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Abstract 
 

WordsEye is a system for converting from English 
text into three-dimensional graphical scenes that 
represent that text. It works by performing syntactic 
and semantic analyses on the input text, producing a 
description of the arrangement of objects in a scene. At 
the core of WordsEye is the Scenario-Based Lexical 
Knowledge Resource (SBLR), a unified knowledge 
base and representational system for expressing lexical 
and real-world knowledge needed to depict scenes 
from text. This paper explores information collection 
methods for building the SBLR, using Amazon’s 
Mechanical Turk (AMT) and manual normalization of 
raw AMT data. The paper follows with manual review 
of existing relations in the SBLR and classification of 
the AMT data into existing and new semantic relations. 
Since manual annotation is a time-consuming and 
expensive approach, we also explored the use of 
automatic normalization of AMT data through log-
odds and log-likelihood ratios extracted from the 
English Gigaword corpus, as well as through WordNet 
similarity measures. 
 
1. Introduction 
 

Today, semantic analysis in natural language 
processing is usually restricted to the identification of 
predicate-argument structure and semantic role 
labeling. Recent experiments in textual entailment, 
however, have shown that such a “surfacy” semantic 
analysis does not come close to capturing the kinds of 
meaning humans obtain from natural language text. 
What is missing is the pragmatic context: when we 
read that John made a meatloaf, we also know much 
that was not said, for example, that the event probably 
occurred in a kitchen, that John performed many 
specific actions in the process of ‘making’, such as 

mixing and shaping, that he used utensils such as a 
bowl and possibly a spoon, and that he probably used 
an oven in the final stage. 

The text-to-scene conversion system WordsEye [1] 
seeks to bridge the gap between language, graphics, 
and knowledge by developing new theoretical models 
and technology to enable the automatic conversion of 
text into a new type of semantic representation – a 
virtual 3D scene. 3D scenes provide an intuitive 
representation of meaning in an extended sense by 
making explicit the contextual elements implicit in our 
mental models. The text-to-scene conversion 
mechanism centers on a new type of lexical knowledge 
representation, which we call a Scenario-Based Lexical 
Knowledge Resource (SBLR). The SBLR is a unified 
knowledge base and representational system for 
expressing lexical and real-world knowledge needed to 
depict scenes from text. 
 
2. Prior work  

 
Some systems exist for producing 3D graphics 

from natural language sources including [2], [3], [4] 
that used language to control animated characters in a 
closed virtual environment, Put system [5], CarSim [6] 
and AVis [7] which are domain-specific systems to 
create animations from natural language descriptions 
of accident reports, [8] a system for transforming text 
sourced from popular fiction into corresponding 3D 
animations without prior language simplification, 
3SVD [9] a 3D scene creation system using story-
based descriptions, [10] that is an ontology-driven 
generation of 3D animations for training and 
maintenance and CONFUCIUS [11] which is a multi-
modal text-to-animation system that generates 
animations of virtual humans from single sentences 
containing an action verb. In these systems the 
referenced objects, attributes, and actions are typically 



relatively small in number or targeted to specific pre-
existing domains. 

 
3. The WordsEye system and Scenario-

Based Lexical Knowledge Resource  
WordsEye [1] is a system for converting from 

English text into three-dimensional graphical scenes 
that represent that text. WordsEye works by 
performing syntactic and semantic analyses on the 
input text, producing a description of the arrangement 
of objects in a scene. An image is then generated from 
this scene description. Once WordsEye inputs are 
transformed into semantic representations by 
identifying entities, their semantic ‘types’, and their 
relationships, these inputs are disambiguated using the 
knowledge of semantic classes and relations between 
entities which is stored in the SBLR. 
 
3.1. The WordsEye system 
 

The natural language component in the current 
incarnation of WordsEye is built in part on several 
already existing components, including a stochastic 
part of speech tagger, a statistical parser and the 
WordNet semantic hierarchy [12]. The parsed sentence 
is first converted into a dependency representation. 
Then lexical semantic rules are applied to this 
dependency representation to derive the components of 
the scene description. The depiction module of 
WordsEye interprets the scene description to produce a 
set of low-level depictors representing poses, spatial 
relations, color attributes, etc. The resulting depictors 
are then used (while maintaining constraints) to 
manipulate the 3D objects that constitute the final, 
renderable scene. Figure 1 indicates the general 
architecture of the WordsEye system. 

The WordsEye system contains a library of 2,000 
3D objects and 10,000 textures and a lexicon of 
approximately 15,000 nouns. It supports language-
based control of spatial relations, textured and colored 
surfaces, collections and cardinality, and it handles 
anaphora resolution, allowing for a variety of ways of 
referring to objects.  

One problem that arises in such a system is how to 
derive the large amount of knowledge that is needed in 
order to give reasonable depictions. Suppose we say: 
John was driving to the store. In understanding this 
sentence and visualizing what it means, a human would 
probably assume that John was in the driver’s seat of a 
car, on a road, possibly passing buildings, and so forth. 
Some of this knowledge is represented in WordsEye as 
part of the word’s meaning. For example, the depiction 
phase of WordsEye knows that, given the verb drive, 
the driver should be using some sort of vehicle, and 
will select an appropriate vehicle and place the driver 
in the driver’s seat. But other common-sense 
knowledge is more tenuously linked: if John is 
washing his face, he is probably in a bathroom, but 
need not be: there is nothing in the meaning of wash 
face that implies a bathroom. This latter type of 
common sense knowledge is represented within the 
SBLR. 
 
3.2. The Scenario-Based Lexical Knowledge   

Resource (SBLR) 
 

The SBLR is a unified knowledge base and 
representational system for expressing lexical and real-
world knowledge needed to depict scenes from text. It 
is used in conjunction with the WordsEye system to 
semantically interpret input text. The SBLR will 
ultimately include information on the semantic 
categories of words; the semantic relations between 
predicates (verbs, nouns, adjectives, and prepositions) 
and their arguments; the types of arguments different 
predicates typically take; additional contextual 
knowledge about the visual scenes various events and 
activities occur in; and the relationship between this 
linguistic information and the 3D objects in our objects 
library.  
 
3.3. Building the SBLR 
 

Alternative methods for building the SBLR have 
included mining information from external semantic 
resources such as WordNet, FrameNet, and PropBank, 

Figure 1. General architecture of the text-to-scene conversion system 



as well as the use of information extraction techniques 
on other corpora. This paper explores information 
collection methods using Amazon’s Mechanical Turk 
(AMT) and manual normalization of raw AMT data. 
The paper follows with manual review of existing 
relations in the SBLR and classification of the AMT 
data into existing and new semantic relations. Then we 
compare these manual results with automatic 
normalization of the data through log-odds and log-
likelihood ratios extracted from the English Gigaword 
corpus, as well as through WordNet similarity 
measures. 
 
4. Data collection from AMT 
 

Amazon’s Mechanical Turk is an online 
marketplace for work. Amazon describes its web 
service as “artificial artificial intelligence”. AMT 
provides a way to pay people small amounts of money 
to perform tasks that are simple for humans but 
difficult for computers. Examples of these Human 
Intelligence Tasks (HITs) range from labeling images 
to moderating blog comments to providing feedback 
on relevance of results for a search query [13]. 

The highly accurate, cheap and efficient results of 
several NLP tasks including word sense 
disambiguation, word similarity, textual entailment, 
temporal ordering of events [14] and evaluation of 
machine translation by AMT [13] have encouraged us 
to explore using AMT to extract this kind of 
information. 
 
4.1. AMT tasks and results 
 

We collected information about several hundred 
objects in WordsEye's database, including information 
about their typical parts, typical location and typical 
objects around them. We designed three separate tasks 
for collecting such information about each target 
object.  

Each of the three tasks was performed on more than 
300 nouns from our object library with 2 assignments 
per HIT (Human Intelligence Task). In all tasks the 
Turkers (i.e. workers participating in our Mechanical 
Turk tasks) had to meet two criteria to work on these 
HITs: they had to be inside the US and have HIT 
approval rate greater than or equal to 99%. In the next 
three paragraphs we briefly review the three tasks:  

Task 1: Objects around or near the given 
objects: For this task, we asked the Turkers to name 10 
common objects that they might typically find around 
or near a given object. We also requested that the 
Turkers not name any items inside the given object. 
We collected 6850 nearby objects for 342 objects of 
our 3D library.  

Task 2: Typical locations of the objects: For this 
task, we asked the Turkers to name 10 locations in 
which they might typically find a given object. We 
collected 6850 locations of 342 objects. 

Task 3: Typical parts of the objects: In this task, 
we asked the Turkers to list 10 parts of a given object. 
Given that some objects might not consist of 10 parts, 
(i.e. they are very simple objects), we wanted the 
worker to name as many parts as possible and then put 
their reasons for doing so in the comment box. We also 
we took out the simpler objects from the library. We 
collected 3500 parts for 245 objects.  

We collected 17,200 responses from the AMT tasks 
and paid $106.9 overall for competition of the three 
tasks. Table 1 below shows a summary of the AMT 
tasks, payments, and completion time. The data that we 
collected in this step was in raw format. The next step 
was normalizing the data; that is, mapping data entered 
by the Turkers into entities and relations contained 
within the SBLR. In the next sections we discuss our 
methodologies for normalizing the raw data. We began  
by manually normalizing the AMT data and then 
classifying the data via new and pre-defined semantic 
relations. Due to the time-consuming nature of the 
manual annotation task, we also explored the ability to 
automatically normalize AMT data. 
 
5. Manual normalization of the data 
 

Data collected from AMT tasks was manually 
normalized via removal of uninformative target item-
response item pairs and definition of the relations 
between the remaining target item-response item pairs. 
Response items given in their plural form were 
lemmatized to the singular form of the word. 
Definition of the relation between the target item from 
the SBLR library and the response item provided by 
AMT workers focused on labeling concrete 
relationships that could feasibly be graphically 
depicted via WordsEye. 
 
5.1. Definition of the relations 
 

Table1. Summary of AMT tasks, payments and the 
completion time 

 

Task TW UI AA RPA EHR ACT 
Location 342 6850 2' $0.05 $1.26 5  

Parts 245 3500 1' $0.07 $2.29 5  
Objects 342 6850 2' $0.05 $1.54 5  

TW: # of target words; UI: # of user inputs; AA: Average 
time per assignment; RPA: Reward per assignment;  
EHR: Effective Hourly Rate; ACT: Approximate 
completion time (days) 
 



A total of 34 relations were defined for the 
complete sets of Mechanical Turk data. Defining 
relations was completed manually and determined by 
pragmatic and/or cultural cues about the relationship 
held between the target item-response item pair. 
Screening Mechanical Turk workers to confirm that 
they were from the United States ensured that actions 
or items which might differ in their typically found 
location by cultural or geographical context (e.g. eat 
breakfast) were restricted to the location(s) generally 
agreed upon by English speakers within the United 
States. Relation definition focused primarily on 
defining concrete, graphically depictable relationships.  

Generic, widely applicable relations were used in 
the general case for all sets of Mechanical Turk data 
(e.g. the containment relation containing.r was used for 
generic instances of containment; the next-to.r relation 
was used for target item-response item pairs for which 
the orientation of the items with respect to one another 
was not a defining characteristic of their relationship). 
Finer distinctions were made within these generic 
relations, e.g. habitat.r and residence.r within the 
overarching containment relation, which specified that 
the relation held between two items was that of habitat 
or residence, respectively.  

More semantically explicit relations were used for 
target item-response item pairs that tended to occur in 
more specific relations. Specific relations of this type 
included those spatial relations from the following 
target item-response item-relation triples: 

javelin – dirt – embedded-in.r 
mobile – ceiling – attached-to.r 
binoculars – case – true-containing.r 

Another subsection of relations included functional 
relations such as those within the following triples:  

harmonica – hand – human-grip.r 
earmuffs – head – wearing.r 
owl – perch – support-for.r 

Relation labels for meronymic (part-whole) 
relations were based off of already defined part-whole 
classifications [15].  
 
5.2. Data and results for each AMT task 
 

Target item-response item pairs were usually 
rejected for misinterpretation of the potentially 
ambiguous target item (e.g. misinterpreting mobile as a 
cell phone rather than as a decorative hanging 
structure, prompting mobile - ear as an object-nearby 
object pair). Target item-response item pairs were also 
discarded if the interpretation of the target item, though 
viable, was not contained within the SBLR library. 
This was especially prevalent in instances where the 
target item was a plant or animal (e.g. crawfish) that 
could be interpreted as either a live plant/animal or as 

food. With the exception of mushroom, the SBLR does 
not contain the edible interpretation of these nouns; in 
the object-nearby object task, target item-response item 
pairs such as crawfish - plate were discarded.  

In the object-location task, the most common 
relation labels were derivatives of the generic spatial 
containment relation. The containing.r relation 
accounted for 38.01% of all labeled target-response 
pairs; habitat.r accounted for 11.02%, and on-surface.r 
accounted for 10.6%. 

In the part-whole task, AMT workers provided 
responses that were predominantly labeled by part-
whole relations. When AMT responses were not 
relevant for part-whole relations, they tended to fall 
under the generic containment relation. The object-
part.r relation accounted for 79.12% of all labeled 
target-response pairs; stuff-object.r accounted for 
16.33%, and containing.r accounted for 1.48%. 

As with the part-whole task, responses in the nearby 
objects task that were not relevant for the next-to.r 
relation usually fell under the generic spatial 
containment relation. In the object-nearby object task, 
the next-to.r relation was the most frequently utilized 
relation label, accounting for 75.66% of all target-
response pairs labeled. The on-surface.r relation was 
the second most common relation, with 5.69%, and 
containing.r accounted for 4.44% of all labeled target-
response pairs. 

 
6. Automatic normalization of the data 
 

As stated before manual normalization of the data is 
a time-consuming and expensive approach. As a result, 
we are investigating different automatic techniques to 
normalize the data.  We are using current manually 
annotated data as a gold standard for evaluation of the 
outcomes of automatic approaches.  

 
6.1. Association measures of sentential co-
occurrence 
 

One of the ways we normalized our raw data and 
filtered out the uninformative outputs from AMT was 
by finding association measure from each target word 
of our object library and the received outputs of the 
AMT tasks based on their sentential co-occurrences. 
To do this, we first counted the number of sentences in 
which the target word and each AMT output occur 
separately and the number of sentences in which both 
words occur together. We then used log-likelihood and 
log-odds ratio [16], [17], [18] to compute the 
association measure between the two words. 

To compute sentential co-occurrences we used the 
English Gigaword corpus (LDC2007T07); which 
consists of SGML marked-up articles from the New 



York Times, Agence France Press English Service, 
Associated Press Worldstream English Service, and 
The Xinhua News Agency English Service, totaling 
approximately 1 billion words. 

 
6.2. WordNet Similarity measures 

 
The next approach for normalizing our raw data was 

scoring our target words based on WordNet 
similarities. The first score we computed was  
WordNet path similarities betwen each target word of 
our object library and the received outputs of the AMT 
tasks. We also computed Resnik similarity between the 
two words, which returns a score denoting how similar 
the two word senses are, based on the Information 
Content (IC) of the Least Common Subsumer (most 
specific ancestor node) [19].  

The next score to compute was the average pair-
wise similarity score based on WordNet path 
similarity. To illustrate this further, if we assume W1, 
W2, W3, W4, W5, W6 and W7 as the AMT outputs for 
target word T and Sij as the WordNet path similarity 
score between Wi and Wj , then the average pair-wise 
similarity score for W1 will be S12 + S13 + … + S17, 
divided by the number of AMT outputs. 

Our next scores were derived from a bag of words 
similarity matrix based on WordNet path similarities. 
We have the following similarity matrix for target 
word T: 

 W1 W2 W3 W4 W5 W6 W7 
W1 1 S12 S13 S14 S15 S16 S17 
W2 S21 1 S23 S24 S25 S26 S27 
W3 S31 S32 1 S34 S35 S36 S37 
W4 S41 S42 S43 1 S45 S46 S47 
W5 S51 S52 S53 S54 1 S56 S57 
W6 S61 S62 S63 S64 S65 1 S67 
W7 S71 S72 S73 S74 S75 S76 1 
 
where Sij is the WordNet path similarity score 

between Wi and Wj. 
Each row of the matrix is the similarity vector of the 

word in its first column. For instance, V1 is the 
similarity vector of W1 and represented as [S12 , S13 , … 
, S17]. We use cosine similarity to calculate the 
similarity measure of two words. For example, 
similarity measure of W1 and W1 is the cosine of V1 and 
V2 (CS12) and is computed by this formula: 

CS12 = cos(θ) = 

€ 

V1.V2
||V1 || . ||V2 ||

 

Finally, the WordNet matrix similarity of W1 will be 
CS12 + CS13 + … + CS17 divided by the number of 
inputs which is 7 in this example.  
 

6.3. Evaluation of automatic normalization 
techniques  
 

Data collected from each Mechanical Turk test was 
classified into both a higher-scoring and lower-scoring 
set of target item-response item pairs by log-likelihood 
and log-odds of sentential co-occurrences, WordNet 
path similarity, Resnik similarity, WordNet average 
pair-wise similarity and WordNet matrix similarity. 

The higher-scoring pairs were predicted to be 
relevant AMT outputs; conversely, the lower-scoring 
set of target item-response item pairs were predicted to 
be uninformative AMT outputs. We evaluated the 
accuracy of each automatic normalization approach by 
computing the precision and recall against the 
manually normalized data (table 2). 

Since collecting data by using AMT is rather cheap 
and fast, we are more interested to achieve higher 
precision rather than higher recall. In other word, 
higher precision means we achieved highly accurate 
data by our automatic normalization techniques and 
lower recall means we lose some data, which is not so 
expensive to collect.   

 As can be seen in table 2, the baseline accuracy of 
the objects-nearby object task is quite high (precision= 
0.8934, recall= 1.0) but we gained the best precision by 
using WordNet average pair-wise similarity (0.9764) 
by losing a noticeable part of AMT outputs (recall 
=0.2659). The high precision in all automatic 
techniques is due primarily to the fact that the open-
ended nature of the task resulted in a large number of 
target-response pairs that, while not pertinent to the 
next-to.r relation, could be labeled by other relations. 
Again, the open-ended nature of the nearby objects 
task resulted in the lowest percentage of rejected high-
scoring pairs (high recall in most of the measures).  

 In the part-whole task, the best precision (0.8935) 

Table 2: The accuracy of automatic normalization 
approaches 

 

 BL LL LO WS RS WP WM 
Objects Nearby Object 

P 0.8934 0.8947 0.9048 0.9076 0.9085 0.9764 0.8795 
R 1.0 1.0 0.8917 1.0 1.0 0.2659 1.0 

Parts 
P 0.7887 0.7832 0.8231 0.7963 0.7974 0.8823 0.8935 
R 1.0 0.4129 0.4622 1.0 1.0 0.2621 0.2367 

Locations 
P 0.5527 0.7502 0.7715 0.5462 0.5562 0.6014 0.4782 
R 1.0 0.7945 0.6486 0.9649 0.9678 0.3454 1.0 
P: Precision; R: Recall; BL: Baseline; LL: Log-likelihood; 
LO: Log-odds; WS: WordNet Path Similarity; RS: Resnik 
similarity; WP: WN average pair-wise similarity; WM: WN 
Matrix Similarity 
 



was achieved by using WordNet matrix similarities but 
again we lost a noticeable portion of data (recall= 
0.2367). Rejected target-response pairs from the 
higher-scoring part-whole set were often due to 
responses that named attributes, rather than parts, of 
the target item (e.g. croissant – flaky). Many responses 
were too general (e.g. gong – material). Many target-
response pairs would have fallen under the next-to.r 
relation rather than any of the meronymic relations. 
The majority of the approved target-response pairs 
from the lower-scoring part-whole set were due to 
obvious, “common sense” responses that would 
usually be inferred rather than explicitly stated, 
particularly body parts (e.g. bunny – brain). 

 Within the object-location data set we gained the 
best precision (0.7715) by using log-odds with rather 
high recall (0.6486). Target-response pairs that were 
approved or rejected contrary to automatic predictions 
were due primarily to the specificity of the response 
location. Within the higher-scoring set, responses that 
were too generic (e.g. turntable – store) were rejected. 
Within the lower-scoring set, extremely specific 
locations that were unlikely to occur within a corpus or 
that were not present in WordNet synsets were 
accepted (e.g. caliper – architect’s briefcase).  

 
7. Conclusions 

 
In this paper we investigated the use of information 

collection methods for building our SBLR, using 
AMT. Manual evaluation of AMT outputs, which are 
shown as baseline results in table 2, confirms that we 
can collect highly accurate data, in a cheap and 
efficient way by using AMT.  

Comparison of manually normalized target-response 
pairs collected from all three AMT tests with the 
automatic normalization approaches—based on the 
Gigaword corpus co-occurrences and WordNet 
similarities—revealed that in order to achieve more 
accurate data (high precision) we will lose a portion of 
out AMT outputs (low recall). 

Although collecting new data is fast and cheap by 
using AMT, we are planning to optimize our automatic 
normalization techniques by computing word 
associations on much larger web corpora such as 
Google's 1 trillion web corpus (LDC2006T13), query 
expansion based on WordNet synonyms and 
hypernyms and using Latent Semantic Analysis to 
build the word similarity matrices. 
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