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Abstract

While COVID-19 has affected most of the world, attempts to
control it have been difficult due to the lack of trustworthy
information about the virus’s origin, severity, effective treat-
ments, and prevention measures. To address this, we have col-
lected RTCas-COVID-19, a large corpus of 35M COVID-
19 tweets from 2020, and weak-labeled 2M with a semi-
supervised approach. We have also developed an inductive
framework, RTCS-HGT (Retweet Cascade Subgraph Sam-
pling Heterogeneous Graph Transformer), which achieves
0.918 test accuracy on tweet trustworthiness classification on
our dataset and improves training time by 93%.1

1 Introduction
The spread of misinformation has become a major issue in
modern society, aided by the increasing popularity of so-
cial media (Pazzanese 2020). Misinformation online has de-
graded trust in many mainstream media outlets and influ-
enced the way governments, political parties and public in-
dividuals are perceived (Ognyanova et al. 2020), leading to
increased suspicion and division in society. Recently, mis-
information has played a large role in the persistence of the
COVID-19 pandemic, as much false information about it has
been spread: how serious it is, what cures are effective, how
dangerous vaccination is and how to avoid infection. As a
result, the public’s ability to respond to COVID-19 is se-
riously affected (Barua et al. 2020). This brings to light the
many challenges in distinguishing between true and false in-
formation, and the negative consequences of failing to do so.
While automated fact-checkers and misinformation identifi-
cation systems are widely used on social media platforms
(Facebook 2020), they do not always achieve their purpose.
Thus it is important to continue to develop more robust sys-
tems to identify misinformation.

To improve the effectiveness of fact-checking models,
one possible strategy is to employ a robust initial screen-
ing process that can identify low-credibilty information and
determine whether it requires additional fact-checking. To
address this challenge, we have constructed a novel cor-
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1Our corpus and source code are available in the Github repos-
itory https://github.com/lynneeai/RTCS-HGT.git.

pus of 35M COVID-19 tweets, namely RTCas-COVID-
19 (Retweet Cascade COVID-19), including source tweets
(original tweets that initiate retweet cascades) and retweet
cascades, with 2M source tweets weak-labeled as trustwor-
thy or untrustworthy and a small subset of human-annotated
source tweets. Using these corpora, we propose an inductive
framework, RTCS-HGT (Retweet Cascade Subgraph Sam-
pling Heterogeneous Graph Transformer), that effectively
captures social context and tweet propagation patterns, and
improves the performance of tweet trustworthiness classifi-
cation. The contributions of this paper are twofold:

• We have constructed RTCas-COVID-19, a large Twit-
ter corpus of COVID-19 tweets and their corresponding
retweet cascades. The corpus is weak-labeled for untrust-
worthy information detection, and provides richer and
higher quality social context information compared to
other currently existing rumor detection corpora.

• We propose RTCS-HGT, an inductive tweet trustworthi-
ness classification framework that utilizes textual infor-
mation, tweet propagation patterns, and social context in-
formation. The model outperforms all the baseline mod-
els on our corpus, and is more scalable to larger real-
world data.

2 Related Work
2.1 Fake News Detection on Social Media
As Allcott, Gentzkow, and Yu (2019) note, the spread of mis-
information has declined sharply on Facebook but has con-
tinued to rise on Twitter since 2016; thus, much recent work
on social media misinformation detection focuses on Twit-
ter. While early work on fake news detection relied primarily
on linguistic features (Pérez-Rosas et al. 2018; Rashkin et al.
2017; Ajao, Bhowmik, and Zargari 2018), information prop-
agation patterns provide richer contexts for detecting mis-
information, as fake news propagates differently from true
news (Vosoughi, Roy, and Aral 2018; Kwon, Cha, and Jung
2017). Propagation-based approaches (Ma et al. 2016; Ma,
Gao, and Wong 2017; Yu et al. 2017; Ma, Gao, and Wong
2018) make use of tree-structured propagation patterns of
microblog posts and learn contextual representations using
Recurrent Neural Network (RNN) or Convolutional Neural
Network (CNN) models.



Since users on social media tend to follow like-minded
people (Shu, Bernard, and Liu 2019), false information such
as conspiracy theory generates homogeneous and polarized
communities having similar information consumption pat-
terns (Del Vicario et al. 2016), resulting in an echo chamber
effect. Therefore, many studies (Ruchansky, Seo, and Liu
2017; Monti et al. 2019) add social context components to
the process, using user profiles in addition to textual features
and information propagation patterns. Shu, Wang, and Liu
(2019) make use of tri-relationships among users, news, and
news publishers to detect fake information, creating multiple
components which are however less flexible and scalable in
adapting to new datasets or adding new features and entities.

Most graph neural networks (GNNs) models, such as
GCN (Kipf and Welling 2016), GAT (Veličković et al. 2017)
and GraphSage (Hamilton, Ying, and Leskovec 2017), are
natively designed only for homogeneous graphs. The Het-
erogeneous Graph Transformer (HGT) (Hu et al. 2020) is
proposed to tackle this problem, with node-type and edge-
type parameters built with an attention mechanism applied
over each edge type during target-specific message aggrega-
tion. Recently, a heterogeneous graph to represent user and
contents has been utilized in fake contents detection (Huang
et al. (2020), Agarwal et al. (2022), He et al. (2022), Min
et al. (2022)). However, Huang et al. (2020) and He et al.
(2022) fail to capture users’ interaction in their models. Min
et al. (2022) and Agarwal et al. (2022) do not utilize sam-
pling methods and thus are potentially slow in training time
with millions of nodes and edges in their proposed data.

2.2 COVID-19 False Information
Since the COVID-19 outbreak, a large amount of false in-
formation has been spread over social media platforms. The
World Health Organization has also labeled the spread of
fake news on COVID-19 as an “infodemic” (Thomas 2020).
To address this challenge, many studies have attempted to
identify false information on COVID-19 in social media.
Chen, Lerman, and Ferrara (2020) and Banda et al. (2020)
have collected large-scale COVID-19 Twitter datasets that
are publicly available. Sharma et al. (2020) maintain a dash-
board tracking unreliable information on Twitter between
March and May 2020. Shaar et al. (2020) and Cheema,
Hakimov, and Ewerth (2020) detect COVID-19 tweets worth
fact-checking using linguistic features and language models.
Zhao et al. (2022) analyze the user profile and method uti-
lized to spread COVID-19 related misinformation in social
media. While most existing studies on COVID-19 misinfor-
mation only conduct separate analyses on either linguistic or
social context characteristics, we address this challenge by
incorporating both, along with tweet propagation patterns.

3 Data Collection
3.1 RTCas-COVID-19 Corpus
We have collected and cleaned a new COVID-19 corpus
based on 2 publicly available datasets (Chen, Lerman, and
Ferrara 2020; Banda et al. 2020), namely RTCas-COVID-
19. So far, we have retrieved 480M tweets from January to

December 2020. To filter out less informative tweets, we se-
lect a set of source tweets, defined as original tweets posted
by users, in contrast to retweets, quote tweets, and replies,
from the full corpus using keyword search. The keywords
are extracted from the debunked COVID-19 rumor state-
ments provided by CMU IDeaS2. This process selects source
tweets on specific topics that potentially contain balanced
portions of rumor tweets and debunking tweets. In addition,
we keep only the source tweets that have embedded URLs
and are in English only. For each source tweet, its associ-
ated retweet cascade is also collected. The cleaned corpus
includes 35M tweets (10M source tweets, 25M retweets).

Given the expense and time-consuming nature of human
annotation, particularly for a new and time-sensitive topic
like the COVID-19 pandemic, we employ a semi-supervised
weak-labeling approach to label each tweet as ”trustwor-
thy” (i.e. ”reliable”) or ”untrustworthy” (i.e. ”unreliable”)
using the source credibility of the URLs shared in the tweet.
To elaborate further, we categorize tweets that have a low
credibility and necessitate further fact-checking. Therefore,
the process of ”trustworthiness classification” serves as a
precursor for identifying the veracity of the information
tweeted. We collect a set of trustworthy sources from Me-
dia Bias/Fact Check (MBFC)3. We also add the list of main-
stream news media (Wikipedia contributors 2021b) to our
trustworthy sources set. In total, we identify 1357 trust-
worthy sources. Similarly, we collect a set of untrustwor-
thy sources from MBFC, NewsGuard4, and the Zimdars’ list
of fake and misleading news websites (Zimdars 2016). We
also add the list of satirical news websites (Wikipedia con-
tributors 2021a) to our untrustworthy sources set to include
tweets that are intended to be amusing but whose content is
not intended to be believed as true. In total, we identify 1518
untrustworthy sources. A source tweet will be automatically
labeled as trustworthy or untrustworthy if it shares a URL
from our trustworthy or untrustworthy sources sets. Over-
all, 2M tweets are weak-labeled (1.64M trustworthy tweets,
360K untrustworthy tweets).

3.2 Human Annotation
To verify the effectiveness of our weak-labeling approach,
we (lab members) have manually annotated 380 tweets,
sampled randomly from our full corpus, where each is an-
notated by three annotators. Both Cohen’s kappa and Fleiss’
kappa inter-annotator agreement scores on these annotated
tweets are 0.810. Evaluated with the human-annotated set,
our weak-labeling approach achieves an accuracy of 0.71,
with an F1 score of 0.64 for the trustworthy class and 0.76
for the untrustworthy class. Table 1 shows the overall statis-
tics of our corpus.

4 Model Design
4.1 Tweet-User Heterogeneous Graph
Since users tend to interact more with like-minded people,
false information is more likely to be spread and more eas-

2https://www.cmu.edu/ideas-social-cybersecurity/
3https://mediabiasfactcheck.com/
4https://www.newsguardtech.com/



Figure 1: Tweet-user heterogeneous graph: Red user nodes are users who often tweet or retweet untrustworthy tweets; green
user nodes are users who often tweet or retweet trustworthy tweets; yellow nodes are users with mixed behavior. The bottom
right section shows a 2-hop retweet cascade subgraph sampling.

Total Source Retweets
Full Corpus 35M 10M 25M

Total Trust Untrust
Weak-Labeled 2M 1.64M 360K
Human-Annotated 380 215 165

Table 1: RTCas-COVID-19 Statistics

ily diffused within certain communities (Del Vicario et al.
2016; Shu, Bernard, and Liu 2019); thus social context may
be very useful for false information detection. For exam-
ple, on Twitter, retweeting can be understood as a form
of information diffusion, by which users amplify tweets to
new audiences and publicly agree or validate these tweets
(Boyd, Golder, and Lotan 2010). Therefore, we represent
social context as a tweet-user heterogeneous graph, where
the nodes are connected by ”tweeting” and ”retweeting”
interactions, as illustrated in Figure 1. This heterogeneous
graph captures tweet propagation patterns and user relation-
ships. The two node types in this graph are Tweet nodes and
User nodes, and the types of edges are summarized in Ta-
ble 2. The Tweet nodes are embedded using the BERTweet
(Nguyen, Vu, and Tuan Nguyen 2020) model. With these
nodes, we are able to take linguistic features into account in
addition to social context features. For the User nodes, we
extract Twitter profile features using the Twitter Developer
API5. In addition, Ferrara (2020) suggest that high bot score
accounts are used to promote political conspiracies along-
side with COVID-19 content. Thus we also extract users’ bot
score features using a Botometer API (Sayyadiharikandeh
et al. 2020). The user nodes are therefore embedded using
the concatenation of Twitter profile features and bot score
features.

4.2 RTCS-HGT Framework
Heterogeneous Graph Transformer We utilize an induc-
tive HGT for node representation learning. Our model also
optimizes 2 loss types simultaneously during training:

5https://developer.twitter.com/en

Edge Type Weight
user-tweeted-tweet undirected 1

1+T
= 1

user-retweeted-tweet undirected 1
1+T

user-retweeted-user directed retweet count

Table 2: Tweet-User Heterogenoues Graph Edges: T , time
difference in minutes between tweet’s posting and user’s
retweeting; for the tweeters, T = 0.

• Supervised Tweet Classification Loss: The negative log
likelihood classification loss. Our tweet trustworthiness
classifier stacks 2 layers of HGT and concatenates the
output tweet nodes’ representations with a feed forward
layer and a log softmax output layer to perform classifi-
cation.

• Unsupervised User Proximity Loss: Based on the hy-
pothesis that users who interact with each other fre-
quently often share similar behaviors or characteristics,
we want to encourage closely-connected user nodes to
learn similar representations, while enforcing distanced
ones to learn distinct representations, specifically:

proxloss = E[− E log σ(z⊤u zvp)

−Q · E log σ(−z⊤u zvn)]
(1)

for all users u ∈ G, vp ∈ Pu, and vn ∈ Nu. Pu denotes
a set of randomly sampled neighboring nodes of node u,
Nu denotes a set of randomly sampled non-neighboring
nodes of node u, and zv denotes the representation of a
node v.

Retweet Cascade Subgraph Sampling To make the
model scalable to large graphs and to reduce training time,
we propose a tweet-centered subgraph sampling approach,
visualized in Figure 1. For each tweet, we perform a 2-hop
neighbor sampling, where the first hop samples the tweeter
and the retweet user cascade of the tweet, and the second
hop samples entities that are closely related to the tweet,
including users in the same communities and some other
tweets spread within these communities. With this sampling



approach, the concise sampled subgraph captures the diffu-
sion patterns and enough social context features with respect
to the tweets. This approach optimizes the training process
and provides rich information for newly-seen tweets during
inference time.

5 Experiments
5.1 Dataset
We train and test the RTCS-HGT model on our weak-
labeled subset of the RTCas-COVID-19 corpus. To build a
tweet-user heterogeneous graph with significant density, we
choose equal sets of trustworthy and untrustworthy tweets
that have been retweeted at least 100 times and sample the
top 1% users by their number of interactions (either tweet
or retweet) with the selected tweets. Table 3 summaries the
data statistics.

Nodes Edges
# Source Tweets 5,714 # u-tweeted-t 5,714
# Users 39,822 # u-rt-t 562,284
# Trust 2,857 # u-rt-u 482,544
# Untrust 2,857

Table 3: RTCS-HGT Data Statistics

5.2 Experimental Settings and Results
We compare our model with the following text classification
baseline models:

• RCNN (Lai et al. 2015): A model with a recurrent struc-
ture that captures the contextual information and a max-
pooling layer that captures the influential word in the
given class of labels. We encode the tweets using a
BERTweet model as inputs to the RCNN model and con-
catenate the last layer hidden states output of RCNN with
a feed forward layer and a log softmax output layer.

• BERTweet (Nguyen, Vu, and Tuan Nguyen 2020):
A pre-trained BERTbase (Devlin et al. 2019) lan-
guage model for English tweets, which outperforms a
RoBERTabase (Liu et al. 2019) model on text classifica-
tion. We concatenate the last layer hidden states output of
BERTweet with a feed forward layer and a log softmax
output layer.

• CT-BERT (Müller, Salathé, and Kummervold 2020): A
pre-trained BERTLARGE model trained on 160M COVID-
19 tweets. We concatenate the last layer hidden states
output of CT-BERT with a feed forward layer and a log
softmax output layer.

• HGATRD (Huang et al. 2020): A heterogeneous graph
attention network framework that captures global seman-
tic relations of text content and source tweet propagation
patterns.

• HGT (Hu et al. 2020): This model is equivalent to our
framework without retweet cascade subgraph sampling.

Our model has 55142 trainable parameters. Hyperparam-
eters are tuned with a held-out validation set for all mod-
els, with a train-validation-test split ratio of 7/1/2. For a

fair comparison, 5-fold cross validation is utilized, and all
numbers reported in Table 4 are the average results of the
5-fold test sets. As shown in Table 4, our RTCS-HGT model
outperforms all baseline models on our weak-labeled subset
of RTCas-COVID-19 corpus. Specifically, the RTCS-HGT
model trained without user proximity loss achieves an aver-
age test accuracy of 0.918.

The CT-BERT model also achieves comparable perfor-
mance, but since this model is specifically pre-trained on
COVID-19 tweets, it cannot be easily applied to data on
other topics without re-training on a large amount of data.
HGATRD is also a strong baseline. However, it is transduc-
tive, which means it cannot make inference on unseen data,
nor is it scalable to other larger datasets. In addition, HGT
shows close performance to our model but requires signifi-
cantly longer runtime compared to our model. We illustrate
this gap in Section 5.3.

Model Test Acc. Macro Trust Untrust
F1 F1 F1

RCNN-LSTM 0.844 0.844 0.846 0.842
RCNN-GRU 0.844 0.843 0.848 0.839
BERTweet 0.847 0.847 0.850 0.843
CT-BERT 0.893 0.893 0.894 0.893
HGATRD 0.894 0.894 0.894 0.895
HGT 0.908 0.908 0.910 0.906
RTCS-HGT 0.913 0.913 0.913 0.912
RTCS-HGT 0.918 0.918 0.918 0.918(no proxloss)

Table 4: RTCS-HGT vs. Baselines on Weak-Labeled
RTCas-COVID-19 Test Sets

5.3 Ablation Study
We evaluate the effectiveness of the tweet-centered retweet
cascade subgraph sampling approach and the user proximity
loss by comparing different model variants with a baseline
HGT model. For all model variants, we report test accuracy,
macro-average F1, and epoch elapsed time. All model vari-
ants are trained for 30 epochs with 1 Nvidia Quadro RTX
8000 GPU.

Retweet Cascade Subgraph Sampling In order to study
whether the retweet cascade subgraph sampling approach
improves model performance and how the sampled subgraph
size makes a difference, we set a base sampler configura-
tion and increase the sampling size by N times. For each
batch of tweets, the base sampler samples the tweeter user
and 10 retweet users in the first hop. In the second hop, each
sampled user samples: (a) 5 other unsampled users that this
user has retweeted, (b) 5 other unsampled users that has
retweeted this user, (c) 5 tweets that this user has posted,
and (d) 12 tweets that this user has retweeted. These num-
bers are the results of grid searches from 0 to the average
node degrees listed in Table 7. We then multiply these num-
bers by a sampler multiplier N ranging from 2 to 5. This set
of model variants is trained without user proximity loss.

From Table 5, we see that, in general, adding retweet cas-
cade subgraph sampling improves the model’s performance.



The best performing model is trained with the base sampler,
achieving 0.918 test accuracy, outperforming the HGT base-
line model by 1%. Larger sampler multiplier N increases
training time, and does not necessarily improve model accu-
racy. On our dataset, the base sampler provides a very good
balance between time and accuracy.

We further increase the sampler multiplier independently
for hop 1 and hop 2 sampling. Table 5 shows that increasing
the hop 1 sampler multiplier boosts performance, meaning
that sampling more retweet users helps with the trustworthi-
ness classification; with more retweet users sampled, richer
social context information is obtained in the second hop as
well. Increasing the hop 2 sampler alone however does not
improve model performance.

The most significant improvement produced by adding
the subgraph sampling is the training time. From Table 5,
we see that the average time elapsed per epoch for training
a HGT model is 3 minutes and 49.32 seconds, whereas the
average epoch elapsed time for training RTCS-HGT mod-
els without user proximity loss ranges from 15.06 seconds
to 40.13 seconds, which is 83% to 93% faster than training
a HGT model. Therefore, we conclude that the retweet cas-
cade subgraph sampling approach improves model accuracy
and also significantly decreases the training time by utilizing
a small subgraph with rich social context information.

Unsupervised User Proximity Loss We also evaluate the
effectiveness of unsupervised user proximity loss. In the
base proxloss configuration, we randomly sample 10% of
the user nodes from the sampled subgraph in each itera-
tion; then each sampled user node samples 5 neighboring
user nodes and 5 non-neighboring user nodes to calculate
proxloss. These numbers are empirical results. We then
train different RTCS-HGT variants by multiplying these
numbers by a proxloss multiplier N (N ∈ [2, 5]). We also
train a HGT+proxloss model with the base proxloss con-
figuration.

From Table 6, we see that, in general, adding user prox-
imity loss makes model performance worse. Our assump-
tion is that, when calculating proxloss, the randomly sam-
pled non-neighboring user nodes add noise into the training,
and therefore, worsen performance. Sampling a good quality
of negative samples has always been a challenging problem
in the area of self-supervised contrastive learning. However,
we believe that learning good representations for users si-
multaneously with training the tweet trustworthiness model
could potentially boost model performance, and thus benefit
other downstream tasks such as communities identification
and unreliable accounts detection. Therefore, improving the
sampling approach for calculating proxloss is one of the
future directions of our study.

6 Corpus Social Context Information
Analysis

In order to utilize tweet propagation patterns in misinfor-
mation detection, we construct a COVID-19 corpus of 10M
source tweets along with their retweet cascades, our RTCas-
COVID-19 corpus. Previously, Liu et al. (2015) and Ma et al.
(2016) have collected Twitter 15 and Twitter 16, with source

tweets and their corresponding propagation threads, which
have been used as 2 benchmark corpora for rumor detection
in social media. In this section, we compare the user interac-
tion density and community distinction between our corpus
and Twitter 15 and 16. We argue that our corpus provides
richer and higher quality social context information, which
better mimics the real-world data we see in social media.

6.1 User Interaction Density
For a graph G(V,E), where V is the set of nodes and E is
the set of edges, and a subgraph S(V ′, E′), where V ′ ∈ V
and E′ ∈ E, we define the density d(S) of the subgraph to
be d(S) = |E′|

|V ′| , and the density d(G) of the graph G to be

d(G) = maxS⊆G{d(S)} (2)

We construct tweet-user heterogeneous graphs using the
method described in Section 4.1 with Twitter 15 and 16 data:
these have graph densities of 2.41 and 2.34, respectively.
For comparison, the RTCas-COVID-19 graph has a density
of 23.07, which is more than 9.5 times higher than that of
Twitter 15 and 16. To better study the effect of graph den-
sity on model performance, we select denser subgraphs from
the full Twitter 15 and 16 graphs using Charikar’s greedy
approximation algorithm (Charikar 2000) and train and test
RTCS-HGT models on them. We convert the annotations of
Twitter 15 and 16 to binary labels for a more direct compar-
ison, where ”non-rumor” and ”true” tweets are considered
trustworthy, and ”unverified” and ”false” tweets are consid-
ered untrustworthy. As listed in Table 8, the model achieves
the highest accuracy on the Twitter 15 and 16 subsets with
graph densities of 5.36 and 4.85, which are both denser
than the full datasets, achieving test accuracies of 0.781 and
0.744, respectively. Thus, denser graphs help model perfor-
mance. However, we observe that performance drops when
the model is tested on subsets with densities higher than
these. This is reasonable, as a denser subgraph might not
contain enough nodes for the models to perform well, given
the size of the corpora — Twitter 15 and 16 contain 1490 and
818 source tweets respectively, and our sampled corpus con-
tains 5714 source tweets, as summarized in Table 3. There-
fore, Twitter 15 and 16 do not provide enough graph density
as RTCas-COVID-19 does for our model to achieve a SOTA
performance. Without further specification, all subsequent
experiments of user interaction density are conducted on the
Twitter15/5.35 and Twitter16/4.85 variants, with 5.36 and
4.85 graph densities, respectively.

We further examine the density of user retweeting in-
teractions by examining the node degrees of user nodes in
tweet-user heterogeneous graphs. As summarized in Table
7, on average, each user in RTCas-COVID-19 posts 0.14
source tweets. However, in Twitter 15 and 16, the numbers
drop 79% to 86%, where each user posts only 0.03 to 0.02
source tweets on average. Similarly, in RTCas-COVID-19,
each user retweets 14.12 times on average, whereas in Twit-
ter 15 and 16, each user retweets 2.96 and 2.67 times on
average, respectively — 79% and 81% less frequently. In
RTCas-COVID-19, each user is retweeted by 12.12 other
distinct users on average, whereas in Twitter 15 and 16, the



Model Test Acc. Macro F1 Epoch Elapsed Time (%H:%M:%S)
HGT 0.908 0.908 0:03:49.32

RTCS-HGT Sampler N
1 0.918 0.918 0:00:15.06
2 0.912 0.912 0:00:23.24
3 0.905 0.906 0:00:29.06
4 0.914 0.914 0:00:33.32
5 0.91 0.91 0:00:40.13

Hop 1 Sampler N Hop 2 Sampler N
1 2 0.913 0.912 0:00:18.53
1 3 0.913 0.912 0:00:22.45
1 4 0.913 0.913 0:00:25.87
1 5 0.912 0.912 0:00:30.26
2 1 0.902 0.902 0:00:18.69
3 1 0.913 0.913 0:00:20.83
4 1 0.914 0.914 0:00:21.84
5 1 0.917 0.916 0:00:23.02

Table 5: Accuracy and elapsed time comparison between HGT and RTCS-HGT with different subgraph sampler multipliers N .
All models in the table are trained without proxloss.

Model Test Acc. Macro Epoch
F1 Elapsed Time

HGT (no proxloss) 0.908 0.908 0:03:49.32
HGT 0.892 0.892 0:09:07.11(proxloss N=1)

RTCS-HGT 0.918 0.918 0:00:15.06(no proxloss)
proxloss N

1 0.913 0.913 0:01:47.73
2 0.913 0.912 0:03:14.58
5 0.913 0.913 0:07:02.16

Table 6: Accuracy and elapsed time comparison between
HGT and RTCS-HGT with different proxloss multipliers
N .

numbers are 2.51 and 2.28 on average, 79% and 81% fewer
than that of RTCas-COVID-19.

Dataset User Nodes
#tweets #retweets rt #users

RTCas-COVID-19 0.14 14.12 12.12
Twitter15/5.36 0.03 2.96 2.51
Twitter16/4.85 0.02 2.67 2.28

Table 7: Average user nodes’ degrees of RTCas-COVID-19,
Twitter 15, and Twitter 16.

We also specifically examine the number of users each
user has retweeted and the number of times each user has
been retweeted by other users in these 3 corpora. Figure 2
demonstrates the distribution of these retweet counts. We ex-
clude numbers larger than 99% percentile to avoid outliers
when plotting the figures. In RTCas-COVID-19, the major-
ity of the users have retweeted at least 5 to 30 other users
and have been retweeted 0 to 300 times themselves by other
users. These numbers are significantly smaller in Twitter 15
and 16, where the majority of users have retweeted at most

8 other users and have been retweeted less than 40 times by
other users.

Figure 2: Retweet counts distribution. Figures in the left col-
umn illustrate the distribution of number of users each user
has retweeted in RTCas-COVID-19, Twitter 15, and Twitter
16 respectively. Figures in the right column illustrate the dis-
tribution of number of times each users has been retweeted
in these corpora.

We select popular tweets that have been retweeted at
least 100 times and sample the top 1% of users with the
most number of interactions to construct the graph we build
in Section 5. This makes our graph significantly denser
than those built with Twitter 15 and 16. Although Ma,
Gao, and Wong (2017) state that Twitter 15 and 16 are
also constructed with popular source tweets that are highly
retweeted or replied, the analysis above shows that our
RTCas-COVID-19 corpus not only contains more popular
tweets with a larger numbers of retweets, but also captures a
denser social context graph, which enables the model to uti-
lize more community-based knowledge to perform untrust-



Dataset Graph
Density # Users Test Acc. Macro

F1

Twitter 15

2.41 (full) 477,293 0.765 0.761
5.36 53,951 0.781 0.779
7.49 20,216 0.729 0.726
9.84 7,787 0.727 0.724

Twitter 16

2.34 (full) 287,119 0.734 0.728
4.85 33,216 0.744 0.737
7.00 10,159 0.666 0.627
9.49 2,137 0.595 0.477

Table 8: RTCS-HGT on Twitter 15 and 16 with different
graph densities. The RTCS-HGT models are trained with-
out proxloss and with SamplerN = 1.

worthy information identification. More importantly, our
corpus is significantly larger in size compared to Twitter 15
and 16, even with our sampling standard. We would be able
to sample a even larger subset if we are satisfied with tweets
that have comparable numbers of retweets to those in Twitter
15 and 16.

6.2 Community Distinction

In order to further analyze the quality of social context in-
formation captured by RTCas-COVID-19 — specifically,
whether we can identify communities where false informa-
tion is spread more easily and frequently, we visualize the
tweet-user heterogeneous graph of RTCas-COVID-19, Twit-
ter 15, and Twitter 16, as shown in Figures 3, 4, and 5.
For RTCas-COVID-19, we randomly sample 2000 nodes to
plot the graph as the full corpus is too large. For Twitter 15
and 16, we convert the labeling into binary. In these graphs,
green nodes are trustworthy tweet nodes, red nodes are un-
trustworthy tweet nodes, and black nodes are user nodes.

As illustrated in Figure 3, the nodes naturally form 2 clus-
ters where, in one cluster, the tweet nodes are mostly green,
meaning that they are trustworthy, whereas in the other clus-
ter, the tweet nodes are mostly red, implying that they are
untrustworthy. We also observe that users within each clus-
ter tend to interact more frequently with other users in the
same cluster rather than with users from the other cluster,
creating a distinct boundary between the two clusters. How-
ever, we do not observe such clear boundaries and clus-
ters in the Twitter 15 and 16 graphs. In Figures 4 and 5,
green nodes and red nodes are mostly mixed together, mean-
ing that the user interactions are not dense enough to form
distinguishable communities. Twitter 16’s graph is slightly
better than that of Twitter 15, in which we see a relatively
denser cluster of red nodes, but it is still not as clear as what
we see in RTCas-COVID-19’s graph. This observation in-
dicates that our RTCas-COVID-19 corpus contains popular
source tweets with more complex retweet cascades; in ad-
dition, the denser user interactions also make it possible to
distinguish ”red” communities from ”green” communities,
where much more untrustworthy tweets are being propa-
gated within ”red” communities. These features would also
benefit other challenging tasks such as unreliable accounts
detection.

Figure 3: Sampled tweet-user heterogeneous graph of
RTCas-COVID-19. Green and red nodes are trustworthy and
untrustworthy tweet nodes. Black nodes are user nodes.

Figure 4: Tweet-user heterogeneous graph of Twitter 15.
Green and red nodes are trustworthy and untrustworthy
tweet nodes. Black nodes are user nodes.

7 Conclusions and Future Work
In this paper, we present RTCas-COVID-19, a novel cor-
pus of 35M COVID-19 tweets, including source tweets
and retweet cascades, along with 2M weak-labeled source
tweets labeled with their trustworthiness and a small sub-
set of human-annotated source tweets. We demonstrate that
RTCas-COVID-19 provides richer and higher quality social
context information compared with other currently existing
rumor detection corpora. There are significantly more user
interactions in this corpus, making the social context graph
much denser than those of other corpora and forming clearly



Figure 5: Tweet-user heterogeneous graph of Twitter 16.
Green and red nodes are trustworthy and untrustworthy
tweet nodes. Black nodes are user nodes.

distinguishable communities where different information is
being spread. With these characteristics, this corpus can be
used for studying not only untrustworthy information detec-
tion tasks, but also other computational social media tasks,
such as early rumor detection, communities identification,
and unreliable accounts detection.

In addition, we propose RTCS-HGT, an inductive hetero-
geneous graph framework, and present its results on clas-
sifying tweet trustworthiness. RTCS-HGT outperforms all
the baseline models, demonstrating the effectiveness of our
tweet-user heterogeneous graph and retweet cascade sub-
graph sampling approach in capturing social context features
and tweet propagation patterns on tweet trustworthiness
classification. Specifically, the retweet cascade subgraph
sampling approach improves model performance, both in
accuracy and runtime, by utilizing a concentrated subgraph
with rich social context information. As an inductive learn-
ing model, it is also more flexible and scalable when adapt-
ing to new datasets.

In future work, we will incorporate more Twitter user in-
teractions into our corpus and heterogeneous graph, such as
replies and follows, to interpret more complex social con-
text features. Moreover, we are investigating fact-checking
approaches, which can be used as an addition to source cred-
ibility for weak-labeling the tweets. We will also explore
semi-supervised or unsupervised training approaches, such
as Xie et al. (2020), to train the model efficiently with a
small amount of gold data, avoiding the cost of high qual-
ity human annotation. Furthermore, we plan to investigate
different neighbor and non-neighbor sampling approaches
when calculating the unsupervised user proximity loss in or-
der to learn better user representations. This would poten-
tially benefit many downstream tasks, such as unreliable ac-
counts detection.

8 Broader Perspective and Ethics Statement
We discuss the ethical considerations of our collected
RTCas-COVID-19 corpus and the further usage of RTCS-
HGT as follows:

Data Collection: We present a novel COVID-19 Twit-
ter corpus, namely RTCas-COVID-19, which is collected
based on the two publicly available datasets: (Chen, Lerman,
and Ferrara 2020; Banda et al. 2020). Since both of these
datasets provide only Tweet IDs, we hydrate the full tweets’
content using Twarc6. All content retrieved from Twarc is
public information, and is provided by the official Twitter
Developer API.

Feature Extraction: Twitter users’ public profile infor-
mation is extracted using the official Twitter Developer API,
and users’ bot scores are extracted using the Botometer API
(Sayyadiharikandeh et al. 2020). Neither of these APIs pro-
vides personal information or can be used to identify indi-
viduals, and the fully hydrated data will not be released pub-
licly.

Data Annotation: All the annotations are done by our lab
members, who participate voluntarily and are fully aware of
any risks of harm associated with their participation.

Data Release: To comply with Twitter’s Terms of Ser-
vice7, we will only publicly release the Tweet IDs and User
IDs of the collected Tweets for non-commercial research
purposes.

Potential Biases: Tweets in our corpus are English-only,
which potentially causes the analysis and models to be bi-
ased towards English-speaking populations. In addition, to
train our model, we select tweets with large retweet counts
and users with more interactions, which might lead the anal-
ysis and results biased towards users with higher activity or
stronger attractiveness on Twitter.

Mis-classification: Note that the current RTCS-HGT
model is trained on weakly-labeled data, and mis-
classification is inevitable in real-world applications. Any
further usage of the model and interpretations of the results
should be made with caution and under expert judgment to
avoid misinterpretation and altering of credibility.
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