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Abstract 
We present an interaction model enabling data-source probes and action-based gauges to communicate 
using an intelligent event model known as ActEvents.  ActEvents build on the conventional event 
concepts by associating structural and semantic information with raw data, thereby allowing recipients 
to be able to dynamically understand the content of new kinds of events.  Two submodels of ActEvents 
are proposed: SmartEvents, which are XML-structured events containing references to their syntactic 
and semantic models, and Gaugents, which are heavier but more flexible intelligent mobile software 
agents. 

This model is presented in light of DARPA’s DASADA program, where ActEvents are used in a 
larger-scale subsystem, called KX, which supports continual validation of distributed, component-
based systems.  ActEvents are emitted by probes in this architecture, and propagated to gauges, where 
“measurements” of the raw data associated with probes are made, thereby continually determining 
updated target-system properties.  ActEvents are also proposed as solutions for a number of other 
applications, including a distributed collaborative virtual environment (CVE) known as CHIME. 

Introduction and Motivation 
DASADA API Specifications 
DARPA’s DASADA program has focused on standards for distributed systems to ease assembly and 
maintenance of systems that are composed of components “from anywhere” (e.g., COTS, GOTS, open 
source, etc.).  This program has focused on four areas: architecture description languages to describe 
the composed system, probes to gather information about the current system configuration and state, 
gauges to interpret this information, and adaptation engines that can reconfigure the system as 
necessary. 

This paper focuses on the interaction between probes and gauges, and proposes a standard for data 
interchange between them.  The control interfaces for both probes and gauges have been developed 
extensively, and standards have been proposed by others.  However, the format and transmission 
mechanism for data collected from probes is underdeveloped.  We examine the problem and suggest 
possible models and architectures, along with a description of our implementation and experience 
using it. 

Probes 
A probe is defined as “an individual sensor attached, either statically or dynamically, to a running 
program” [1].  Probes emit events that describe some aspect of a program’s execution, either at a 
specific point in time or over some duration.  Probes usually: 

• are integrated into or wrapped onto the application itself; 

• communicate with the application via an API; or  

• look at indirect measures such as operating system or network resource usage. 

The proposed control interface for probes consists of the following methods: Deploy, Install, Activate 
(and their inverses), Query-Sensed and Generate-Sensed to enumerate the events that a probe can send, 
and the Sensed method to publish an event.  The newer Focus interface allows additional probes to be 
activated for detailed examination of a problem.  The DASADA standard assumes that probe data will 
be emitted in the form of Siena events. 



Events 
For the purposes of this paper, we define an event as “a collection of data produced by a system 
component, and of interest to zero or more other system components.”  Note that this description 
makes no assertions about formatting, routing, or transport. 

Siena 
The University of Colorado at Boulder’s Siena event system [2] enables Internet-scale content-based 
event delivery.  Siena models events as an unordered, flat collection of attribute-value pairs. 

Gauges 
Gauges [3] are defined as “software entities that gather, aggregate compute, analyze, disseminate 
and/or visualize measurement information about software systems.”  Gauges support a simple 
configuration interface.  The proposed gauge standard includes the concept of a “Gauge Reporting 
Bus,” which is specifically for communicating gauge reports to consumers (who might, e.g., authorize 
repairs). Consumers supply callbacks to the reporting bus, which are called when an event of interest 
occurs.  

Probe-Gauge Interaction 
Probes use system-specific techniques to extract data from the target system.  Gauges use the Gauge 
Reporting Bus interface to report to higher-level components.  While the respective APIs for Probes 
and Gauges are clearly specified, there is no proposed standard for formatting probe data and sending 
it to the appropriate gauges.  Since one cannot assume that probes and gauges will be located on the 
same machine, some form of networked interprocess communication (IPC) is necessary.  Since the 
machines may be of heterogeneous type, the format for probe data should be as portable as possible. 

While we do not address the issue in this paper, we also note that the standard interface for controlling 
probes, although presumably intended to be an event-based interface, is in fact specified as an RPC-
style function API. 

The Problem 
There are three aspects of the probe-gauge relationship that make the problem of connection difficult: 
the dynamic nature of individual probes, the dynamic topology of the various components, and the 
heterogeneous nature of the systems involved. 

Individual probes may be frequently added and removed from the system.  Probes may be 
heterogeneously sourced, with possibly different semantics for similar-looking data; simply labeling 
the type of data elements within the event, as in traditional attribute/value pairs, is insufficient.  
Instead, the semantic information required for proper interpretation of the probe data must be 
associated with the event. 

Probes and gauges will be activated and deactivated, and may migrate from machine to machine.  
Some of these components (especially probes) may be running on constrained devices, and requiring 
every component to maintain a complete network topology is not feasible.  Further, since the main 
tasks for most probes are straightforward, requiring all of them to add the data and logic necessary to 
manage bidirectional RPC with gauges in a changing environment would increase their complexity 
considerably.  Detailed knowledge of event routing and dispatch should ideally be removed from most 
probes and gauges.  While more advanced systems such as CORBA can help with component 
discovery, probes will typically have many consumers for a single event, which is not handled 
efficiently under the CORBA model nor under analogous RPC extensions. 



The systems involved may be completely heterogeneous with different byte-ordering, operating 
systems, architectures, etc.  Message formatting should be completely architecture independent, and 
leverage industry standards to the degree possible. 

ActEvents Model Overview 
For these reasons, we propose that probe information should be encapsulated under an “Active Events” 
model.  This model associates semantic information with the event data.  This approach has some 
resemblances to the work on Active Networks in the networking community, in which data packets 
have additional information or code.  We hope to leverage some of that experience while avoiding the 
mistakes.  In particular, the experience of the networking community has shown that models requiring 
all mobile data items to be intelligent executable code results in unacceptable performance. 

Adding some intelligence to events involves balancing two competing constraints.  For maximum 
flexibility and intelligence, one wants lots of extra data (e.g. network topology maps) and sophisticated 
processing (e.g. execution of mobile code at every routing node).  However, many probes will be 
producing large amounts of very simple data.  In that case, the overhead associated with large events 
and extensive processing is unacceptable. 

Our Submodels 
We propose two separate submodels that together can support most application needs: a lightweight 
submodel for frequent, similar events and a more sophisticated submodel for more significant events. 
Both models solve the various problems outlined in the previous section, as described below. 

We call the lightweight model SmartEvents.  These are XML-structured events that contain references 
to their syntactic and semantic models.  The bulk of the sophistication in this model is in a separate 
parsing engine, leaving the events themselves simple and lightweight. 

We call the sophisticated model Gaugents.  These are intelligent mobile software agents; able to 
transport themselves around the network and execute code at each location they visit. 

The first problem involves the dynamic nature of individual probes and the difficulty in identifying the 
correct semantic model for interpretation.  SmartEvents are interpreted by a special parsing engine that 
maintains a mapping of grammar to semantics. Gaugents carry the code necessary for correct 
interpretation. 

The second problem is the dynamic topology of the components.  SmartEvents uses the Siena system 
to transport events where they need to go, pushing the problem to the distributed middleware 
component.  Gaugents can dynamically determine their own routing as they move from node to node. 

The third problem is the heterogeneous nature of the involved systems.  SmartEvents are structured as 
XML and thus completely architecture independent.  Gaugents use system-independent mobile code 
and require a “receptacle socket” to be present at each participating node for Gaugents transportation 
and execution. 

SmartEvent Model 
For frequent simple events, the most efficient technique is to have events contain a reference to their 
syntactic and semantic model.  For these types of events, the event consists of a tagged document 
where the tags are used not just to indicate the structure of the text but the semantic model under which 
they should be interpreted. 



Parsing/lookup engine 
The parsing and lookup engine identifies the “semantic subcomponents” of the event and processes 
them appropriately.  Unfamiliar subcomponents are handled intelligently by sending requests to the 
data repository. 

Data repository 
The data repository maps unknown tags to syntactic and semantic information, and delivers this 
information back to the parsing engine.  This component functions as a sort of primitive ontology 
server. 

Semantic model 
Once semantic subcomponents have been identified, the lookup engine applies appropriate processing 
to the events to make them as digestible as possible for later system components.  Processing may 
include augmenting, deleting or rewriting parts of the subcomponent, as well as filtering it entirely. 

Gaugents Model  
Mobile code-containing events 
Gaugents may be constructed or parameterized on the fly by a human or a program, then transmitted 
from host to host using a dynamically determined routing pattern reactive to the latest host's 
circumstances and surroundings as well as past and planned trajectories. No workflow is required for 
Gaugents-based ActEvents.  

Receptacle sockets for Gaugents, Trajectories, etc. 
Gaugents can travel between distributed components using their own transportation mechanism. Target 
system components are equipped with receptacle sockets to enable them to properly receive and 
execute incoming Gaugents, as well as send them off along their routes. For added dynamism, two 
important concepts are implemented: execution scheduling of Gaugents at receptacle sockets and route 
re-configuration.  

Execution of Gaugents at receptacle sockets can be specified and controlled precisely; entry and exit 
conditions can be defined, satisfaction of which is required for Gaugents execution to commence, halt, 
etc. Other factors like the number of execution iterations can also be preset.  

Gaugents’ routes are reconfigurable – capable of being modified at any intermediate step. This is 
useful particularly because it is difficult for the creator of the Gaugent to predict all target components 
interested in its existence.  A solution is to have these target components express their interest 
indirectly through those components that the Gaugent are likely to visit.  Then, the Gaugent can be 
rerouted to travel to these other components, either through unicast or multicast channels.  There are 
two ways to achieve this: clone the Gaugent by the receptacle socket and retransmit it to the newer 
target components, or modify the Gaugent’s trajectory so as to cover these newer components. The 
overall effect is advancement towards a pub/sub model for Gaugents. 



ActEvents Architecture 
SmartEvent Architecture 
Event Format 
Events are structured as XML messages.  We feel that Siena’s flat, unordered collection of attribute-
value pairs is inadequate for describing common probe results.  For example, many probe tools 
instrument method calls.  The data for such an event needs to list the class, object, method, return 
value, return type, and a variable-length list of parameter type-value pairs.  Attempting to interpret 
such data from an unordered set of attribute-value pairs is needlessly complicated. 

Typical SmartEvents will be composed of at least two subcomponents: an outer “envelope” of 
metadata and a “payload” of specific probe results. 

Event Transport 
The Siena Internet-scale event network handles event routing purely based on event content, freeing 
both probes and gauges from the need to manage network topology.  Issues in translating between 
XML-structured SmartEvents and flat Siena events are discussed in the implementation section below. 

Event Packager 
To support legacy probes, the Event Packager component can construct SmartEvents from primitive 
probe events using custom plug-ins.  Additionally, events are copied to persistent stores for later data 
mining. 

Metaparser 
The Metaparser does a high-level examination of the event to determine the appropriate 
subcomponents.  Each subcomponent is independently validated, with grammar looked up from the 
Oracle if necessary.  If valid, the appropriate TagProcessor (possibly also retrieved from the Oracle) is 
applied to the SmartEvent and the result is published. 

Oracle 
The Oracle maintains mappings of grammar elements to particular syntactic/semantic pairs (e.g., XML 
schema and tag processor control files).  When the Metaparser encounters an unfamiliar tag, it sends 
the XPath to the Oracle.  The Oracle matches the XPath and returns the appropriate schema and control 
files. 

Tag processor 
The tag processor performs domain-specific processing on the message.  This may involve adding, 
deleting, or rewriting portions of the event, or filtering it entirely.  The goal is to present homogenous, 
simplified events for later processing stages. 



A Gaugents implementation – The Worklets Architecture 
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Worklets 
Worklets can be defined as self-contained mobile software agents that are deployed on a 
programmable route of distributed components of a target system, with the purpose of dynamic 
reconfiguration. The fact that Worklets are self-contained is limited only to the computation that it is 
performing at the hop in its route; however, in general, the context in which the Worklet executes is 
actually defined by the local adapter. What this means is that the local adapter provides the missing 
links required for the sub-general Worklet to execute in the context of the local target system 
component. The Worklet is therefore contextualized by the target system component it is dealing with. 

Worklet Virtual Machine 
The Worklet Virtual Machine (WVM) is an execution environment for incoming Worklets. It also 
provides the transportation mechanism that enables the Worklets to travel between successive hops. A 
host-specific Worklet adaptor must be constructed for each anticipated host system or component, and 
is attached to that host.  In this example, the source of the Worklet is Site 0 with later hops being Site 1 
and Site 2. The Worklet travels to Site 1, where the corresponding Worklet junction is scheduled for 
execution by the local WVM. After execution, the Worklet uses the local WVM to propagate to the 
following hop in its route. 

Worklets: Jackets and Junctions 
A separate computation, or “Worklet junction”, is defined for each step along the Worklet's 
predetermined route. However, this route can be dynamic since it is modifiable on the fly by other 
Worklets or target systems en route. For non-trivial cases, a Worklet “Jacket” for the current junction 
determines the customizable scheduling for the Worklet such as pre- and post-execution conditions. 
The Jacket can also be engineered to let the Worklet continue on its route as soon as it deposits the 
Worklet Junction instead of waiting for it to complete execution. As mentioned above, the trajectory of 
the Worklet can be modified dynamically at intermediate WVMs. The Worklet Jacket regulates the 
extent to which this information, along with other data in the Worklet, is accessed/modified from 
outside the Worklet. 



SmartEvent Implementation 
Event structure 
Composed Schemas 
Because particular probes will presumably be updated more frequently than basic metadata, our 
implementation uses a technology we developed called “FleXML” to allow the description of events 
through several composed schema fragments.  The schemas for Envelope and Payload can thus be 
managed independently. 

Standard Metadata 
The standard metadata envelope for a SmartEvent contains information that will be of interest for all 
probe events: 

• A locally unique identifier; 
• The IP address and port of the generating probe; 
• A timestamp. 

Example payload section 
The AIDE system [4] generates information about method calls.  Its payload includes: 

• Object; 
• Class; 
• Method; 
• A list of type-value pairs for the parameters. 

Metaparser 
Techniques for parsing composed schemas 
One of our reasons for choosing an XML-based structure for our messages was the rich set of standard 
tools available for working with XML.  We wanted our parser to leverage existing work as much as 
possible.  However, the APIs of existing parsers are inadequate to handle the style of processing (i.e., 
use of multiple schemas for a single message) required for the Metaparser. 

The fundamental problem of working with composed schemas was solved by constructing an elaborate 
front end for the processor, which could send different portions of a message to different XML 
processor instances.  To increase performance, we also modified the XML processor to allow caching 
of parsed schemas. 

Three-layer approach 
The Metaparser has a three-layer system for parsing incoming messages according to composed 
schemas.  When a new message arrives, a separate parsing thread begins to examine it.  If a tag 
matches a known semantic subcomponent, a validator is started to handle that subcomponent and 
pointed at the correct schema.  Each validator, in turn, is a wrapper around an Apache project Xerces 
XML parser/validator.  Validators allow particular information to be selectively passed through to 
underlying parsers.  The top-level parsing thread informs the validators which parts of the message are 
relevant to their schema.  Validators pass appropriate data through to their parsers that do the actual 
XML schema validation. 



Some additional complications arise.  For instance, the Xerces parser expects complete messages for 
validation, not fragments.  Therefore, extra information is added to the data stream so that the 
fragments appear to be complete messages to the validating parsers. 

Optimizations 
Since there will be many messages, most of which will be based on only a small number of schemas, 
efficient caching of schema information is key to performance.  Unfortunately, the current Xerces 
implementation is rather inefficient, requiring the schema to be read and parsed for each message.  We 
modified the Xerces API to make parsed schemas a first-class data object, similar to the corresponding 
Oracle implementation.  Schemas can now be parsed once, and then repeatedly applied to messages. 

Oracle 
Architecture 
The Oracle component uses an SQL database to map XPaths and tags to associated files.  It supports 
both XPaths anchored at the root and “free-floating” context-independent tags.  The Oracle waits for 
request events to arrive, and attempts to match the unknown XPath or tag.  If a match is found, a 
success event is published, and a Worklet is dispatched containing the associated files.  Otherwise, a 
failure event is published. 

Interface 
To load the database, the Oracle provides a graphical interface.  The user specifies an XML schema 
file.   The Oracle then parses this file, identifying unique tags.  These are then presented as the first 
column of a table.  In the other columns, the user can specify the files that should be sent if this tag is 
queried. 

Tag processor 
The TagProcessor applies domain-specific processing to the message.  The primary mechanism for 
doing so is an engine that is controlled by two XML-formatted files. 

Phase 1: XSLT 
The first file is a standard XSLT template file that allows arbitrary transformation of the message.  
Based on analysis purely local to this message, tags can be added, removed, or rewritten. 

Phase 2: Rules 
The second file allows some context-based adjustments to the message.  The Metaparser has the option 
of passing an “environment” symbol table to the TagProcessor.  The message can be conditionally 
modified based on values in the table, and new or modified values can be written to it.  This allows one 
to e.g. maintain a count of a certain type of event. 

Siena 
The Siena system has a number of features that make it well-suited to the needs of the SmartEvent 
system.  Most importantly, it has a scalable implementation of content-based addressing.  This is 
tremendously valuable for the SmartEvent model, as otherwise gauges and probes would be orders of 
magnitude more complex.  Additionally it has a simple, well-documented interface.  The system is also 
lightweight enough to make integration of wireless handheld devices feasible. 



There are a number of problems as well, however.  Siena does one-time best-effort delivery.  There are 
situations where store-and-forward at an intermediate node might make the system more robust, as 
well as enabling intermittently-connected devices to participate. 

More significantly, we had to find a system for mapping our XML-formatted messages to Siena 
attribute-value pairs.  We considered flattening the XML, with each attribute consisting of the full 
XPath to the associated tag.  We rejected this as unwieldy. 

The currently implemented solution is to put the entire XML message into a single value, and 
“promote” some of the envelope metadata to the attribute-value level for content-based routing 
purposes. 

Gaugent/Worklet Implementation 
Introduction 
Worklets can implement the local aspect of decentralized workflow [5]; however, we only discuss 
Worklets with respect to ActEvents here. Worklets provide computational intelligence to ActEvents. In 
the SmartEvent version of ActEvents, the pub/sub transportation mechanism is suited for general, 
frequent event notifications. However, there are other cases where bi-directional streaming of data-
only notification events is not effective, e.g., for those relatively infrequent circumstances where 
processes need to run at the recipients of the events.  

Consider a scenario where the KX system is monitoring a mission critical system, e.g., a 
manufacturing control system. If one of the probes detects a critical condition, it could send out 
“executable” SmartEvent-based ActEvents to notify KX of the problem, and KX would eventually 
send a fix into the target system.  

A better solution is to have the probe issue a Worklet-based ActEvent that can directly carry out 
remedial tasks immediately without waiting for KX. This allows emergency reactions to execute 
immediately without waiting for the higher-latency KX to identify the problem, determine a response, 
and dispatch a Worklet.  

This can be interpreted as being complementary to standard RPC-style communication, with all 
callbacks being handled not by the sender of the ActEvent, but by its mobile proxy (the ActEvent 
itself). Also, the fact that the Worklet is autonomous and its execution is asynchronous means that it 
requires less bandwidth than synchronous RPC.  

The WVM, or Worklet Virtual Machine, is the execution environment and transportation mechanism 
for Worklets. The host adapter is the link between the WVM and the system component, which is 
essential for Worklet arrival, execution and dispatch. The WVM is a multithreaded system that can 
accept incoming Worklets from peer WVMs through either Java RMI or a direct socket connection.  

Incoming Worklets will have one Worklet junction intended for the local WVM, responsible for 
encapsulating the complete execution to be performed at that local WVM.  There is also an optional 
Worklet jacket to specify control information for the Worklet junction. Such control information 
determines the overall behavior of the Worklet junction, such as the number of repeated executions, 
exit constraints, or initiation conditions. Worklet junctions tend to be newer than the target systems 
that they are looking to configure.  This might necessitate automatic and dynamic bytecode download 
to allow for the assembly of the Worklet junction instance when it arrives at the target system.  



Our solution involves a web server at every WVM, enabling it to serve up class bytecode for emitted 
Worklets. At the receiving end, a customized class loader downloads the bytecode of those classes that 
are not available locally from the most recent hops, or the origin WVM of the Worklet. To enhance 
survivability and improve efficiency, each WVM caches all transmitted and received bytecodes so that 
the bytecodes can be served up to any other WVM that might require it.  

A further level of efficiency is achieved by using the Workgroup Cache [6] system to enable automatic 
bytecode-sharing among the WVMs along a Worklet's route. Since this mechanism allows WVMs to 
pre-fetch bytecode before the Worklet even arrives, it eliminates the need for explicit bytecode 
downloading at each WVM upon arrival of the Worklet. 

Applications and Examples 
KX 
 

 

 

 

 

 

 

 

The KX event monitoring system is the primary application of our SmartEvents work.  It is designed 
for the automated monitoring and reconfiguration of complex distributed systems.  Probe data is 
processed by the Event Packager and Metaparser, and the resulting data is fed into the XML Universal 
Event System (XUES), an event-oriented rule engine.  This looks for high-level and time-based 
situations.  If XUES detects a condition that requires action, it issues a “high-level” event that is picked 
up by an Event Notifier (EN) component.   

The EN determines the appropriate response and launches an appropriate handler, such as a Worklet-
enhanced Cougaar [7] workflow (“Workflake”).  The Workflake is capable of highly complex 
reconfiguration tasks. 

GeoWorlds 
Our primary demonstration example was the GeoWorlds system from ISI [8]. GeoWorlds is an 
information management system integrating a digital library and a GIS.  GeoWorlds makes extensive 
use of service components that may be either local or remote.  The GeoWorlds’ SystemJobTable data 
structure keeps track of all service requests.  Failure of remote services is not handled gracefully in the 
current implementation. 

Using the AIDE system from WPI, we instrumented GeoWorlds’ AbstractJobTable class to send out a 
SmartEvent every time the job table was modified.  The Metaparser extracts just the job ID and status 
information, and filters irrelevant status messages.  XUES looks for remote events that appear to be 
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hanging.  If one is found, a Workflake is dispatched that notifies the user and uses a Worklet to clean 
up the job table. 

CHIME 
The Columbia Hypermedia IMmersion Environment is a collaborative virtual environment being 
developed by PSL [9]. CHIME represents heterogeneous data in a homogenized “theme world”. Using 
the 3D client, human users (avatars) can walk around the 3D world reflecting the infospace of interest, 
and interact with each other and with its data contents.   

The CHIME server can dynamically import any available backend data source.  For example, given a 
website URL, a component called FRAX (explained later) produces SmartEvents (FleXML-enriched 
Siena events) with metadata representing content from that data source.  These SmartEvents are 
subscribed to by the Data Server (via Siena) and cataloged in an SQL database. 

The Data Server then calls the Virtual Environment Modeler (VEM) to assign 3D objects to new 
elements in the database. The virtual world seen by 3D clients is then populated with the new data via 
the CHIME World Manager.  

The File Recognize and XMLify component (FRAX) uses a URI to connect to a specified backend 
data source.  FRAX recognizes the kinds of files or objects it is dealing with, and invokes the 
appropriate specialized plug written for that file/object type to extract metadata from the data source. 
The plug further instructs FRAX how to convert this rich metadata to an XML format (which is then 
packaged up into a SmartEvent). 

ActEvents allow FRAX to dynamically accept new plugs with new semantics.  We chose FleXML 
SmartEvents over Worklets because FRAX extracts and publishes structured metadata, fitting the 
XML-based model.  This enables the CHIME Data Server to be able to dynamically handle new tags 
and associated content originated from new FRAX plugs. 

Future work with respect to CHIME includes deployment of Worklets technology to allow more 
flexible KX-based monitoring of the CHIME subsystem.  Such applications include 3D interpolation 
of backend changes via the use of KX-style gauges to analyze the actual change over time. 

InfiniTe 
Dr. Kenneth Anderson and his group at the University of Colorado are developing an “information 
integration environment”, or InfiniTe, to aid software developers in performing complex information 
management tasks. In particular, they are focusing on supporting those tasks that involve creating, 
finding, maintaining, and evolving the relationships between software artifacts.  Since InfiniTe is based 
on a model similar to FRAX for XML information exchange, SmartEvents are valuable for interaction 
between the InfiniTe’s components and recipients. In addition, SmartEvents would aid in preserving 
relationships found between related artifacts. 

AI2TV 
AI2TV [10] is a virtual collaborative environment for group study, distance learning, conference calls 
and video lectures in development under an NSF grant.  A portion of the project involves a cache 
management system that controls the client’s cache where video can be downloaded or prefetched. The 
entire system, including variables like bandwidth, is monitored by KX.  Based on inputs from probes, 
KX can determine, for example, whether the client’s cache controller should fetch a higher or lower 
compression quality stream from the Video Server. 



Since AI2TV uses CHIME as its virtual collaborative environment, ActEvents’ benefits are inherited 
by AI2TV. Further integration utilizing ActEvents is planned, including client scaling, proxy 
management and reconfiguration, and user management. 

Related Work 
Many of the research topics described earlier in this paper have been examined in systems research, 
event infrastructures, active networks, and information management.  We briefly discuss some of this 
related work here. 

Our work on Worklets in ActEvent-based architectures closely parallels research done in active 
networks – “packets” serve as an abstraction for code-embedded ActEvents, and the idea of code 
injection is native to Worklets.  Weatherall [11] abstracts away IP packets for a more generic code-
embedded supertype, known as “capsules”, and demonstrate how their model, using Java bytecode as 
their code mechanism, improves active network performance.  Hicks, et. al. [12] instead define a 
restricted language for packet-based active networks.  Such restricted languages are especially useful 
when performance during large volumes becomes a significant issue.  While Worklets utilizes Java 
bytecode, any sufficiently flexible language can be used, given a set of WVM bindings for that 
language.  Chin, et. al. [13] discuss utilizing active network technologies, including code injection, for 
connection rerouting.  They discuss hierarchical topologies and dynamic connection rerouting; much 
of the same can be done, albeit at a higher level, with Worklets. 

Event-based agents, like Worklets, are also used for increased autonomy.  Das, et. al. [14] discuss an 
event description language, called MDL, to facilitate modeling by associating events with objects and 
attributes, to allow real-world scenarios.  Such object- and attribute-enriched events also can be 
supported by ActEvents. 

Rifkin and Kohare [15] summarize general event-based notification infrastructures. Utilizing such 
event-based architectures for debugging complex applications is not new.  Bates [16] defines Event-
Based Behavioral Abstraction (EBBA), which is concerned with developing models of complex, 
distributed systems, and simulating operation to speed debugging; ActEvents are similar, but often 
intended for run-time debugging.  Page and Tufarolo [17] examine a particular case study of event-
based Verification, Validation, and Accreditation (VV&A) under the auspices of the DoD, in both 
virtual (simulated) and run-time systems.  Hilbert and Redmiles [18] utilize events within monitoring 
infrastructures, similar to the EBBA approach, for software engineering applications. 

Event-based architectures can apply to more than just debugging systems.  Sarin, et. al. [19] develop an 
event-based, object-oriented  process model and system for generalized collaborative work around 
units of “work”.  Sateesh [20] discusses the application of time-bound event-driven models for real-
time systems.  Magee and Kramer [21] discuss event mechanisms within the framework of dynamic 
architecture description languages (ADL’s).  Finally, Cugola et. al. [22] discuss their JEDI event-based 
infrastructure for complex systems. 
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