employs an easily extensible set of techniques. It incorporates
advantages of previous work on content extraction. Our key insight is to work with DOM trees, a W3C
specified interface that allows programs to dynamically access document structure, rather than with raw
HTML markup. We have implemented our approach in a publicly available Web proxy to extract
content from HTML web pages. This proxy can be used both centrally, administered for groups of users,
as well as by individuals for personal browsers. We have also, after receiving feedback from users about
the proxy, created a revised version with improved performance and accessibility in mind.

Categories and Subject Descriptors. 1.7.4 [Document and Text Processing]: Electronic Publishing;
H.3.5 [Information Storage and Retrieval]: Online Information Services — Web-based Services

General Terms. Human Factors, Algorithms, Standardization.

Keywords. DOM trees, content extraction, reformatting, HTML documents, accessibility, speech
rendering, text summarization.

Copyright is held by Suhit Gupta, Gail Kaiser, Peter Grimm, Michael Chiang, Justin Starren
2004 Kluwer Academic Publishers. Printed in the Netherlands.

Automating Content Extraction of HTML Documents

1. Introduction

Web pages are often cluttered with distracting features around the body of an article that distract
the user from the actual content they’re interested in. These “features” may include pop-up ads, flashy
banner advertisements, unnecessary images, or links scattered around the screen. Automatic extraction
of useful and relevant content from web pages has many applications, ranging from enabling end users
to accessing the web more easily over constrained devices like Personal Digital Assistants (PDAS) and
cellular phones to providing better access to the Web for the disabled.

Most traditional approaches to removing clutter or making content more readable involve
increasing font size, removing images, disabling JavaScript, etc., or a combination of these methods, all
of which eliminate the webpage’s inherent look-and-feel. Examples include WPAR [18], Webwiper [19]
and JunkBusters [20]. All of these products involve hardcoded techniques for certain common web page
designs as well as fixed “blacklists” of advertisers. This can produce inaccurate results if the software
encounters a layout that it hasn’t been programmed to handle. Another approach has been content
reformatting which reorganizes the data so that it fits on a PDA; however, this does not eliminate clutter
but merely reorganizes it. Opera [21], for example, utilizes their proprietary Small Screen Rendering
technology that reformats web pages to fit inside the screen width. We propose a “Content Extraction”
technique that can remove clutter without destroying webpage layout, making more of a page’s content
viewable at once. These techniques should also work on web pages made up of multiple content bodies,
even if they are separated by the distracting features or with them interspersed within the different
sections of content.

Content extraction is particularly useful for the visually impaired and blind [48]. A common
practice for improving web page accessibility for the visually impaired is to increase font size and
decrease screen resolution; however, this also increases the size of the clutter, reducing effectiveness.
Screen readers for the blind, like Hal Screen Reader by Dolphin Computer Access [46] or Microsoft’s
Narrator [47], don’t usually automatically remove such clutter either and often read out full raw HTML.
Webaim Screen Reader [49] and IBM Homepage Reader [50] do attempt to enhance usability by
pruning out duplicate pieces of information however they tend to be slow and do not give enough
control to the user in directly selecting what a user may be interested in [48]. Therefore, both groups
benefit from extraction, as less material must be read to obtain the desired results.

Natural Language Processing (NLP) and information retrieval (IR) algorithms can also benefit
from content extraction, as they rely on the relevance of content and the reduction of “standard word
error rate” to produce accurate results [13], where the error rate is number of words incorrectly
processed from the original format. Content extraction allows the algorithms to process only the
extracted content as input as opposed to cluttered data coming directly from the web [14]. Currently,
most NLP-based algorithms require writing specialized extractors for each web domain [14][15]. While
generalized content extraction is less accurate than hand-tailored extractors, they are often sufficient [22]
and reduce labor involved in adopting information retrieval systems.

While many algorithms for content extraction already exist, it appears that few working
implementations can be applied in a general manner. Our solution employs a series of techniques that
address the aforementioned problems, and makes it easy to implement and experiment with additional
algorithms.

Automating Content Extraction of HTML Documents

In order to analyze a web page for content extraction, we pass web pages through an open source
HTML parser, which creates a Document Object Model (DOM) tree, an approach also adopted by Chen
et al. [56]. The Document Object Model (www.w3.0rg/DOM) is a standard for creating and
manipulating in-memory representations of HTML (and XML) content. By parsing a webpage's HTML
into a DOM tree, we can not only extract information from large logical units similar to Buyukkokten’s
“Semantic Textual Units” (STUs, see [3][4]), but can also manipulate smaller units such as specific links
within the structure of the DOM tree. In addition, DOM trees are highly transformable and can be easily
used to reconstruct a complete webpage. Finally, increasing support for the Document Object Model
makes our solution widely portable.

One caveat is important to note: Determining the specific content that an arbitrary author
intended to portray or, more significantly from our perspective, which an arbitrary user prefers to read,
is very hard. Crunch extracts the “content” heuristically, with heuristics customizable by an
administrator and/or by a savvy user; there is probably no precise “one size fits all” algorithm that could
achieve this goal. In particular, we do not attempt to model either author or user tasks, nor their
corresponding context or intentions, but any non-intrusive approach to doing so would also likely be
heuristic and thus also imprecise. Therefore, one of the limitations of our framework is that Crunch may
remove items from the web page that the user may be interested in, and may present content that the user
is not particularly interested in. One way to ameliorate this restriction may be to summarize all removed
materials in meaningful chunks, and produce this information in another pane or at the bottom of the
page; another approach may be to “learn” on a per-user and/or per website basis, e.g., from data
gathered via user studies like the one we report.

In section 2, we discuss the existing solutions out there. In sections 3 and 4, we describe our
approach at an abstract level and addressing system implementation issues, respectively. We describe
two versions of our proxy — Crunch 1 being simply the framework; and Crunch 2 with substantial
improvements to the framework with respect to the plug-in APl and the extensibility of the
administrative interface. Section 5 presents the initial findings from our ongoing user study. We consider
potential future work in section 6, finally concluding in section 7. The appendices present additional
materials for interested readers.

2. Related Work

There is a large body of related work in content identification and information retrieval that
attempts to solve similar problems using various other techniques. Finn et al. [1] discuss methods for
content extraction from “single-article” sources, where content is presumed to be in a single body. The
algorithm tokenizes a page into either words or tags; the page is then sectioned into 3 contiguous
regions, placing boundaries to partition the document such that most tags are placed into outside regions
and word tokens into the center region. This approach works well for single-body documents, but
destroys the structure of the HTML and doesn’t produce good results for multi-body documents, i.e.,
where content is segmented into multiple smaller pieces, common on Web logs (“blogs™) like Slashdot
(http://slashdot.org). In order for content of multi-body documents to be successfully extracted, the
running time of the algorithm would become polynomial time with a degree equal to the number of
separate bodies, i.e., extraction of a document containing 8 different bodies would run in O(N®), N being
the number of tokens in the document.

Automating Content Extraction of HTML Documents

McKeown et al. [8][15] similarly use semantic boundaries to detect the largest body of text on a
webpage (by counting the number of words) and classify that as content. This method works well with
simple pages. However, this algorithm produces noisy or inaccurate results handling multi-body
documents, especially with random advertisement and image placement.

Rahman et al. [2] propose another technique that uses structural analysis, contextual analysis,
and summarization. The structure of an HTML document is first analyzed and then decomposed into
smaller subsections. The content of the individual sections can then be extracted and summarized.
Contextual analysis is performed with proximity and HTML structure analysis in addition to “natural
language processing involving contextual grammar and vector modeling” [2]. However, this proposal
has yet to be implemented. Furthermore, while the paper lays out prerequisites for content extraction, it
doesn’t propose methods to do so.

Many approaches have been suggested for formatting web pages to fit on the small screens of
cellular phones and PDAs. For instance, the Opera browser [16] uses the handheld CSS media type.
Bitstream ThunderHawk [17] uses intelligent font resizing: “[It] renders the text using the Kaasila
family of fonts, fine tunes images using ThunderHawk’s graphic scaling, compacts the data, and sends
the page to the ThunderHawk client on the wireless device” [27]. The Skweezer Proxy [28] is
architected very similarly to Crunch in that it operates as a proxy and modifies the content of the
webpage before sending it to the client. Sqweezer reformats web pages such that they wrap intelligently,
which prevents unnecessary side scrolling, simply by reorganizing the physical layout of the webpage
retaining all original content. In general, the reformatting for small screens approaches basically end up
only reorganizing the content of the webpage to better fit on the constrained device but still require a
user to scroll and hunt for content.

Buyukkokten et al. [3][10] define “accordion summarization” as a strategy where a page can be
shrunk or expanded much like the instrument. They also discuss a method to transform a web page into
a hierarchy of individual content units called Semantic Textual Units, or STUs. First, STUs are built by
analyzing syntactic features of an HTML document, such as text contained within paragraph (<P>),
table cell (<TD>), and frame component (<FRAME>) tags. These features are then arranged into a
hierarchy based on the HTML formatting of each STU. STUs that contain HTML header tags (<H1>,
<H2>, and <H3>) or bold text () are given a higher level in the hierarchy than plain text. This
hierarchical structure is finally displayed on PDAs and cellular phones, but typically showing different
content than the original work. In particular, once the STU has been identified, Buyukkokten, et al.
[3][4] perform summarization on the STUs to produce the content that is then displayed on PDAs and
cell phones. While Buyukkokten’s hierarchy is similar to our DOM tree-based model, DOM trees
remain highly editable because they abstract the tags away from the content, unlike the STUs, but can
easily be reconstructed back into a complete webpage — although summarization filters could similarly
be applied to select subtrees. Further, DOM trees are a widely-adopted W3C standard, easing support
and integration of our technology.

Kaasinen et al. [5] discuss methods to divide a web page into individual units likened to cards in
a deck. Like STUs, a web page is divided into a series of hierarchical “cards” that are placed into a
“deck”. This deck of cards is presented to the user one card at a time for easy browsing. The paper also
suggests a simple conversion of HTML content to WML (Wireless Markup Language), resulting in the
removal of simple information such as images and bitmaps from the web page so that scrolling is
minimized for small displays. The cards are created by this HTML to WML conversion proxy [5]. While

Automating Content Extraction of HTML Documents

this reduction has advantages, the method proposed in that paper shares problems with STUs. The
problem with the deck-of-cards model is that it relies on splitting a page into tiny sections that can then
be browsed as windows. But this means that it is up to the user to determine on which cards the actual
contents are located, and since this system was used primarily on cell phones, scrolling through the
different cards in the entire deck soon became tedious.

Chen et al. [56] propose a similar approach to the deck of cards method, except in their case
using the DOM tree for organizing and dividing up the document. They propose showing an overview of
the desired page so the user can select the portion of the page he/she is truly interested in. When
selected, that portion of the page is zoomed into full view. One of their key insights is that their
overview page is actually a collection of semantic blocks that the original page has been broken up into,
each one color coded to show the different blocks to the user. This, very nicely, provides the user with a
table of contents from which to select the desired section. While this is an excellent idea, it still involves
the user clicking on the block of choice, and then going back and forth between the overview and the
full view.

None of these concepts solve the problem of automatically extracting just the content, although
they do provide simpler means in which the content can be found. These approaches perform limited
analysis of web pages themselves and in some cases information is lost in the analysis process. By
parsing a webpage into a DOM tree, we have found that one not only gets better results but has more
control over the exact pieces of information that can be manipulated while extracting content.

3. Our Approach

Our solution employs multiple extensible techniques that incorporate the advantages of the
previous work on content extraction like accordion summarization and content discovery, and attempts
to avoid the common pitfalls like noisy results and slow performance. Since a content extraction
algorithm can be applied to many different applications, for example in the fields of NLP and IR, as well
as assistive technologies like those that help the visually impaired, we implemented it so that it can be
easily used in this variety of cases. Through an extensive set of preferences, the extraction algorithm can
be highly customized for different uses. These settings are easily editable through the GUI, through
method calls that have been exposed through a simple API, or direct manipulation of the settings file on
disk. The GUI itself can also easily be easily integrated (as a Swing JPanel for Crunch 1.0 or as a
standard widget for Crunch 2.0) into any Java project, or one can customize it directly. The content
extraction algorithm is also implemented as an interface for easy incorporation into other programs. The
content extractor’s broad set of features and customizability allow others to easily add their own version
of the algorithm to any product. Further discussion on Crunch as a framework can be found in Section
4.2.

In order to analyze a web page for content extraction, the page is first passed through an HTML
parser that corrects HTML errors and then creates a DOM tree representation of the web page. (HTML
on the Internet can be extremely malformed and most popular browsers like Internet Explorer and
Mozilla are able to handle incorrect HTML by making the closest guess to what the HTML should be.)
Once parsed, the resulting DOM document can be seamlessly shown as a webpage to the end-user by
flattening the tree and producing back the HTML.

This process accomplishes the steps of structural analysis and structural decomposition

Automating Content Extraction of HTML Documents

analogous to those done by several other techniques (see Section 2). The DOM tree is hierarchically
arranged and can be analyzed in sections or as a whole, providing a wide range of flexibility for our
extraction algorithm. Just as the approach mentioned by Kaasinen et al. modifies the HTML to
restructure the content of the page, our content extractor navigates the DOM tree recursively, using a
series of different filtering techniques to remove and adjust specific nodes and leave only the content
behind. In our first attempt, Crunch 1.0, we designed a one-pass system that extracted content by
running a series on filters one after the other, i.e., the selected filters just ran sequentially on the output
produced by the previous filters. This caused problems at times when parts of a webpage that the user
wanted were removed. In Crunch 2.0, we amended this by making it a multi-pass system. Here we keep
multiple copies of a webpage in memory and a filter checks for the optimal copy to work on. A large
number of examples demonstrating the results of different filter settings are shown in Appendix A.

Crunch as a framework handles the webpage, but the filters that are plugged into the framework
make it dynamic and customizable. The framework defines a standard API, shown in Section 4.2.3,
which a programmer implements when creating a plug-in. The programmer also decides the order in
which the filters are run in order to maximize the benefit of each one. An example construction of a
Crunch 2.0 plug-in is given in Section 4.2.4. Each of the filters can be easily turned on and off either by
the user, the administrator or the programmer, and can potentially be customized to a certain degree
through a GUI if provided by the programmer.

There are two sets of filters that we have implemented, with different levels of granularity, in
both Crunch 1.0 and 2.0. The first set of filters simply ignores tags or specific attributes within tags but
keep track of them in memory. With these filters, images, links, scripts, styles, and many other elements
can be quickly removed from the web page. This process of filtering is similar to Kaasinen’s conversion
of HTML to WML. However, the second set of filters is more complex and algorithmic, providing a
higher level of content extraction. This set, which can be extended, currently consists of the
advertisement remover, the link list remover, the removed link retainer and the empty table remover. In
Crunch 2.0, we also added filters that allow the user to control the font size and word wrapping of the
output, and heuristic functions guiding the multi-pass processor, to evaluate the acceptability of the
output as each filter pass edits the DOM tree. This ensures that we don’t suffer from some of the pitfalls
of version 1.0 where occasionally pages returned null outputs after passing through Crunch, e.g., link
heavy pages like www.msn.com, as shown later in Figures 11 and 12. Finally, in the newer version, we
have attempted to allow for greater control on most of the filters by adding supplementary options. For
example, users now have the ability of controlling, at a finer granularity, complex web pages where
certain HTML structures are embedded within others, e.g., within table cells.

The advertisement remover uses a common and efficient technique to remove advertisements. As
the DOM tree is parsed, the values of the “src” and “href” attributes throughout the page are surveyed to
determine the servers to which the links refer. If an address matches against a list of common
advertisement servers, the node of the DOM tree that contained the link is removed. This process is
similar to the use of an operating systems-level “hosts” file to prevent a computer from connecting to
advertiser hosts. Hanzlik [6] examines this technique and cites a list of hosts, which we use for our
advertisement remover. In order to avoid the common pitfall of deploying a fixed blacklist of
advertisers, our software also periodically updates the list from http://accs-net.com, a site that specializes
in creating such blacklists. This is a technique employed by most ad blocking software.

Automating Content Extraction of HTML Documents

The link list remover employs a filtering technique that removes all “link lists”, which are bodies
of content either in the page or within table cells for which the ratio of the number of links to the number
of non-linked words is greater than a specific threshold (known as the link/text removal ratio). When the
DOM parser encounters a table cell, the Link List Remover tallies the number of links and non-linked
words. The number of non-linked words is determined by taking the number of letters not contained in a
link and dividing it by the average number of characters per word, which we preset as 5 (although it may
be overridden by the user and could, in principle, be derived from the specific web page or web
domain). If the ratio is greater than the user-determined link/text removal ratio (default ratio is set to
0.35), the content of the table cell (and, optionally, the cell itself) is removed. This algorithm succeeds in
removing most long link lists that tend to reside along the sides of web pages while leaving the text-
intensive portions of the page intact.

After these steps, we have found that numerous tables that are either completely empty or have
several empty cells take up large swaths of space remain on the webpage. The empty table remover
removes tables that are empty of any “substantive” information. The user determines, through settings,
which HTML tags should be considered to be substance and how many characters within a table are
needed to be viewed as substantive, set much like the word size or link-to-text ratio settings set earlier.
This does not require much prior knowledge of HTML since the syntax of the markup language is
simple and matches words from the English language closely, e.g., table, form, etc. The table remover
checks a table for substance after it has been parsed through the filter. If a table has either no substance
or less than some user defined threshold, it is removed from the tree. This algorithm effectively removes
any tables left over from previous filters that contain small amounts of unimportant information. This
filter is typically run towards the end to maximize its benefit.

While the above filters remove non-content from the page, the removed link retainer adds link
information back at the end of the document to keep the page browsable. The removed link retainer
keeps track of all the text links that are removed throughout the filtering process. After the DOM tree is
completely parsed, the list of removed links is added to the bottom of the page. In this way, any
important navigational links that were previously removed remain accessible, and since the parser had
parsed them initially as separate units, each menu or navigational link is kept intact and they can all be
viewed without any loss of original setup or style.

After the entire page is parsed and modified appropriately, it can be output in either HTML or as
plain text (filters could be added to translate to another output format such as WML). The plain text
output removes all the tags and retains only the text of the site, while eliminating most white space. The
result is a text document that contains the main content of the page in a format suitable for
summarization, speech rendering or storage. This technique is significantly different from Rahman et al.
[2], which states that a decomposed webpage should be analyzed using NLP techniques to find the
content. It is true that NLP techniques may produce better results, but at the cost of far more time
consuming processing. Our algorithm doesn’t technically find the content but instead eliminates likely
non-content. In this manner, we can still process and return results for sites that don’t have an explicit
“main body”.

Crunch, however, does have some limitations:

1) Crunch cannot filter non-HTML content like Flash. It allows a boolean choice of whether to keep or
remove such structures but it can't help edit or filter within the animation itself.

Automating Content Extraction of HTML Documents

2) Dynamically generated pages often aren't filtered so nicely for the same reason as above. The script,
whether it be javascript, ASP or JSP is either left completely disabled, causing dynamic pages to not
load correctly, or left on which leaves all respective scripts active on the page.

3) Crunch does not distinguish between different users. There is only one set of options, whether an
individual is using the proxy or whether it is set up as groupware.

4) There are no artificially intelligent heuristics or machine learning algorithms implemented yet, e.g., to
learn a user’s browsing patterns and change user (or group) settings dynamically.

4. Implementation
4.1 CRUNCH1.0
4.1.1. Overview

In order to make our extractor easy to use, we implemented it as a web proxy (program and
instructions are accessible at http://www.psl.cs.columbia.edu/proxy). The proxy can be used as a
personal filter by individual users as well as a central system for groups of people. In the case where
Crunch is set up as groupware, users can access the proxy by simply setting their browser to do so, as
most modern browsers can now point to external proxies for filtering content. This allows an
administrator to set up the extractor and provide content extraction services for a group. The proxy is
coupled with a graphical user interface (GUI) to customize its behavior. The separate screens of the GUI
are shown below. Error! Reference source not found. shows the very broad options that can be turned
off or on that ignore certain tags completely. Error! Reference source not found. has more advanced
options that give more granular control, whereas Error! Reference source not found. shows controls
on output. The current implementation of the proxy is in Java for cross-platform support, and has been
successfully tested on Windows, MacQOS, Linux and Solaris.

Automating Content Extraction of HTML Documents

[v] lgnore All Advertisements [v] lgnore Link Lists
[+l lgnore Scripts [v] Enable <NOSCIPT:> tags [v] Text Links
[CI lgnore Styles [C] Image Links
[¥] lgnore Style Attribute in <DIV> tags [¥] lgnore Only Text and Links
[V lgnore Non-Link Images [Display ALT Links Link/Text Remaoval Ratio n2s |
[v] lgnore Image Links [T Display ALT Links [¥] Remawve Empty Tables
[_] lgnore Text Links Tags to Consider as Substance:
[Ignore Forms [[<TEXTAREA>
[Z] Ignore <INPUT> tags vl <> [[] <BUTTON>
[_] lgnore <BUTTON> tags [<INPUT> [C] <FORM>
[lgnore <SELECT> tags [] <SELECT> [] <IFRAME>
¥l Ignore <META> tags Minimum TextLength (12 |
[¥] lgnore <IFRAME> tags
[C1 lgnore Table Cell Widths
[¥] lgnore <EMBED:> tags
[ngnure Settings Lnd\ranced Settings L Qutput Settings \ [L Ignore Settings L Advanced Settings L Qutput Settings |
| Commit Changes " Cancel Changes | Commit Changes " Cancel Changes
Figure 1 Figure 2
Output Format
(@) HTML only
) Text onhy
HTML Output Settings

["] Append Links to Bottom of Page
Text Output Settings

[¥] Limit number of line breaks

Maximum number of line breaks |2

[L Ignore Settings L Advanced Settings L Output Settings

‘ Commit Changes “ Cancel Changes

Figure 3

The Content Extraction framework itself has a complexity of O(N + P), where N is the number
of nodes in the DOM tree after the HTML page is parsed and P is the sum of the complexities of the
plug-ins; therefore the overall complexity is O(N) without plug-ins. Crunch 1.0 is implemented as a one-
pass system, so it is the plug-ins that truly determine the running time of the system. For example, the
plug-in that edits tables has an algorithm whose worst case running time is O(M?) for complex nested
tables; without such nesting, the typical running time is O(M), where M is the number of elements
composing the table; so the overall running time of the system works out to be O(N + M?) with the table
plug-in. During tests, the algorithm performs quickly and efficiently following proxy customization. The
proxy can handle most web pages, including those with badly formatted HTML, because of the

Automating Content Extraction of HTML Documents

corrections automatically applied while the page is parsed into a DOM tree. However, sites that are
extremely link heavy produce bad results; when the link to text ratio approaches 100%, we experienced
anomalous behavior.

v e . S Pl £ A0 - A
ey
s

e
.

. = i
BTE T et e e e i et ey
mrygs W ey o ¥ oo oy muslt ey

TRE .
e FLL e ey PR
wa e : " "
g ey T — Bl M, ol P e) e T
e
. Foarems

- ierms, bkl b e e

i Formd Mawn_ | [Nl 3 rwmprn
e T

oy
d e || et |

B Pl ey b i iy Fellonary 53, et i
....... s g B s ey A
L P - u MR TR N b

Figure 4 - Before Figure 5 - After

lI IhLII. Rami 100 rac Sy WECEF :I-u: eI
o

o wike For bl prnined by

rday pekruay 1 st

Tran h-r ales-Tar. "e r

writay “Ealor, com m-; En kb :-:----1-1- P bureens . Bsen
To taw Klncar Tout -t |. 583 Vi sl Fe

pay iFa rari 3lree IM-'.{- = *i

||Ffrri:lilr For ot o AbeiE raar (EAOETS are wnierilimbaip Seey (0 s

) VAL, FarAtelTn = b Cray RENEL Rrowd, = TRIFK Ahin 8 Chg o2
I - 13 i wlth

: J:I . i 1 AiFe fute SCuT ePat eala
aban 1k plager sharsciers dulw lud reas Lidn T ihale anclaied £13 m
LXPIEL) F3dE O ;'.'\'.I“. o zalm 1n witor oier :r:1r ru “dalapirg draanirg”.

10 o 31 CoweeEn
JUE £ gt Berdoes” 3icel e le EeengEciied by

e durday Fb U I Mﬁll"’
Srenin

5
£
E
H

sl U l-’ll.“- i oy L imn
ety Sl S A AT g i A BerdBen” aBmT wpapashle eerel I T
BlekredT lock &7 4loskl sleatng i £ -ué E17r =111 warh TAME #elrene abbirer sl
wina CLRE ENLD e morsh od d.n.-;- asrean Eulife = wiLtin -J-:-J wd 1hw SarTwTE
slwailen Iz Swrzatalndie’ cho brighz siée, ™ Lfaned 1har Ju'_'lIrJI-t
Ty .a\.rws are le |r::p-l=1b1r eB cerrerdas arear I (l:r:! aamy, | a8 =F 119
By i DrdwEtiy Lakd SledrLid b;-
ey mezruwy T S

IM.l u-. |.|qu -Biepred It

Bk wrliin -iFe sv mI1T hus an q11r:1rq. Tosk ax 1na Favs af 3 n-,p: Ferlosl}
d--pl-f\- Brd “maxlng 17 b -r in :w-_.- e Snduapryp, T cerdemaed

#rdﬂm": T Rl ¢ ulur:lli Y

|IJIl'-iI.|l: !- ol I."E Fupm --I"I -'lll :I:IBJ m A L=
aFigal EENL] PaL]
S AR unra.u era :ru.l qm Tt 4an per Er

.-.w.n. Falumind 1 J0UE e a jo i). ard
ahan yom wdre 3 kld.LL T Teesd worel . | 140 of XY roamen |
J-lﬂ.'1 '-lr11r'(lu- reafnndtRasted by

T
iy g
1"-:"#&.-“‘ (el B
b RFITEL TR Tl l|’ I'l"h‘l'll lrJ! ﬂ l rl rrl1 TULDWeer AWTEORLE, mlm u.l
Fars e <asbir Gkl amd byt cr, S A

Figure 6 — Text Only

Depending on the type and complexity of the web page, the content extraction suite can produce
a wide variety of output. The algorithm performs well on pages with large blocks of text such as news
articles and mid-size to long informational passages. Most navigational bars and extraneous elements of
web pages such as advertisements and side panels are removed or reduced in size. Figure 4 and Figure 5
show an example before and after Crunch is applied, resp. When printed out in text format, most of the
resulting text is directly related to the content of the page, making it possible to use summarization and

10

Automating Content Extraction of HTML Documents

keyword extraction algorithms efficiently and accurately. Text-only output for this example is shown in
Figure 6.

The initial implementation of the proxy was designed for simplicity in order to test and design
content extraction algorithms. It spawns a new thread to handle each new connection, limiting its
scalability. Most of the performance drop from using the proxy originates from the proxy’s need to
download the entire page before sending it to the client.

4.1.2. More examples

Figure 7 and Figure 8 show the front page of a website dedicated to a first-person shooter game,
before and after content extraction, resp. Despite producing results that are rich in text, in this particular
Crunch configuration the screenshots of the game are also removed, which the user might deem relevant
content. This might be a case where the user might want to tweak the default settings.

SPY » Play s | Shep! | PC | Consoele | News | Files

nlanet £
AUHrex

GameSpy Store

Site Updates

Mon - Nov 11 2002

» PLANETUNREAL
»UT 2003 AT 5
» UNREAL 2 e f
A 3 N
UT2003 UNREALII L ')
CHAMPIONSHIF TO!

» UNREAL CHAMPIONSHIP,
» UNREAL TOURNAMENT
> UNREAL

With th
L T s

Mon - Nov 11 - 2002

Figure 7 - Before Figure 8 - After

Figure 9 and Figure 10 show a “link-heavy” page in its pre- and post-filtered state, resp. Since
the site is a portal which contains links and little else, the proxy does not find any coherent content to
keep. We investigated heuristics that would leave such pages either untouched, or alternatively employ
only the most basic filters that only remove advertisements and banners, and implemented such
techniques in Crunch 2.0.

11

Automating Content Extraction of HTML Documents

The hest gifts at amazing prices! Save up to 80% at Smart.
v Search the Weh: Search
i f =70] MSN Home MyMSN | SignIn,
MSN Home | My MSN | Hotmail | Search | Shopping | Money | People & Chat
Search the Weh: Search Iicvn]
[Down]
- Down,
Movie stars to sports heroes: 11 famons US veterans I _l APPLY
P . .
What last night’s Today on MSN Strictly Business | Back 1o to
strange dream means [S » Health benefit to » 10stepsto:
Do guys prefer a f coffee? e Isyourdats
pretity face or a hot ’ "G o Bonds wins 5th MVP e Best states
bodv? i s E_mail scamsto retirees
PDA Sale - from $99 !: avoid » Biz ethics: §
Palm, Sony, Toshiba ® [s Harry Pottera Jlegal’ may;
fraud? £00d enoug.
MSN Internet Say cheese
Serless Is your 'lool¢’ passe?
Broadband Access Sexy swreaters, hip totes your Week L, Dotc
Internet Access & tips on where to shop wrhite
Specials e 10 'most satisfying’ really
Find cars brigh
» Best comfort food” in smile
Adr Tickets us
Auto Price Quotes e Pearlnecklace: 30%
Build a Family Tree off
Find a Job o Behind the scenes at an 81 swimsuit photo
Get an Apartment shoot
Hotel Dieals ® [s 'no fireworks, no future’ a first—date myth?
Maps & Directions MSN Top Headlines
0ld Friends
Personals MSNBC News
Weather o T Al b Tt D b & b
Figure 9 - Before Figure 10 - After

From these examples one may get the impression that input fields are affected irregularly by our proxy;
this is because the run-time decision of leaving them in or removing them from the page is dependent on
the tables or frames they are contained in. Forms are handled as one semantic unit, where either a form
is displayed or not based on the user setting. Additionally, we should mention that there isn’t any sort of
preservation of objects that may be lost after the HTML is passed through our parser, except links can be
retained as explained above. The user would have to change the settings of the proxy and reload the
page to see the previously removed content. However, a different set of filters could be developed to
move rather than just remove content, for forms or other identifiable HTML elements or data.

4.1.3. Implementation details

Proxy

~
GET Request Ul
Spawn thread
Fiters———
Proxy Thread (
Socket | |
HTTP
Request Proxy Filter
Content Extractor
HTML
Parser
Settings || [
Internet Webpage = mi:‘ <
I
vy

Figure 11

12

Automating Content Extraction of HTML Documents

The life cycle of the process that gets a page to the client’s browser through the proxy from a
very high level is - the client passes a request for the webpage to the proxy which opens a socket, fetches
the original content of the page, and parses the page to create a DOM tree representation. It is then
passed through the different filters based on the settings set by the user. The edited DOM tree is then
either flattened into the HTML form, to be sent back to the client’s browser, or stripped of all HTML
tags and only the text content is sent to the client for rendering. An architectural diagram of Crunch 1.0
is shown in Figure 11.

In more detail, in order to analyze a web page for content extraction, the page is passed through
an HTML parser that creates a Document Object Model tree. The algorithm begins by starting at the root
node of the DOM tree (the <HTML> tag), and proceeds by parsing through its children using a recursive
depth first search function called filterNode(). The function initializes a Boolean variable
(mCheckChildren) to true to allow filterNode() to check the children. The currently selected node is then
passed through a filter method called passThroughFilters() that analyzes and modifies the node based on
a series of user-selected preferences. At any time within passThroughFilters(), the mCheckChildren
variable can be set to false, which allows the individual filter to prevent specific subtrees from being
filtered. That is, certain filters can elect to produce the final result at a given node and not allow any
other filters to edit the content after that. After the node is filtered accordingly, filterNode() is
recursively called using the children if the mCheckChildren variable is still true.

The filtering method, passThroughFilters(), performs the majority of the content extraction. It
begins by examining the node it is passed to see if it is a “text node” (data) or an “element node”
(HTML tag). Element nodes are examined and modified in a series of passes. First, any filters that edit
an element node but do not delete it are applied. For example, the user can enable a preference that will
remove all table cell widths, and it would be applied in the first phase because it modifies the attributes
of table cell nodes without deleting them.

The second phase in examining element nodes is to apply all filters that delete nodes from the
DOM tree. Most of these filters prevent the filterNode() method from recursively checking the children
by setting mCheckChildren to false. A few of the filters in this subset set mCheckChildren to true so as
to continue with a modified version of the original filterNode() method. For example, the empty table
remover filter sets mCheckChildren to false so that it can itself recursively search through the <TABLE>
tag using a bottom-up depth first search while filterNode() uses a top-down depth first search. Finally, if
the node is a text node, text filters are applied, if any.

We have implemented several basic filters in order to demonstrate the capabilities of Crunch.
The pseudo-code for the text size modifier filter looks like:

procedure wrapTextNodes(n: node)

if nis a textnode then
f := new font node
f.sizeAttribute := settings.size
n.parent.replaceChild(n, f)
f.addChild(n)

else
if n.name = "TITLE" then return

nodes := n.getChildren()

13

Automating Content Extraction of HTML Documents

foreach node m in nodes
wrapTextNodes(m)

And the empty table removing plug-in looks like:

procedure removeEmptyTables(iNode: node)
if iNode.hasChildNodes() then
next := iNode.getFirstChild()
while next '= @
begin
current := next
next := current.getNextSibling()
filterNode(current)
end

lengthForTableRemover := 0;
empty := processEmptyTable(iNode)

if empty then
iNode.getParentNode().removeChild(iNode)

Please refer to section 4.2.3 to get a better look at a more in-depth description of the plug-in API.

4.2 CRUNCH 2.0

4.2.1. Overview

Crunch 1.0 nicely demonstrated the proof-of-concept design of the system as a framework, but
certain problems needed to be addressed in order for Crunch to be widely used. After releasing Crunch
1.0 in September 2002, we received several suggestions from early users for additions and
improvements. An informal user study of blindfolded students was conducted in May 2003 followed by
a formal user study with blind and visually impaired users begun in December 2003; the first results
from the latter are discussed in Section 5. The NLP group at Columbia University tried using Crunch
briefly for their Newsblaster [8][9] project, which is a system that automatically tracks, clusters and
summarizes each day’s news programmatically. They used Crunch as their input mechanism in order to
run their natural language processing algorithms on content extracted by Crunch rather than noisy data
streams coming straight from the web.

As indicated in section 3, Crunch 2.0 is similar to its predecessor. However, we spent time on
improving its performance and user interface, and several changes were made in the supplied set of
heuristic filters, e.g., to show more useful results for link-heavy pages. We optimized the content
extractor filter even though function is inherently the same. Additional filters were added that allow the
user to control the font size and word wrapping of the output. Perhaps most importantly, heuristic
functions were added in the form of a multi-pass system that evaluates the output the DOM tree passed
through each filter. This prevents link-heavy pages like www.msn.com from returning blank pages as
output; with the new result-checking heuristics of Crunch 2.0, we instead got the better results. Figure

14

Automating Content Extraction of HTML Documents

12 shows the original form of a link-heavy page; Figure 13 and Figure 14 show the outputs from Crunch
1.0 and Crunch 2.0, respectively.

Figure 12 - Link-Heavy Page Figure 13 - Crunch 1.0 Output Figure 14 - Crunch 2.0 Output

Finally, in the newer version, we have attempted to allow for greater flexibility to most of the
filters by adding supplementary options to each. For example, users now have the ability of controlling,
at a finer granularity, complex web pages where certain HTML structures are embedded within others,
such as having the ability to control not only the content on the entire page but also within table cells.
Appendix A show several suites of screenshots with different sets of Crunch 2.0 filters applied.

Like Crunch 1.0, the complexity of the newer version remains at O(N+P); however, the worst
case running time increases to O(N*P), where N is the number of nodes in the DOM tree after the
HTML page is parsed and P is the complexity of the plug-ins with highest running time. The increase in
worst case complexity is due to the fact that we have switched to a multi-pass system. Therefore, in case
of a bad result, a filtered webpage may have to revert to a previous state and re-run through the proxy
with a different set of options; this may happen for any number of nodes in the DOM tree.

4.2.2. Technical improvements in version 2

Even though the basic architecture of the system is the same as shown in Figure 13, there are
some notable changes.

1) Replaced OpenXML with NekoHTML

The original version of Crunch used OpenXML [21] as the HTML parser. OpenXML had
problems with efficiency, which didn’t seem likely to be fixed since OpenXML is apparently no longer
an active project. So we switched to NekoHTML [23]. NekoHTML is an HTML scanner and tag
balancer that parses HTML for Xerces, an XML implementation that is part of the Apache project [51].
It has many benefits, most notably the increased speed, but a key longer-term benefit is that we are now
using a parser that is under active development. NekoHTML currently has some problems parsing some

15

Automating Content Extraction of HTML Documents

pages, most notably the output not always rendering the same as the input, e.g., for certain complex
nested tables and some CSS pages. However, most of these errors are minor cosmetic ones that Crunch
attempts, usually successfully, to fix in its new multi-pass scheme. Additionally, the developers of
NekoHTML are apparently working on its deficiencies. NekoHTML, however, does assist in our
handling of multiple versions of HTML. Crunch downloads the appropriate HTML stream and sends it
to NekoHTML and gets back a DOM tree upon which it applies filters. It then uses an HTML serializer
to send data to the client. With this architecture, the bottleneck is NekoHTML in terms of which
versions of HTML we can handle and since it can handle all versions of HTML as well as XHTML,
Crunch can handle the same.

2) Performance tuning

Some speed improvement was achieved through switching to NekoHTML. The other major
contributor to increased speed was the optimization of Crunch’s networking code. The code was
originally written using the Java 10 package. Switching to the Java NIO package was considered and we
wrote a small testbed, but ran into excessive complications using NIO’s asynchronous callbacks.
Therefore, we instead optimized the Java 10 code, e.g., by collapsing multiple writes and reads, dealing
with timeouts more efficiently, and removing unnecessary or redundant calls in the transfer loops.
Server performance and bandwidth utilization now seems adequate, but we have not yet conducted a
performance study with large loads.

We moved to the staged event architecture and asynchronous callbacks to avoid threading
scalability issues. The concept of the staged event architecture was introduced formally by Welsh [55]
for performance gains in highly concurrent server applications, so that they are able to “support massive
concurrency demands” [55]. We took the same concept and extended it in our framework so that Crunch
can meet the demands of several parallel requests in a groupware setup.

3) Switch to SWT

The original proxy GUI written using Java Swing was replaced using SWT, IBM's Standard
Widget Toolkit [24]. SWT is highly responsive, partially due to its use of JNI and native routine calls
that can take advantage of the operating system's built-in optimizations. It also uses native GUI widgets
to provide a look and feel consistent with that of the operating system, while remaining operating system
independent. As an added benefit, SWT allows the program to be compiled into a binary executable,
resulting in a faster startup time, a smaller distribution, less memory used, and an easier installation for
novice users.

Screenshots of the new proxy GUI are shown in Table 1, where we see the basic settings and the
available plug-ins in the first row and the actual plug-in setting controls in the second row. The tabs
shown in the second row are similar to the original Crunch 1.0 GUI, shown in Figures 1-3; the additional
tabs in the first row are new with Crunch 2.0.

16

Automating Content Extraction of HTML Documents

Indvanced Settings | Oubput Settings |
™ Ignore All Advertisements
r Ignore Scripts

I¥ Ionote <NOSCRIET tags
™ Ignore Styles
[Ignore Style Attribute in <DIV:> tags
r Ignore Mon-Link Images

I™| Display: ALT Text
[Ignore Image Links

I™ | Display ALT Links
™ Ignore Text Links
I Ignore Forms | Ignore <IMPLT> kags
r Ignore <BUTTON> tags I Ignore <SELECT = tags
r Ignore <META > bags r Ignore <IFRAME = tags
[Ignore Table Cell widths [Ignore <EMEED > tags

Carnrmit | Reverk |

O_kl Cancel |

4) Accessibility

Ignare Settings I Ouk
™ Ignaore Link Lists

I™ | Tk Links

¥ Image Links

™| Tanore Gnly Text and|Links

puk Settings |

Linlk{Tiext Removal Ratio | 0,25

r
[Remove Empty Tables

Tags bo Consider as Substance:

=} sz [~ =TERTHRES
=| caz I~ =BUTTON:
= T I =FoORM:=

[=| csELECT> | (=

Finirun Texk Length I 12

Carnrmit | Reverk |

O_kl Cancel |

Igniore Setkings I Advanced Settings |

i~ Cubput Format
% HTML only

" Text only

HTML Output Settings
[~ Append Links to Botkom of Page

= Texk Cubput Setbings
I= | Lirnit: rumber of line breaks

M aximum nurmber af line breaks I Z

Commit | Revett | Okl Cancel |

Table 1
i Crunch 2.0 10l x| % Crunch 2.0 -3l x| i Crunch 2.0 (=] |
File Help File Help File Help
15 3 Proxy Setbings I Flugins | Status P 35 {| Plugins | Skatus I Prosey Settings Flugins |
—Plugins i~ Description
Current Status: I Processing requests verbose ¥ "::':. i
& Content Extractor
Listening on: [0.0.0.012.0.0.0:4000 sz s [200 Zample flugin This plugin simpifies web pagesby < |
[~ Connections Server Socket Timeout (ms) I 1000 12 Miniter removing excess clutter.
C tion Count | 8
annection Coun | Sorket Timeoit (s} 5000
[_Address [_Status ’ v
1127.0.0.1:3234 10. Streaming Data To Client Filter Cantent
J127.0.0.1:3283 3. Connecting ko Server Filter T teskfhkml
i127.0.0.1:3284 3 Connecting ko Server WS VRS ftexs
J127.0.0.1:3286 3. Connecting ko Server Filter Homepages |7
J127.000.1:3285 3. Connecting ko Server
J127.000.1:3288 1. Reading Client Firsk Line
J127.0.0.1:3289 1. Reading Client First Line
J127.0.0.1:3295 0. Initializing
E|
Commitl Revert ¥ Enable Canfigure... |
“ Crunch 2.0: Content Extracto =13 x| “ Crunch 2.0: Content Extrack =13 x| “ Crunch 2.0: Content Extracto =13l

Of the plethora of benefits to switching to SWT, the most important for our purposes is
accessibility. One of Crunch’s main goals is to assist disabled persons in browsing the web, yet the
previous version of Crunch itself, i.e., the proxy and its administrative user interface, were highly

inaccessible.

There are three basic categories of accessibility support: mobility enablement, visual
enhancement, and screen readers [25]. Mobility enablement is provided in that all settings can be easily
accessed through the keyboard without any assistance through the mouse. SWT provides keyboard
accelerators in the API, as well as intelligently supporting tabbing through GUI components. SWT uses

17

Automating Content Extraction of HTML Documents

the operating system’s theme for its look and feel, which means that the operating system is allowed to
handle usability and visual enhancements. The best example of this is Window’s accessibility features
[25], such as large fonts and high contrast themes, being incorporated into the GUI. SWT also supports
Microsoft Active Accessibility Support (MAAS) [26], so by default there is support for screen readers
that read content from the window with focus and its associated widgets.

Usually a person requiring a screen reader will not be able to position a mouse pointer finely
enough to successfully use a mouse [25], so it is important that mobility enhancement features coincide
nicely with screen readers. Since SWT uses native APIs, screen readers and other accessibility options
are able to work nicely together to provide the disabled with a viable way of configuring Crunch 2. As
an added benefit to Windows users, SWT can use Windows themes in the same way that it uses
accessibility features of the operating system [25].

Example screenshots of the proxy GUI in the high contrast scheme are shown in Table 2; compare
to the second row of Table 1 (and also to Figures 1-3 from Crunch 1.0). Figure 15 shows how the user
can adjust the font size of the website text from within the proxy.

Table 2

® Crunch 2.0: Content Extractor Settings[_ [C][X] ® Crunch 2.0: Content Extractor Settings[_ [0|[X] ® Crunch 2.0: Content Extractor Settings[_ [C][X]

Ignore Settings|Advanced Settings|Output Settings

O Ignore All Advertisements
O Ignore Scripts
B Ignore <NOSCRIPT> tags
O Ignore Styles
O Ignore Style Attribute in <DIV> tags
O Ignore Non-Link Images
O Display ALT Text
0 Ignore Image Links
O Display AL
O Ignore Text
o Ignore Forms 0O Ignore <INPUT> tags
O Ignore <BUTTON> tags O Ignore <SELECT> tags
O Ignore <META> tags O Ignore <IFRAME> tags
O Ignore Table Cell Widths & Ignore <EMBED> tags

Commit|

Ignore Settings|Advanced Settings |Qutput Settings

O Ignore Link Lists
O Text Links

O Ignore Only Text and Links
Link/Text Removal F!.atif;

O Remove Empty Tables

0 <IFRAME=>

tLength |[12

Figure 15

4.2.3. Code differences between Crunch 1.0 and 2.0

Plug-in API Improvements

18

Ignore Settings|Advanced Settings| Output Settings

rOutput Format
@ HTML only
© Text only

HTML Output Settings
O Append Links to Bottom of Page
£Te gs——————————————————————

r of line breaks

Maximurn number of line brea

Commit||Revert

Automating Content Extraction of HTML Documents

The original Crunch plug-in was required to implement the ProxyFilter interface. This interface
consists of 3 methods. The first and most important method is the process method. It takes a file and
returns a file. It does all the processing on html content that passes through the proxy. The second
method is getSettingsGUI. It returns the settings GUI so that the settings for the plug-in can be changed.
The third method is getContentType. It returns the content type of the output of the plug-in.

The newer ProxyFilter was created as an abstract class. The new version is similar to the old one,
but forces the plug-ins to works on the DOM documents rather than just plain files. It includes seven
methods. One method is for filtering and the other methods are for GUI integration. To have the plug-in
do processing on content, there is the process method. The process method takes 3 DOM documents for
input. One is the document that should be processed and the other two are for reference.
CurrentDocument is the document that should be processed. PreviousDocument is the output of the
previous filter and is initially just a copy of currentDocument. PreviousDocument is used for rolling
back changes or other analysis after changes to currentDocument have already been made.
OriginalDocument represents the document as Crunch 2 has received it from the server. This allows for
more advanced heuristics, quality checking, and even rollback of the processing. The methods
hasSettingsGUI and getSettingsGUI are for determining if the plug-in has a settings dialog, and if it
does, displaying it. Currently there is a button that can be clicked if the plug-in has a settings GUI that
will display it. The methods isEnabled and setEnabled are for changing and checking the state of the
plug-in. If the plug-in is disabled, it is skipped during processing of content and is shown grayed in the
plug-ins tab of the main Crunch 2 window. The next two methods, getDescription and getName are used
for displaying information about the plug-in and just return strings. Code details of ProxyFilter.java and
ProxyFilterSettings.java are shown in Error! Reference source not found..

Table 3 - Crunch 1.0 vs. Crunch 2.0 Plug-in APIs

ProxyFilter.java

package psl.memento.pervasive.crunch; package psl.memento.pervasive.crunch2.plugins;
import java.io.*; import org.w3c.dom.Document;
public interface ProxyFilter { public abstract class ProxyFilter {
public File process(File in) throws IOException; private boolean enabled = true;
public ProxyFilterSettings getSettingsGUI();
public String getContentType(); public void getSettingsGUI() {
} II'no settings GUI is required

}

public boolean hasSettingsGUI() {
return false;
}

public abstract String getName();
public abstract String getDescription();

public void setEnabled(boolean b) {
enabled = b;
}

public boolean isEnabled() {
return enabled;
}

public abstract Document process(
Document originalDocument,
Document previousDocument,

19

Automating Content Extraction of HTML Documents

Document currentDocument);
}
ProxyFilterSettings.java
package psl.memento.pervasive.crunch; package psl.memento.pervasive.crunch2.plugins;
import javax.swing.JPanel; public interface ProxyFilterSettings {
public void set(String key, String value);
public abstract class ProxyFilterSettings extends JPanel { public String get(String key);
public abstract void commitSettings(); public void commitSettings();
public abstract void revertSettings(); public void revertSettings();
public abstract String getTabName(); }
}

The original ProxyFilterSettings extends JPanel, which is inserted into the GUI. Each proxy filter
had its own tab; unfortunately this forced the implementer to use Swing, which is not available in many
versions of java, such as gcc-java, also known as gcj [57]. It also doesn’t unify the API for easy settings
modification in the software, which is important for Al algorithms. It contains three methods:
commitSettings, revertSettings, and getTabName. CommitSettings and revertSettings are for committing
and reverting respectively, the settings that were made in the GUI. GetTabName is for naming the tab to
put the panel in. This is usually the name of the plug-in.

The new ProxyFilterSettings is not tied to a GUI at all. Its sole purpose is to programmatically
allow for the editing settings. It has four functions - Get takes a string name of the setting and passes
back the value as a string. Set takes a setting name and a value and sets the setting. CommitSettings and
revertSettings save the settings to a file and load the settings from a file respectively.

Notice the differences between the Crunch 1.0 and 2.0 implementations. The Crunch 2.0 plug-in
implementation is now more flexible than the original. It is no longer Swing dependent. In fact, it no
longer forces the user to have any sort of settings GULI. In Crunch 2.0, while no settings implementation
is forced, one is provided so that all the plug-ins can have a common method of changing settings. This
will simplify the implementation of any filtering heuristics using Al algorithms that could produce better
results, which may need to adaptively change the user settings based on the site and the user’s reaction
to a given page.

Methods that run filters over content

ProxyThread.filter(HttpStream http) in Crunch 1.0 - In the original Crunch, the filter method inside
ProxyThread is what passes content through the plug-ins. It works by downloading the http content to a
file, and then it runs each filter on the file and updates the content type each time. After that, it replaces
the content file in the http stream with the filtered file.

public void filter(HttpStream http)

throws 10Exception {

File workingFile = null;

workingFile = http.downloadToFile();

while (Filters._hasNext()) {

try {
ProxyFilter filter =
(ProxyFilter) (filters.next());

System.out.printin(*'Started filtering...");
workingFile.deleteOnExit();
workingFile = Filter._process(workingFile);
workingFile.deleteOnExit();

20

Automating Content Extraction of HTML Documents

http.setAttribute(
"‘content-type",
filter.getContentType());

System.out._printin(*'Done filtering.");
} catch (Exception e) {

e.printStackTrace();
s

http.replaceContentWithFile(workingFile);
System.out.printin(‘content replaced™);

}

PluginFilterRunner.process(File f) in Crunch 2.0 - In Crunch 2.0, the process method inside the
PluginFilterRunner class is what runs all the plug-ins on the content. It takes a file as input. First it
parses that file into xml, and then it gets a copy of that file and sets it as currentDocument. Next, it
enters a loop that checks each plug-in for being enabled and, if so, rotates currentDocument and

previousDocument, and then runs the plug-ins process method. After the loop, it writes the most current
non-null document to a file.

public File process(final File) {
// generate xml document from file
Document originalDocument = getXML(F);
Document previousDocument = null;
Document currentDocument = null;

currentDocument = copyDocument(originalDocument);

for (int 1 = 0; i1 < plugins.length; i++) {
ProxyFilter plugin = plugins[i];
it (Iplugin.isEnabled())
continue;

if (currentDocument != null)
previousDocument = currentDocument;

iT (previousDocument != null)
currentDocument =

copyDocument(previousDocument) ;

currentDocument =
plugin.process(

originalDocument,
previousDocument,
currentDocument) ;

3

it (currentDocument == null)

currentDocument = previousDocument;
if (currentDocument == null)

currentDocument = originalDocument;
return xMLtoFile(currentDocument);

}

Content Extractor Plug-in

The Content Extractor Plug-in is the main filtering plug-in for Crunch 2.0. Its implementation is
very similar to how it was in the original Crunch. This is possible even though quite a few things like the

parser, etc were changed since it is all compliant with the W3C standards. The main changes were
optimization, bug fixing, and working it into the new interface.

21

Automating Content Extraction of HTML Documents

When process(Document, Document, Document) is called on the content extractor plug-in, it
creates a child ContentExtractor, and has that process the currentDocument. This allows the content
extractor processing to be thread safe, which is important because the proxy is multithreaded. The
processing begins with the filterNode(Node iNode) method being run on the document, which is the root
node of the DOM tree.

Content Extraction Plug-in filterNode method

This is a typical set of recursive methods when working with DOM. Passing through every node
is very simple. FilterNode(Node iNode) passes iNode through a set of filters. Then it determines
whether to filter iNode’s children based on the mCheckChildren variable, which the method
passThroughFilters sets. The filterChildren(Node iNode) method takes a node and runs filterNode on
each of its children. Running filterNode on the root of a DOM tree will result in all the nodes being
filtered recursively. This process was smoothed out in Crunch 2.0.

private void filterNode(final Node iNode) {
mCheckChildren = true;

passThroughFilters(iNode);

it (mCheckChildren)
filterChildren(iNode);
}

private void filterChildren(final Node iNode) {
iT (iNode.hasChildNodes()) {
Node next = iNode.getFirstChild();
while (next I= null) {
Node current = next;
next = current.getNextSibling();
filterNode(current);

}

Content Extraction Plug-in: Main Filtering Method - passThroughFilters method

PassThroughFilters(Node iNode) takes a node and determines what filters in the content
extractor plug-in to run on it. MCheckChildren is changed to tell the recursive method not to check a
given node’s children. The first thing passThroughFilters(Node iNode) does is gather information about
the node. Currently it gets the node’s type, parent, and attributes. Then it runs filters based on the node
type. Currently the only node type that it runs filters on are element nodes. Element nodes represent tags
such as
 and . Element nodes are filtered in several stages. The first stage is more
information gathering. The node is checked for being a link and then if it is an image. This information
is recorded, and then the node is passed through a second set of filters. The second set of filters only
modifies element attributes. Currently the attributes that are modified are the width attributes of tables
and table cells, and the style attributes of div elements. After the attributes are modified, the element is
passed through filters that can delete element nodes. An example of a node to delete is an ad link. This
code sequence worked well in the previous version so we stayed with it.

private void passThroughFilters(final Node iNode) {
//Check to see if the node is a Text node or an element node and
//act accordingly
int type = iNode.getNodeType();
Node parent = iNode.getParentNode();

22

Automating Content Extraction of HTML Documents

//Get the attributes of the node
NamedNodeMap attr = iNode.getAttributes();

//Element node
it (type == Node.ELEMENT_NODE) {

String name = iNode.getNodeName();

//

// Set of conditions that just check the nodes without editing or

// deleting them

//

//Any type of link iIs encountered

it (isLink(iNode))
recordLink(iNode);

it (islmage(iNode))
recordlImage(iNode);

//
// Set of conditions that edit the nodes but don"t delete them
//

//<TD|TABLE width=*> removes widths
it ((name.equalslgnoreCase(**'TD') || name.equalslgnoreCase("'TABLE™))
&& settings.ignoreCellWidth) {
it (hasAttribute(iNode, "width™))
removeAttribute(iNode, "width');
} /70

//<D1V style=*> removes style
else if (
name.equalslgnoreCase("'DIV') && settings.ignoreDivStyles) {
ifT (hasAttribute(iNode, ''style'))
removeAttribute(iNode, "style');
} //if

//

//Set of conditionals determining what to ignore and not to ignore

// (Conditions that DELETE nodes from the DOM tree)

//

if (isAdLink(iNode) && settings.ignoreAds) {
parent.removeChild(iNode) ;
mCheckChildren = false;

//<TD> with Link/Text Ratio higher than threshold
else if (name.equalslgnoreCase("'TD') && settings.ignoreLinkCells) {
testRemoveCell (iNode);

}
//<A HREF> with no Images
else if (isTextLink(iNode) && settings.ignoreTextLinks) {
parent.removeChild(iNode);
iT (settings.addLinksToBottom)
enqueueLink(iNode);
mCheckChildren = false;

}
//<BODY>
else if (name.equalslgnoreCase(''BODY'"))
mBodyNode = iNode;
} //if (type == Node.ELEMENT_NODE)

Example Check Methods

isLink(Node iNode): isLink checks to see if a Node is a link. First, it gets the node type and the
node attributes. Then it checks to see if the node is an element and it contains an HREF attribute.
If that is true, then it returns true indicating that the node is a link. Otherwise it returns false.

23

Automating Content Extraction of HTML Documents

private boolean isLink(final Node iNode) {
int type = iNode.getNodeType();

NamedNodeMap attr = iNode.getAttributes();

iT (type == Node.ELEMENT_NODE) {
String name = iNode.getNodeName();
it (name.equalslgnoreCase(""'A™)) {
for (int 1 = 0; 1 < attr.getLength(Q); i++) {
if(attr.item(i).
getNodeName() -
equalslgnoreCase(""HREF'™)) {
return true;
} //if
} //for
} //else if
} /770t

return false;

isimage(Node iNode): isimage checks to see if the node is an image.

private boolean islmage(final Node iNode) {
boolean image = false;

//Check to see if the node is an image
int type = iNode.getNodeType();
ifT (type == Node.ELEMENT_NODE) {
iT (iNode.getNodeName() -equalslgnoreCase(*" IMG™))
image = true;
} //if

return image;

isimageLink(Node iNode): This method checks to see if a node is a link with an image as the link
or if the node is an image, it checks if it is a link. First, it checks to see if the node is a link, and
then it checks to see if any of its children are images. If that is true, then the method returns true,
indicating the node is an image link. Second, it checks if the node is an image, and if its parent is
a link. If this is the case, it will indicate that the node is an image link. Maps are also check for
and treated as image links. Otherwise, it returns false.

private boolean islmageLink(final Node iNode) {
boolean imageLink = false;

//Check to see if the node is a link
if (isLink(iNode)) {

//Check to see if the children have an image in it
it (iNode.hasChildNodes()) {
Node next = iNode.getFirstChild();

while (next I= null && !imageLink) {
Node current = next;
next = current.getNextSibling();
if (islmage(current))
//imageLink = true;
return true;

} //while
} /70
} /770t
//1T the node is an image, check iIf its parent is a link

24

Automating Content Extraction of HTML Documents

else it (islmage(iNode)) {
iT (isLink(iNode.getParentNode()))
//imageLink = true;
return true;
else {
// check for image maps
ifT (nodeContainsAttribute(iNode, '‘usemap'))
//imageLink = true;
return true;

}
} //else if

return imageLink;
} //islmagelLink

Note that while it would be trivial to add content based filters, Crunch does not currently attempt to do
any NLP-level “understanding” of the content, although one of its purposes, as previously stated, is to
find the content so NLP algorithms can process it without also dealing with all the clutter.

4.2.4. Example plug-ins for PDAs

One very important requirement is that Crunch be able to support existing and new heuristics
invented by others (that is, by persons and organizations other than the Crunch developers), following a
modular approach. One popular application for content reformatting and filtering heuristics is
retargeting conventional web pages to the small screens of PDAs. Most web pages are designed for
resolutions upwards of 800x600 while a majority of PDAs support only 240x320. Numerous utilities
and tools have been developed attempting to solve this problem, some of which were discussed in
Section 2.

We believe that many of the algorithms and heuristics underlying these tools (as well as other
web page filters and reformatters devised for other purposes by third parties) could easily be integrated
with Crunch via the plug-in interface. New filtering and reformatting approaches oriented towards a
variety of applications could also be easily prototyped by third parties using our plug-in approach,
particularly the improved API developed for Crunch 2.0. See Table 3 to compare the Crunch 1.0 and 2.0
extension APIs.

For instance, we found it very easy to re-implement both the ThunderHawk PDA browser [27]
and the Sqweezer proxy [28] functionalities (both discussed in more detail in Section 2) as Crunch plug-
ins, giving results essentially identical to the original utilities. If the source code of either system had
been available, the relevant code could have instead been integrated directly, also via a plug-in. Part of
the GUI for the Thunderhawk-like plug-in was shown in Figure 15 (there in the high contrast format).

The plug-in that simulated the functionality of Thunderhawk that we implemented is on the order
of about 150 lines of code. Similarly, the Skweezer plug-in was about 140 lines of code. We have found
that most of our plug-ins average about 200 lines of code.

To implement any such plug-in, one would create a class that extends ProxyFilter. The method

that should do the actual processing is the process(Document, Document, Document) method. It should
be thread safe because multiple threads can be accessing it at the same time.

25

Automating Content Extraction of HTML Documents

public abstract Document process(
Document originalDocument,
Document previousDocument,
Document currentDocument);

Crunch 2.0 can be told to load the plug-in at initialization by editing the constructor of
Crunch2.java to have a line like

proxy.registerPlugin(new SkweezerPlugin());

appended to the already existing plug-ins.

proxy.registerPlugin(new ContentExtractor());
proxy.registerPlugin(new SamplePlugin());
proxy.registerPlugin(new SizeModifier());

The order these lines appear in is the order the plug-ins are applied to filtered content. In this manner,
one can add any number of plug-ins.

5. User Study: Web accessibility by visually disabled users

5.1 INTRODUCTION: WEB ACCESSIBILITY

Crunch can be used for many purposes, ranging from reformatting for small screens, to keyword
extraction for information retrieval, to preprocessing Web pages for devices and software aides for
disabled users. We had a unique opportunity to participate in a brief “user study” that compared
conventional screen readers for the blind and visually impaired with the same screen readers but
operating on the Web page content extracted by Crunch rather than directly on the posted Web page.
The study was performed using Crunch 1.0, but we anticipate the results would be similar with Crunch
2.0.

The number of visually impaired Web users (and computer users in general) is expected to
increase dramatically as the population continues to age. For example, it is estimated that the number of
Americans over the age of 65 will double between 2000 and 2040 [34]. In 1997, the United States
Census Bureau estimated that there were 7.7 million adults with “non-severe visual limitation,” which
was defined as “difficulty with seeing words and letters, even with eyeglasses,” and 1.8 million
American adults with “severe visual limitation,” which was defined as the “inability to see words and
letters, even with eyeglasses” [35]. Persons with even minimal visual impairment are likely to encounter
problems in everyday life. For example, people with vision worse than 20/40 cannot obtain an
unrestricted driver’s license in most states, and may require assistive devices such as magnifiers for
reading [52].

The goal of visually assistive technology is to provide alternative, equivalent mechanisms for
computer and Web accessibility. Screen readers translate text and graphical displays into auditory
output, and have become a predominant assistive technology for users with severe visual disability [36].
However, the current quality of speech-based Web navigation is very limited. In particular, the large
quantity of information on Web documents imposes an enormous cognitive load on visually disabled
users who must rely on auditory transmission alone, compared to sighted users who are able to identify
relevant information by visual scanning [37]. Content extraction from Web pages using Crunch provides

26

Automating Content Extraction of HTML Documents

an opportunity to provide filtered documents as input to screen readers. This may allow visually disabled
users to understand the essential content of Web documents more quickly and effectively.

We performed a preliminary usability evaluation of Crunch 1.0 to supplement screen reading
software for Web navigation by visually disabled users. The study design was based on previously
established usability testing and cognitive analysis methodologies, in which subjects are asked to “think
aloud” while performing representative computer-based tasks [38-40]. This process was captured with
full video and audio recordings, providing a source of data rich in physical, temporal, and social context
[41-42]. In particular, this usability study was intended to compare the quantitative and qualitative
aspects of speech-based Web navigation by a completely blind user, both with and without Crunch.

5.2 USABILITY STUDY METHODS

5.2.1 Subject and software

The subject was a 50 year-old woman who had been completely blind since birth. She had no
light perception from either eye, and required a guide dog for mobility. She learned Braille as a child,
finished a graduate school degree program, and was employed as a full-time teacher. The subject
described herself as “comfortable” with computers and the Web, and used these regularly for work. She
was very familiar with assistive technologies such as screen readers, and was able to type over 20 words
per minute using a standard QWERTY keyboard.

A popular screen reading Web browser (IBM Homepage Reader®) was selected for this study
because it was easy to install and integrate with Crunch. The study subject had used this particular
screen reader in the past, and was asked to perform Web navigation until she felt comfortable using all
basic commands.

5.2.2 Design of Web-based tasks

Two representative Web-based tasks were developed that satisfied three criteria: (1) Each task
involved a website that was among the 50 most popular sites, based on the well-known PageRank
algorithm [43-44]. This was to ensure that tasks were representative of common Web browsing
procedures. (2) Each task was extensively bench-tested to ensure that it met a sufficient number of
World Wide Web Consortium accessibility guidelines to be completed using speech-based navigation
with a screen reader alone [45]. Many popular websites failed to satisfy this criterion. (3) Each task was
extensively bench-tested to ensure that it functioned properly with Crunch 1.0, and that it could be
completed by speech-based navigation using Crunch 1.0 together with screen reading software.

Table 4 describes the two tasks. Each task was further bench-tested to determine the sequence
and number of steps required for completion with screen reading software, both with and without
Crunch. Additional testing was performed to determine the optimal Crunch system configuration
settings that would allow both tasks to be completed.

Table 4
Task (website) Description
A (www.usatoday.com) Identify and read top story under “Sports” section
B (www.cnn.com) Identify and read top headline story

27

Automating Content Extraction of HTML Documents

5.2.3 Test protocol

Approval for the study protocol was obtained by the Institutional Review Board at Columbia
University Medical Center. The subject (who gave fully informed consent according to IRB
requirements) was asked to perform Task A using the screen reader alone, and then to perform Task B
using Crunch 1.0 and the screen reader. The idea is that the two tasks were deemed sufficiently
“similar” to be reasonably comparable, whereas performing the same task twice, one with and once
without Crunch, would contaminate the second trial.

During this process, the subject was instructed to “think aloud” and verbalize impressions while
performing speech-based navigation. After completing the two tasks, the subject was asked to provide
specific qualitative feedback about the testing procedure. A survey was used to rate various aspects of
Web navigation, both with and without Crunch, on a five-point Likert scale: (a) Usefulness of
technology for performing the task. (b) Ease of deciding next step in navigation using technology. (c)
Ease of understanding Web document layout with technology. (d) Ease of locating desired information
of Web document using technology. (e) Overall satisfaction with technology.

While performing the tasks, the study subject was videotaped and audiotaped using a portable
usability engineering system [29, 41]. A video converter converted the monitor display to a video signal
for capture on videotape using a digital video camera. A microphone provided audio input to the video
camera, in order to record statements and questions, as well as the screen reader sounds. A cassette
recorder was used to capture additional sounds. Finally, a standard 8mm video camera was used to
record keystrokes while the user interacted with the system.

5.2.4 Data analysis

The contents of the video and cassette tapes were transcribed verbatim, and annotated with time-
stamps. Tapes were then coded using a standard method adapted from previous studies, in order to note
particular aspects of system usability [41]. User actions were described as an overall task, which was
divided into goals and subgoals. Each subject action was coded either as a correct response, an error, or
a correct response to an error. Errors were categorized into one of three groups: (1) Errors in
understanding of the interface. This included selection of unintended links, incorrect interpretation or
hearing of speech, and confusion with manipulation of GUI widgets or browser commands. (2) Errors in
understanding of document layout or navigation. This included any confusion caused by incorrect
mental representation of documents, such as misunderstanding of navigation bars, or becoming “lost”
while navigating within or between pages. (3) Errors in understanding caused by Web design or browser
malfunctions. This included failure to comply with standard Web accessibility guidelines [45].

The total time required to complete each task was measured. This was used to calculate the time
required to complete each step of the task, based on results from bench-testing. The causes of Web
browsing errors were determined from detailed analysis of audiotapes and videotapes. Numerical ratings
of Web browsing surveys were tabulated.

5.3 RESULTS

5.3.1 Bench-testing of tasks

28

Automating Content Extraction of HTML Documents

Each task was carefully reviewed to determine the sequence and number of steps required for
completion, both without and with Crunch 1.0. Figure 16 demonstrates the results of this analysis for
Task B, which required more steps without Crunch (65 steps) than with it (38 steps). Similarly, Task A
required more steps without Crunch (73 steps) than with it (23 steps). This reduction of steps required
for each task was because the content extraction process simplified direct access to the Web document
contents, e.g., by removing advertisements and banner links.

Task B: Go to www.cnn.com. Identify and begin reading top headline story.
Using screen reader without CRUNCH 1.0:

(A) Open text box and go to website > CNN homepage opens.
(B) Pass 2 lines. Select “Skip to main content” link.

(C) Pass 9 lines. Select “Full Story” link = Full Story page opens.
(D) Pass 2 lines. Select “Skip to main content” link.

(E) Pass 52 lines. Begin reading story text.

Using screen reader with CRUNCH 1.0:

(A) Open text box and go to website > CNN homepage opens.
(B) Pass 2 lines. Select “Skip to main content” link.

(C) Pass 8 lines. Select “Full Story” link = Full Story page opens.
(D) Pass 2 lines. Select “Skip to main content” link.

(E) Pass 26 lines. Begin reading story text.

Figure 16
5.3.2 Features of navigation

Using a screen reader without Crunch, the subject did not successfully complete Task A (“Go to
www.usatoday.com and read the top Sports story”). After 21 minutes and 15 seconds, she began reading
an incorrect story. Based on the fact that this task should have taken 73 steps to complete successfully,
the subject required an average of 17.5 seconds per step without Crunch. Transcription and subsequent
analysis of tapes revealed that the subject made a total of 31 cognitive errors during the navigation
process for Task A. Based on the taxonomy described above, these errors were classified into three
categories: (1) 11 errors in understanding or using the speech-based interface. For example, the subject
attempted to use a “search” function, but was unable to properly enter the desired term into the text box.
(2) 14 errors in document layout or navigation. For example, the web page layout caused the screen
reader to announce the full navigation bar on every page (Figure 17). Even when the subject had already
reached the correct “Sports” page, she became disoriented by hearing the navigation link lists. As a
result, she mistakenly re-selected the “Sports” link nine additional times. When the subject finally
reached the top sports story, she failed to recognize it as a story, apparently because the document made
no announcement before beginning to read the story title. Therefore, she continued past the top story and
eventually selected an incorrect link as the story to read. (3) 6 errors caused by Web design or browser
malfunctions. For example, the subject mistakenly attempted to select a link to an advertisement banner,
believing that it contained relevant information.

29

Automating Content Extraction of HTML Documents

Hometown Padres
lure Wells away

from Hew York
Yankees

| zcarch W 1242152002 - Updated 10:29 P ET
powered (o ale I . .
i— Callah th d

———— N, daliaian Joins tne crow

Quick Links :

5 One year after Super Bowl, Raiders are seventh team ta lose coach.
g % Full story | The MFL candidate pool | AFC, NFC years in review
parts briefs

Game matchups

Latest headlines

Figure 17 - Task A

Using the screen reader with Crunch, the subject successfully completed Task B (“Go to
www.cnn.com and read the top headline story”). After 2 minutes, she began reading the correct story.
Based on the fact that this task should have taken 38 steps to complete successfully, the subject required
an average of 3.2 seconds per step with Crunch. Transcription and subsequent analysis of tapes revealed
that the subject did not make any cognitive errors during the navigation process. This was apparently
because Crunch placed the main headline story very near the beginning of the filtered document, without
extraneous navigation bar or other link lists (Figure 18).

[bnage | CHick here to sldp to main content.]

(@ The Web (O CNHN com | ||Search|
Updated: 1032 pam. EST (0332 GMT) December 31, 2003

@0 2004 comes in under

[— unprecedented security

Search [bnage | 2644 comes in under unprecedented
SECAFT

The ringing in of 2004 iz seeing the most expansive
atiti-terrorizm efforts in 1.3, history: aitspace
closures; elite teams trained to spot potential
attackers from rooftops and helicopters, and

Figure 18 - Task B

5.3.3 Qualitative user evaluation

After completing Tasks A and B, the subject was surveyed regarding attitudes toward various

aspects of speech-based Web navigation without and with Crunch 1.0. Results are summarized in Table
5.

30

Automating Content Extraction of HTML Documents

Table 5 - Scores are based on Likert scale (1=Strongly agree, 2=Agree, 3=Neutral, 4=Disagree, 5=Strongly Disagree).

Aspect of navigation . Score .

Without CRUNCH With CRUNCH
Useful to read Web pages 4 2
Easy to decide next step 3 2
Easy to understand Web layout 2 2
Easy to locate information 4 3
Overall satisfied with navigation 5 3

5.4 DISCUSSION OF USER STUDY

This pilot evaluation employed a usability engineering approach to analyze the application of
Crunch for speech-based Web navigation by a completely blind subject. It was designed as a paired
study, in which the subject was asked to perform tasks without and with Crunch. Bench-testing
confirmed that Tasks A and B required a similar number of steps for completion, suggesting that they
were of comparable complexity. By transcribing, time-stamping, and coding the video and audio
recordings of user interactions with the system, it was possible to measure the speed and error rate of
Web navigation, and to categorize the cause of each navigation error.

Overall, the results of this preliminary user study suggest that Crunch has potential to provide
advantages over conventional speech-based browsing in terms of speed, error rate, and qualitative
satisfaction. This is primarily by removing extraneous content, and thereby simplifying the process of
finding the important information on the page. Bench-testing also demonstrated that Tasks A and B both
required fewer steps for completion with Crunch than without it.

However, supplementation with content extraction is not clearly superior to conventional speech-
based browsing. For example, by removing features such as link lists, Crunch has potential to cause new
errors in understanding page layout and navigation. Similarly, Crunch inserts removed link lists at the
end of the Web document, where they may be extremely difficult for users to navigate because of the
lack of surrounding context. Finally, Crunch does not perform useful content extraction on all websites
(e.g., see Figures 11 and 12), and it was difficult to develop a corpus of representative tasks for
evaluation purposes.

This preliminary usability evaluation has two important limitations: (1) The study involved only
one subject, and therefore could not include meaningful analysis for statistical significance or
reproducibility among various users. (2) Because it involved only two standardized tasks, conclusions
may not be generalizable to other Web-based tasks. These limitations are being addressed by ongoing
usability studies that involve recruitment and testing of additional visually disabled subjects. Results of
evaluation studies will provide additional data for iterative design improvements to content extraction
systems such as Crunch, and provide insight into the cognitive models used by visually disabled users
for speech-based Web navigation.

31

Automating Content Extraction of HTML Documents

6. Future Directions

Crunch uses a third-party HTML parser to create DOM trees from web pages. We have switched
to NekoHTML to resolve the problems with OpenXML. However, we still intend to support commercial
parsers, such as Microsoft’s HTML parser (which is used in Internet Explorer), in the next revision.
Integration will be accomplished by porting the existing Crunch proxy to C#/.NET, which will allow for
easy integration with COM components (of which the MS HTML parser is one).

We are continuing work towards improving the proxy’s performance; in particular, we aim to
improve both latency and scalability, especially with the advent of browsers such as Avantbrowser [53]
and Mozilla [54] that support tabbed browsing, i.e., treating multiple open web pages as part of the same
session.

We are also investigating supporting more sophisticated statistical, information retrieval and
natural language processing approaches as additional heuristics to improve the utility and accuracy of
our current system.

We are currently working on integrating CSS support into Crunch in order to better handle the
layout. We believe that supporting the webpage’s CSS will help maintain a website’s original look and
style even when element from the page have been removed.

We also feel that there need to be some preset defaults for certain genres of websites that users
can select instead of perhaps painstakingly adjusting the fine granularity of controls that Crunch offers.

Currently we do not do any form of learning of a user’s browsing habits. It may be possible to
implement artificially intelligent heuristic algorithms, such as Bayesian learning or Markov Model
creation, as a browser plug-in that reads metadata from the client about how to change the settings. Such
a browser plug-in might provide an interface for the user to rate pages, that is, Crunch’s rendition of
pages, and could update Crunch’s configuration via extra HTTP metadata. The improved Crunch 2.0
plug-in interface is instrumental in allowing these kinds of heuristics because it allows programmatic
changes to settings. With the addition of trainable filtering, Crunch could adapt to a particular user's or
group’s preferences. Even basic control from the browser, without any Al, would enhance Crunch’s
usability because the user wouldn't have to switch applications to change a setting or to enable or disable
filtering.

Finally, one of our main goals was to expose a simple API for programmers to extend, so that
current and future natural language processing and information retrieval algorithms can easily be added
to Crunch. This would allow users to truly be able to customize the content they would like to view on
visited web pages. Full evaluation of the API and plug-in framework will not be possible until sufficient
outside developers have worked with Crunch.

7. Conclusion

Many web pages contain excessive clutter around the bodies of one or more articles, the actual
content of the page. Although much research has been done on content extraction, and there are many
special-case solutions to remove advertising (particularly pop-ups) or reformat for small screens, it is
still a relatively new field where few general purpose tools are available so most researchers must
construct their content extractors from scratch. In this paper we describe two versions of our proxy —

32

Automating Content Extraction of HTML Documents

Crunch 1 being simply the framework; and Crunch 2 with substantial improvements to the framework
with respect to the plug-in APl and the extensibility of the administrative interface. Our approach,
working with the Document Object Model tree as opposed to raw HTML markup, enables us to apply in
tandem an extensible collection of Content Extraction filters, and potentially other kinds of filters such
as format translators and NLP summarizers. The heuristic filters that we have developed to date, though
simple, are quite effective.

Crunch has been implemented as a freely-available web proxy that anyone can use to extract
content from HTML documents for their own purposes. The second version of Crunch is fast and
efficient, and allows for easy integration of third party filters as plug-ins. It also offers a simple, easy to
use user interface for both administrators and end users. And perhaps most importantly, we have
designed this system with accessibility in mind for the visually impaired, so as to facilitate the best
possible web experience in conjunction with devices such as screen magnifiers and screen readers.

33

Automating Content Extraction of HTML Documents

Appendix A — Example Screenshots

We show some examples of typical websites with different Crunch 2.0 options turned on. The point
is to give the reader an idea of the degree of control a user can have over what he/she wants to see on a
webpage. The pages we chose are:

1) A typical article from www.spacedaily.com

2) An article from a link and script heavy site, www.msnbc.com
3) An article from www.cnn.com

4) The entry page to the WWW2004 website, www2004.0rg

Each of the four following pages shows the corresponding set of images. The images start from a
screenshot of the original site, followed by a gradual increase in the number of filters used, continuing to
the screenshot that was taken of the site in text-only mode. We have created this anthology of images to
help the user get an idea of how Crunch and its filters work on a given webpage.

34

Automating Content Extraction of HTML Documents

SPACEDALLY

YOUR PORTAL TO BPA

e
Northrop Grumman Wins Billion
Dollar Missile Defense
Lo A B 4, 0
Thas hssibe Dittarse
Agency (WDIA] oy
awiarded o Hortrog

LeTeman and Ry

m e Kinsibc £
Intarcepices [HET)
Froadathe LIS w.r-u e r—rey—
 skibty 10 destroy
(SN A i ot wiwestie stigs, the
eoositascent phase of Bight

gt years

Fionak O Supar. Norrop Geumman's chaman_ chied
anecutive oficer and presdect said, Ve :vu-v»_-u

Waking Space|
Y2 For Everyone |

SPACEDAI!..Y

un PORTAL TO SFAC

e
Northrop Grumman Wins Billion
Dollar Missile Defense Program
Lo A - o 4,300

Tha Missile Ditense

Agency IWDA] today

awiarded o Hortrog

uereman and Rayhon
beam P Kimatc Ensrgy

US withthe

Py —
atibty 10 destioy horstie i
Frvsles o st Messt wineratis S1age, the
Exslascent phase of RGTE

riman, £ NGy [9am vl
o0 s crcal boos

: tom
Thet KE] COMrane e wiskuind 28 e B 4 Lallon ovee
gt yeas

Fonaky [Separ. Nomfrop Geumman's chaiman, chiel

anecutod ofcer and presdent s8id, “We ae prood of
w5 Contract wn_ which Arrmiy estabi

il

All advanced filters on

Waking Space|
> For Everyone |

SPACEDA=

YOUR PORTAL TO BPA

Northrop Grumman Wins Billion
Dollar Missile Defense
Lo A - o 4,300
Thas hssibe Dittarse
Agency (WDIA] oy
awiarded o Hortrog
nurTRan and RaEheon
beam P Kimatc Ensrgy
Intarcepices [HET)
conract, which 15 to
L i T T
sty 1o destriy
RS 8 T Most viineratis Stags, the
boostascent phase of gt

ApTETISE

The KED contract 15 vilued &
gt yesy

Fonaky [Supar. Nomfrop Geumman's chaiman, chiel
anecutiv oficer and presdect said, Ve :vu-v»_-u

Fave otorrEied lnerm f e -

0 oanse COMDAWET WO B9 Ssreree ded e T

o inadusiry st thes cribcal
slemant of the Agency's ghibal aysre b i systen
The KE! cortract is valued of mone then $4 Bxllion owr sight yean

03 T Thagper it Conmts

i s v B i epicyacia

Tho gvard folones 0§10 millon, sigh-marts Goncagt tsign sor during whh o Compain teamms
£ phase progrem Thi NorBac CoammasRinwce biam wi oo v
managng e

e barrrinal defents intefcapice eograms. cureny

The Nertheop GrummanFisytheon team's malsac

"

i
‘e, KE| il oemphenans e oiher Boost, meikousa
an

SPACEDALLY

Youm PoRTAL TO SFAC

[RT]
| e
Northrop Grumman Wins Billion
Dollar Missile Defense
Lo A - o 4,300
Thas hssibe Dittarse
Agency (WDIA] oy
awiarded o Hortrog
nurTRan and RaEheon
beam P Kimatc Ensrgy
Intarcepices [HET)
conract, which 15 to
L i T T
sty 1o destriy
RS 8 T Most viineratis Stags, the
boostascent phase of gt

ApTETISE

The KED contract 15 vilued &
gt yesy

a4 balon ovee

Fonaky [Supar. Nomfrop Geumman's chaiman, chiel
anecutiv oficer and presdect said, Ve :vu-v»_-u

R

Horthrop Grumman Wins Billion Dollar Missile Defense Program
| m g o 24200

The Missibe Difensa Agency (MDA loday swarosd a Horoy
rm.,rua- T Kiswtic Enérgy Isrceptors (HES

us messiies o o

| L by Norfop Gramman, S industry eaem wil Sevelop and Sest thes cibcal Bocst phase slemant of Pa
| Agsnoy's ghobeal Iayered mssike delerse yssem The KED coneictis visusd
years

| Fonaid D Sugar, Morhiog (Grummans chamman, chisf e

| conzactwn, whc "

| massan difanss W have wssemEed a lsam ot B naon's Io'nnq missile it r'N--\n-r-M!\ -
OeTPiDes] 10 delivening & Qualty SySIam on B, on budJEt and wi L

| 0 our courteys curisl oo o vill akic sarve % 8 vistl, deployatia detrson 3 hose s woukd

| teomenis

The avesrd foboves 8 $10 millon, Sght month concept design effort duning which s Competing oo
| produced conceces e a KE| boost phase program Tha Norep GrmmaniRaece eam vl bow nave
Torwand weh anagng he

o s T s b sbameet n B 2010 2012 Bmekinme, KE
8 barrrinal dafense iNSNCOpicr PROGRAMS Cumently (ndenway

o LIS A Cifee 0GP

“The Northvop Grummanfisytheon tam's realsic
| Succasshusy deploy thes poron of the B

on guisang. o

on guisang, man
Systern * sand Donald C Whster, Moniop

successhly dsploy Uns Dosion of the Ballsbe Mrssils Deterse
| Grumman corporate wice presicert, Measicn Sy
T KE prograrm il (w8 8 Ianvd-Easad <apabiity 1t can b Quickly and

by A0 10 Sea-hased

¥ 0 o that's

s challanging end important
e 0 Vi 115 O OV SySIAn, EROMBIIg 8 ew Cagal

Mitsse Daforrsn Agency wi & minenum leved of nsk and cost” said Lowse L Francescon

rBseL and prasdent of e Compuany's

wiolney chosely with OUF Customens o

25 posuble

| KEI Dasign

4O LEM -

Ignore Scripts

35

3 Secior prwsion, and kad soscutive for migsike deliene

"
“The KE] prograrm wil provis: a lana b
| plattorms =

g & v oy
oo lof"'\'-v"'\a merwrrasm berved of ik and cost " Sed Lowite L
b SSDoms Cusiness in Tcson, AN "W kook fonward 1o
Chotaly with OUF CUSIOMES ON M developnme] and' Dk o0 depioy
vy

IMRgraRor Chvee il 16SDONGIREDRS INCLSH
et and i) Pl maccsmn

T

Ignore everything, text only

ot hight

o lbcar and prosidont sed. Ve .\'u'\m-a: of

(e mssed WKEL crincel

ading 1o plamed deployment

ot i
ancescon, o Riyfeon vice

apatiity &5 quidy

[Sv— -

Automating Content Extraction

BEANAMA, Balwsn. Dec 2 — LS. Embassies on
Tuesday wamed of possilile teror attacks
agamst two hotels i Kenya and a honsing

componnd for Westerness in Sandi Arabia. Two
baniks were evacnated m the Feny

oL@ W

Original

Poasitis terror
Hhreats simed ot
hatels, housing

| Frniaranan akraiar
BANAMA. Balwan. Dec. 2 — ULS. Embassies on
Tueadny wamed of possible terror attacks
against two hotels m FKenva and a howesis
componnad for Westemers m S
banks were evacnated m the Keny
becanse of a bomb threat -

oL@ W

All advanced filters on

B0 i of Baipa S sttt - g
- amn
=

Jlmags e o -5 warns of Kenya. Saudi attacks
citalles) simeid st hotels [Ty Y
" Limk ST A e

MANAMA. Babwass, Dec 2
possible temor attacks
componnd for Westemers m
ied i the Ken

U5 Emba 2 on Tnesday w:
1 two hotels i Benya and a howsig
audi Aralaa Two banks were

an capiial bec: 2 bomb thrent

Yadversing em BT
L1

B RIVADH. Saodk Arsbia, bervorists had the Seder Vilage ¢
rpokermirnan o Sk Arsbua, Carel Foain, 1606 The Astocasted 7
Eoerpleses may alio bt hgeed
e s the ershasey bl
tareen the bours of 6 p .
“The Esbaary coctrmrs
Y
e Kertyan aptal, the (1.5 Ensl

e mder “ st survriance,” tr Exbanry
e froms the Susdi tapetal Sha tad oot homemg

545 At an sploreet] deperserts o wateg hostesg Coengoondi & Bryadh
wcept for officil bamers ™
bn copenrmed shout e rurvert sevarey sbssten m fand A, pariedety e bourrg

i e, "The 11 5. goreroanuest rocesty secered an

ascerpout wirses detlng teeons thiraes mesed o8 Asserean i = drwmtown Harohs . e ey of e
vt is s the e several da .
B Ok B ei——— e

Ignore everything, text only

36

of HTML Documents

B0 i of Baipa S sttt - g
- & 2 1 2 B sperreperes
s .

Thimage Blop | sinke]

Timage Mo ik
'mm'““ LS. warns of Kenya. Sandi attacks
Mavipasisa)

Possible terror threats aimed at hotels. howsing compounds.

ALANAMA. Badwass, Dec 2
possible tesor attacks
componid for W m Saude Arabia. Two banks were
evacuated i the Kenyan capital becanse of a bomb threat

u&m'ml?hl‘lmlmm Lempinte Siwer]
mmung s MENTIC)

Ignore scripts

Automating Content Extraction of HTML Documents

O s i i S e g sty i 1. SOV - e

- '4.' d-6 .3 0 2 B

O s - s i o s o ommmid ity D [BN - il
TR O e

-

LAW EENTER

unlikely

unlikely

[CHN) 0 e wve st Tarry
Sahaave's 40Th berthday. e
INdepEnaent guirdisn sppsinted
¥ waman o the

Cortir ot 4 ighe -
conmtsvecty 144 In ik =
ot seaated tepartnat the i
| in 3 pariisient vegatatus state .
et s HiaBhoad ot
pidids L b
B 0 o, B gt s, Bttt
o] e e bl

Trvori oot v o Bt
el

=
-
x
F

L‘d——

hary Toals
5 aaDn FE Rt
Gihemat 1y G rmAneonss

Stary Tosls
- 6 Ty G0 e ey
e s et By Dot i (et s

it ek s,
T e o g | Tery e
e
[a——
18 g 1wy i st B [T ey

i e paseess, Bt 363 sy
St we IS b e Fon
i e

Behuimt's i szpporty Wt corteotin Tt | PSSR (k] =Y (bangy

et Erac KA1 AT e

Ao z@mw o T Ao zam o

Original Remove forms

O s i i S e g sty i 1. SOV - e

[4-0-28 28

T

O s i i ke e et iy Do SRV Mmariie

i-2.38 28

T

g | Ship ss main sonsmr] :

y——————————————————— P Sniksty
(M) - On The eve of Lot Ssinn]

tha Torm b

-
B parsistent

shary

LT U OuR E-HAIL ALEATE

o
1Dty o, o i w6 b gl el

kil o o i
= S i i i i e
- unlikely = o g s -
ICHN) - On the eve of Terry "Mathing n De 24 tay ELUL N 2T
ool by Mgt Lty

T rocrmrsrtunena, of i Guirtiin &4 i 10 1 Eining 54 [, whd (11442 40 snartien Bser) cksbar srourey
o s b o

-

e W e A S, i e
S5 varal uars g 0 1w 10 G it i et A Db o e e Farapy Sifea ot Ba St bm
an, sirmitng B e i e g e

Buth 14t Pefeng i SRS et bt dhiged hiy Srd Torn et st

n u s B g e

s and g . [rae—
s oo et ehceee % 3 e e evebpabon v Bu e

Echuars's e 14gports e cordvesn [petem. st din 19O,
TR Bt w34 4 FOAR b B § o e dena, vt 0 wa =)
B oL @E o Bo2s@w Tt

All advanced filters on Ignore everything, text only

37

Automating Content Extraction of HTML Documents

Call for Participation

WW2004

The Thirtesnth
Internaticnal Woeld

Wide Web
Conference
New York Sheralon :‘-I*M-:.;I;:n T T 1
1722 Hlj‘ 2004 Wl Wy DRI
New York, NY Frpmet Bamaen FOD Basiars. Bids. Fansry spainct. s gwmstn

Mt Wy 7
. Dy Guy

= S

2l
¥

AT R

W ey

All advanced filters turned on

i
fe |

4
l

i1
iif

E‘Z‘
£
i

|
I

S Fs iy 140
Mgk P Maibd Poled i W bRt

i
i
i

[t S ———
a " [s L I T ——
" [

- [bt

Hrcam

= - T

ety

Ignore everything, text only

38

Automating Content Extraction of HTML Documents

Acknowledgements

During the reported research, Prof. Kaiser’s Programming Systems Laboratory was funded in part by
Defense Advanced Research Project Agency under DARPA Order K503 monitored by Air Force
Research Laboratory F30602-00-2-0611, by National Science Foundation grants CCR-02-03876, EIA-
00-71954, CCR-99-70790, and by Microsoft Research and IBM. Dr. Chiang was supported by grant
LMO7079 from the National Library of Medicine, and grant EY013972 from the National Eye Institute.

We would like to extend a special thanks to David L. Neistadt, who participated in the development of
Crunch 1.0, and to David Kaufman, Vimla Patel, and Roy Cole for helpful discussions regarding the
usability study, as well as to the subject who generously volunteered her time to participate in the study.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

References

Aidan Finn, Nicholas Kushmerick and Barry Smyth. “Fact or fiction: Content classification for digital libraries”. In
Joint DELOS-NSF Workshop on Personalisation and Recommender Systems in Digital Libraries (Dublin), 2001.

A. F. R. Rahman, H. Alam and R. Hartono. “Content Extraction from HTML Documents”. In 1st Int. Workshop on
Web Document Analysis (WDA2001), 2001.

0. Buyukkokten, H. Garcia-Molina and A. Paepcke. “Accordion Summarization for End-Game Browsing on PDAs
and Cellular Phones”. In Proc. of Conf. on Human Factors in Computing Systems (CHI'01), 2001.

O. Buyukkokten, H, Garcia-Molina and A. Paepcke. “Seeing the Whole in Parts: Text Summarization for Web
Browsing on Handheld Devices”. In Proc. of 10th Int. World-Wide Web Conf., 2001.

E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski and T. Laakko. “Two Approaches to Bringing Internet Services to
WAP Devices”. In Proc. of 9th Int. World-Wide Web Conf., 2000.

Stuart Hanzlik “Gorilla Design Studios Presents: The Hosts File”. Gorilla Design Studios. August 31, 2002.
http://accs-net.com/hosts/.

Marc H. Brown and Robert A. Shillner. “A New Paradigm for Browsing the Web”. In Human Factors in Computing
Systems (CHI'95 Conference Companion), 1995.

K.R. McKeown, R. Barzilay, D. Evans, V. Hatzivassiloglou, M.Y. Kan, B. Schiffman and S. Teufel. “Columbia Multi-
document Summarization: Approach and Evaluation”, In Document Understanding Conf., 2001.

N. Wacholder, D. Evans and J. Klavans. “Automatic ldentification and Organization of Index Terms for Interactive
Browsing”. In Joint Conf. on Digital Libraries "01, 2001.

0. Buyukkokten, H. Garcia-Molina and A. Paepcke. “Text Summarization for Web Browsing on Handheld Devices”,
In Proc. of 10th Int. World-Wide Web Conf., 2001.

Manuela Kunze and Dietmar Rosner. “An XML-based Approach for the Presentation and Exploitation of Extracted
Information”. In 19th International Conference on Computational Linguistics, (Coling) 2002.

A. F. R. Rahman, H. Alam and R. Hartono. “Understanding the Flow of Content in Summarizing HTML Documents”.
In Int. Workshop on Document Layout Interpretation and its Applications, DLIA0O1, Sep., 2001.

Wolfgang Reichl, Bob Carpenter, Jennifer Chu-Carroll and Wu Chou. “Language Modeling for Content Extraction in
Human-Computer Dialogues”. In International Conference on Spoken Language Processing (ICSLP), 1998

lon Muslea, Steve Minton and Craig Knoblock. “A Hierarchal Approach to Wrapper Induction”. In Proc. of 3rd Int.
Conf. on Autonomous Agents (Agents'99), 1999.

Min-Yen Kan, Judith L. Klavans and Kathleen R. McKeown. “Linear Segmentation and Segment Relevance”. In Proc.
of 6th Int. Workshop of Very Large Corpora (WVLC-6), 1998.

http://www.opera.com

http://www.bitstream.com/wireless

39

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Automating Content Extraction of HTML Documents

http://sourceforge.net/projects/wpar

http://www.webwiper.com

http://www.junkbusters.com

http://www.openxml.org

Private communication, Min-Yen Kan, Columbia NLP group, 2002.
http://www.apache.org/~andyc/neko/doc/html/
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html

http://www.eclipse.org/articles/Article-Accessibility/accessibility.html

http://www.microsoft.com/enable/

http://www.bitstream.com/wireless/server/workflow.html

http://www.greenlightwireless.net/services/default.asp

J. Nielsen. “Usability engineering.” New York: Academic Press, 1993.

B. Schneiderman. “Designing the user interface: Strategies for effective human-computer interaction” (3" edition).
Reading, MA: Addison-Wesley, 1997.

R. L. Kline and E. P. Glinert. “Improving GUI accessibility for people with low vision.” In Human Factors in
Computing Systems (CHI’95 Conference Companion), 1995.

W. K. Edwards, E. D. Mynatt, and K. Stockton. “Access to graphical interfaces for blind users.” Interactions 1995; 2:
54-67.

I. U. Scott, W. J. Feurer, and J. A. Jacko. “Impact of graphical user interface screen features on computer task
accuracy and speed in a cohort of patients with age-related macular degeneration.” Am J Ophthalmol 2002; 134: 857-
862.

D. P. Rice. “Chronic care in America: A 21% century challenge.” Institute for Health and Aging, University of
California, San Francisco. Princeton, NJ: Robert Wood Johnson Foundation, 1996.

American Foundation for the Blind. “Statistics and sources for professionals.” New York: American Foundation for
the Blind, 2000.

C. Brown. “Assistive technology computers and personal with disabilities.” Communications of the ACM 35: 36-45,
1992.

1. J. Pitt, and A. D. N. Edwards. “Improving the usability of speech-based interfaces for blind users.” In Proceedings of
the Second Annual ACM Conference on Assistive Technologies (ASSETS), 1996.

C. Lewis. “Using the ‘thinking-aloud’ method in cognitive interface design.” IBM Research Report RC 9265.
Yorktown Heights, NY: IBM Thomas J. Watson Research Center, 1982.

K. A. Ericsson, H. A. Simon. “Protocol analysis: Verbal reports as data.” Cambridge, MA: MIT Press, 1993.

A. W. Kushniruk, M. Y. Kan, K. McKeown, et al. “Usability evaluation of an experimental text summarization system
and three search engines: Implications for the reengineering of health care interfaces.” Proc AMIA Symp 2002; : 420-
424,

A. W. Kushniruk, V. L. Patel, and J. J. Cimino. “Usability testing in medical informatics: Cognitive approaches to
evaluation of information systems and user interfaces.” Proc AMIA Symp 1997; : 218-222.

A. W. Kushniruk, D. R. Kaufman, V. L. Patel, et al. “Assessment of a computerized patient record system: A cognitive
approach to evaluating medical technology.” MD Comput 1996; 13: 406-415.

S. Brin S, and L. Page. “The anatomy of a large-scale hypertextual web search engine.” Computer Networks and ISDN
Systems 1998; 30: 107-117.

http://www.promotiondata.com/article.php?sid=190

40

[45]
[46]
[47]
[48]

[49]
[50]
[51]
[52]

[53]
[54]
[55]

[56]

[57]

Automating Content Extraction of HTML Documents

W. Chisolm, G. Vanderheiden, and I. Jacobs. “Web content accessibility guidelines 1.0.” Interactions 2001; 8: 35-54.
http://www.dolphinuk.co.uk/products/hal.htm

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/winxppro/reader _overview.asp

Chiang, Michael, “World Wide Web Accessibility by Visually Disabled Patients: Problems and Solutions” Final
Report for CS6125 WHIM at Columbia University’s Computer Science Department.

http://www.webaim.org/simulations/screenreader

http://www-3.ibm.com/able/solution_offerings/hpr.html

http://www.apache.org/

Shoemaker JA: Vision problems in the US: prevalence of adult vision impairment and age-related eye diseases in
America. Bethesda, MD: National Eye Institute, 2002

http://www.avantbrowser.com

http://www.mozilla.org

Welsh, M. “The Staged Event-Driven Architecture for Highly-Concurrent Server Applications” Ph.D. Qualifying
Examination Proposal, UC Berkeley, December 2000. http://www.cs.berkeley.edu/"mdw/papers/quals-seda.pdf.

Chen, Y., Ma, W.Y., and Zhang, H.J. “Detecting Web Page Structure for Adaptive Viewing on Small Form Factor
Devices”. Proc. WWW’03 Budapest, Hungary, May 2003

http://www.gnu.org/software/gcc/java/

41

