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Abstract
While producing accurate prosody can significantly improve the
naturalness and comprehensibility of synthesized speech, many
Text-to-Speech (TTS) systems still do not explicitly model
prosody. In this paper, we present an approach for incorpo-
rating prosodic events, specifically phrase breaks and pitch ac-
cents, into TTS output using a two-step pipeline. In the first
step, we use a large number of linguistic features to create a
model for predicting the locations of prosodic events from text.
In the second step, we incorporate these events into the front
end of a DNN-based TTS pipeline. We crowd-source labels for
pairs of utterances created with and without the new pipeline.
Our results show that listeners strongly prefer a voice created
using this pipeline to the baseline voice, indicating that this ap-
proach of explicitly modeling prosodic events is a fruitful area
of research.
Index Terms: text-to-speech, prosody

1. Introduction
The ability to produce appropriate prosody is a crucial compo-
nent of natural-sounding text-to-speech systems. In particular,
accurately modeling prosodic events such as phrase breaks and
pitch accents can have an important impact on an utterance’s
naturalness and even its meaning. However, many modern text-
to-speech systems do not model prosody explicitly, relying in-
stead on large training sets and complex models to produce rea-
sonable prosody. Systems that do model prosody also have
a number of shortcomings. For example, some systems only
model prosody in specific cases (such as emphasizing words
in all caps), while other systems only model prosody at the
sentence level, providing no way to control low-level prosodic
events. While these models can produce high quality speech,
they provide no way to capture specific prosodic events or cor-
rect unnatural output.

This problem can be especially troubling for domains with
long utterances and distinctive prosody, such as the domain of
radio newscasts. In radio news, utterances can be much longer
than the standard utterances used to train TTS, often consisting
of short paragraphs containing 2 to 4 long and complex sen-
tences. In these cases, an inadequate prosody model, particu-
larly a poor phrasing model, can lead to unnatural phrase breaks
and speech that is difficult to follow and understand. Therefore,
in this work, we decided to focus our work on radio news using
the Boston University Radio News Corpus (BURNC), a ToBI-
labeled corpus of radio news.

We approached this problem using a two-step process.
First, since most corpora are not prosodically labeled, and our
system needed to be able to synthesize appropriate prosody for
any novel sentence, we created a model for predicting prosodic
events from text only, using a number of linguistic features.
Specifically, we looked at two binary classification tasks, pre-
dicting the location of phrase boundaries and predicting the lo-
cation of pitch accents. In the second step, we added these

predicted prosodic events to the front end of the Merlin text-
to-speech system in order to explicitly train our TTS system to
synthesize them.

In Section 2 we describe related work. We describe the cor-
pus we train on in Section 3. Section 4 discusses the features
we use for prosody prediction. The TTS pipeline we use to
produce our synthesized speech is explained in Section 5. Sec-
tion 6 presents our results using Amazon Mechanical Turkers’
judgments. Finally, in Section 7 we conclude and discuss future
research.

2. Related Work
Prosody prediction from text has been an active area of research
for several decades. Early models used relatively simple fea-
tures, such as part of speech, a word’s position in a sentence
or paragraph, and punctuation [1, 2, 3]. Somewhat later work
showed that more complex syntactic features, including infor-
mation about syntactic phrases and supertags, could improve
the model [4, 5].

More recent work on developing features for prosody pre-
diction has focused on a combination of linguistic and word em-
bedding features. Obin and Lachantin found that a set of rich
syntactic features could be used to predict prosodic events in
both read and spontaneous speech [6]. Mishra et al. showed
that combining syntactic and semantic features, such as part
of speech tags and dependency relations, could provide an ef-
fective substitute for lemmatized word identity in predicting
prosodic phrase boundaries [7]. Their work also showed that
it is important to employ a context window corresponding to
the average length of an intonational phrase – five to six words
– in phrase boundary prediction. Rendel et al. found that in-
cluding GloVe and CBOW embedding features could provide
a significant 35% relative gain for prediction in a pitch accent
task, although only a modest 2.4% gain for phrase boundary
detection was achieved [8].

There are several approaches to incorporating prosody into
TTS pipelines. Some have taken an approach similar to ours
and have incorporated prosodic features directly into the front
end of a TTS system. Malisz et al. altered Merlin’s front end
to include the level of prominence of each word as a feature
[9], while Fujimoto et al. included markings for high and low
accents into the front end of an end-to-end system for Japanese
TTS [10]. While these papers demonstrate that incorporating
prosodic features can improve TTS output, unlike our approach,
they do not provide a method for generating these features for
novel utterances.

Other work has focused on incorporating linguistic features
into the front end of either RNN-based or end-to-end systems.
Guo et al. demonstrated that including syntactic features in
the front end of an end-to-end system can noticeably improve
prosodic output [11], while others have shown that including
word or character embeddings on the front end of systems can
also improve output [12, 13].
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Finally, some approaches focus not on modeling low level
prosodic events but on creating an prosodic embedding layer
that affects the prosody of an entire utterance. The most notable
of these approaches is Wang et al.’s Global Style tokens, which
use a variational autoencoder to create “style embeddings” that
can be used to alter speaker style or transfer style from one ut-
terance to a novel utterance [14]. Tyagi et al. present a similar
approach but also provide a way to create style embeddings for
novel utterances, using syntactic and word embedding features
[15]. While these approaches can create high quality synthe-
sized speech, they do not provide any control over low-level
prosodic events and therefore do not provide any way to correct
errors in prosodic output.

3. Corpus
For this work, we focused on the Boston University Radio
News Corpus (BURNC), a corpus of English language radio
news compiled by Mari Ostendorf, Patti Price and Stephanie
Shattuck-Hufnagel, with the purpose of creating clean speech
data conducive to prosody research [16]. BURNC consists of
one portion of read speech recorded in a lab and another, larger
portion recorded from actual broadcast news. For the sake of
consistency, we use only the latter portion in this work, which
consists of over seven hours of data. There are seven speakers
in the corpus, three female and four male. The data has been
segmented into utterances that are generally the length of short
paragraphs, no longer than three or four sentences. Because this
is high quality broadcast news data, there are very few disfluen-
cies or other irregularities throughout the data.

BURNC includes a number of useful annotations, includ-
ing gold standard transcriptions, part of speech tags, and, for
a portion of the corpus, ToBI (Tones and Break Indices) labels
[17]. The transcriptions and ToBI labels were created manually;
the part of speech tags were automatically generated and then
hand-corrected. The ToBI-labeled portion of the corpus con-
sists of slightly under one fifth of the total corpus and includes
data from five of the seven speakers.

At one point, we did attempt to extend these ToBI labels
to the remainder of the corpus using automatic methods. How-
ever, unfortunately, we found that, due to inaccuracies and in-
consistencies in the automatically generated labels, including
these labels did not actually improve our prosodic event model.
Therefore, we trained that model, which is the first stage of our
pipeline, only on the manually labeled portions of the corpus.
However, we trained our TTS model on all utterances from fe-
male speakers.

4. Prosodic Event Modeling
As mentioned earlier, we created two binary classification mod-
els, one for predicting whether a word is followed by a 4-level
ToBI phrase boundary and one for predicting whether a word
has a pitch accent. We chose to look only at these binary tasks,
as opposed to anything more fine-grained, since having high
accuracy models is crucial in the next step; we found that it is
difficult to ensure high accuracy in any more specific models.
(In fact, when labeling phrase boundaries, even human annota-
tors often struggle to identify 2- and 3-level ToBI boundaries.)
These models used a variety of features, all text-based and ex-
tractable using easily available NLP tools; this allowed them to
be run on novel sentences.

The model used here is very similar to the one presented in
[18], where we explored the potential feature set in more detail.

There, we found that we could get an accuracy of 93.4% for
phrase boundaries and 81.9% for pitch accents. As these accu-
racy numbers are relatively high, we found that the predictions
generated by this model were sufficiently accurate to allow us
to train TTS systems using them. These models used a Ran-
dom Forest classifier trained on a large number of features. A
description of the features used in our best models is outlined
below.

4.1. Word-Level Features

Our model began with a few simple word-level features. These
included the number of syllables in each word and the punc-
tuation following each word. We also included the named en-
tity recognition tag for each word, extracted using the Stanford
CoreNLP toolkit [19].

For our pitch accent model, we also included Linguistic In-
quiry and Word Count (LIWC) dimensions for each word as
features [20]. LIWC is a system for categorizing words, which
relies on a dictionary at its heart to define categories, related
to both a word’s semantic and syntactic properties. For exam-
ple, the word cried belongs to five categories: sadness, negative
emotion, overall affect, verbs, and past focus. We used LIWC to
assign each word to 73 dimensions of emotions, thinking styles,
social concerns, and parts of speech. Notably for our purposes,
there is a function word category in LIWC, which, not surpris-
ingly, turned out to be the single most heavily weighted feature
in our pitch accent model.

4.2. Syntactic Features

The largest group of features in our model was comprised of
syntactic features. Gold standard part of speech tags are in-
cluded with BURNC; these were used as features. Addition-
ally, we derived various features from the dependency and con-
stituency parses for each sentence, which we extracted using
Stanford CoreNLP.

From the dependency parse, we extracted the syntactic
function of each word and included it as a feature. From the
constituency parse, we extracted a large number of features:
First, we included the parse tree width and height for each parse,
as well as each word’s depth within the tree. Then, we exam-
ined the smallest non-trivial constituent containing each word,
including its size and root label, as well as the position of the
word within this constituent. Next, for each word, we identi-
fied the minimal spanning tree between the current word and
the next word. We included the size and root label of this tree
as features.

We also included each word’s supertag, based on prior work
indicating the usefulness of supertags to predict prosody [4].
Supertags provide a more fine-grained syntactic tag than part of
speech tags. Based on the Tree-Adjoining Grammar formalism,
they assign each word a portion of a syntax tree, allowing them
to capture more detailed information than a part of speech tag.
(For example, a supertag can distinguish between a verb in ac-
tive voice and one in passive voice.) For our experiments, we
extracted supertags using a BiLSTM-based tagger pre-trained
on Wall Street Journal data [21].

4.3. Co-Reference Features

It has long been hypothesized that given information is less
likely to be accented than new information. Therefore, for
our pitch accent model only, we included a handful of features
related to a word’s previous co-references. We extracted co-
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references for the whole corpus using Stanford CoreNLP’s co-
reference resolution tool. Using these groups of co-referents,
we then extracted a number of features. These features included
the number of prior co-reference mentions for each word, the
syntactic function of each word’s previous mention, the part of
speech of each word’s most recent explicit (identical) mention,
the part of speech of each word’s most recent implicit (non-
identical) mention, and the number of words elapsed between
each word and its most recent previous mention.

4.4. Word Embedding Features

Previous work has shown that word embeddings can be useful
for prosody prediction [8]. However, when training a random
forest classifier like the one used for our models, we could not
use word embeddings directly, as the individual dimensions are
not useful unless used within a neural model. Therefore, we
generated word and sentence embeddings, obtaining the latter
by averaging the word embeddings of each word in a sentence.
Then, to integrate these into the model, each word embedding
was assigned to one of five clusters and each sentence embed-
ding to one of twenty, based on the k-means clustering algo-
rithm. We included the cluster IDs for the current word and sen-
tence as features, as well as cluster IDs for neighboring words
and sentences, using a context window size of three on each
side.

We explored a large number of potential word embed-
dings, both pre-trained embeddings and embeddings trained on
BURNC, in order to determine which performed best in this
task. For phrase boundary detection test, we found that we
achieved the best results from training word2vec directly on
BURNC [22]. For pitch accent detection, we found that the
best results were achieved when we used a set of pre-trained
GLoVe embeddings that were modified to be gender-neutral
[23]. These embeddings were probably helpful because any
gender bias present in the data would be unlikely to have a
bearing on prosody; therefore, these embeddings effectively re-
moved irrelevant semantic content.

4.5. Speciteller

The last feature we included was the Speciteller score [24]. Spe-
citeller is a tool that determines the level of specificity and detail
present in a sentence. It assigns a rating ranging from 0 (most
general) to 1 (most detailed) based on the words present in a
sentence, with sentences containing many pronouns and vague
terms like people having much lower scores than sentences con-
taining specific terms or proper names. For example, the sen-
tence “Estimates vary widely on how much money could be
saved” was assigned a score of 0.0186, while the more specific
sentence “Quincy based Arbella Mutual Liability can now take
over American Mutual’s forty thousand car and home owner’s
policies” was assigned a score of 0.872. We calculated a speci-
ficity score for each sentence in the corpus, and the same value
was assigned to each word of the sentence. We found that Spe-
citeller scores improved performance for both phrase boundary
and pitch accent detection.

5. TTS Pipeline
For the actual speech synthesis steps of our pipeline, we used
Merlin, an open source neural-net-based TTS system [25]. Mer-
lin’s pipeline included three major steps. First, the text was
converted into HTS-style label files. Next, DNN-based duration
and acoustic models were used to predict acoustic features from

Figure 1: A diagram of our prosodically enhanced Merlin TTS
pipeline

these label files. Finally, a vocoder (the open source WORLD
vocoder, in this case) was used to convert from acoustic fea-
tures to speech. For our work, we modified only the front end
of this pipeline, keeping the duration model, acoustic model,
and vocoding steps as is. A diagram of our modified pipeline is
shown above in figure 1.

The HTS-style label files contain one line per phone, with
a large number of features attached to each phoneme, includ-
ing the identity of surrounding phones, whether the phone is
in a stressed syllable or not, the phone’s position in the current
syllable and word, and many others. While these files do con-
tain features relating to the phone’s position in the phrase, in
practice, we found that altering these features makes very little
difference in the synthesized audio.

Instead, we added two extra features to each phone, one cor-
responding to phrase boundaries and the other corresponding to
pitch accents. Since there are notable prosodic differences be-
tween 4-level breaks at the end of sentences and other 4-level
breaks, the phrase boundary feature could take on one of three
values: one for phones in words followed by a sentence break,
one for phones in words followed by a mid-sentence 4-level
break, and one for phones in words not followed by a 4-level
break. For pitch accents, our feature was a simple binary fea-
ture, indicating whether the current phone belonged to a pitch
accented word or not.

In order to add these features to each line of the label file,
we ran our prosodic event prediction model on both our train-
ing and test data. For consistency’s sake, since our training data
for this stage included BURNC utterances without gold stan-
dard ToBI labels, we used only predicted labels for this step.
However, since some utterances were in the training set in both
steps, it is likely that the predicted labels were very similar to
the gold standard labels.

We next ran the utterances through the normal process for
creating HTS labels, using the festival software, with the no-
table change that we removed the prosody module. We removed
this module because the festival prosody prediction uses its
own, less accurate, phrasing model, which often inserts pauses
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in infelicitous places in the utterance. Finally, we added the
new break and accent features to each line, updated the Mer-
lin questions file to reflect the new features, and trained Merlin
using the default DNN hyper-parameters for the acoustic and
duration models.

6. Results
6.1. Objective Metrics

Table 1: MCD and RMSE of F0 of synthesized from our pipeline
compared to a baseline.

Model MCD (dB) RMSE (Hz)

Our pipeline 5.014 44.586
Baseline 5.053 45.016

We ran our newly developed TTS pipeline on BURNC,
training on all utterances from female speakers, except for 121
utterances from speaker f3, which were held out as a test set.
In order to test the whether our pipeline improved output, we
tested it against a baseline, which used the standard Merlin
pipeline trained on the same data. We then computed the mel-
cepstral distortion (MCD) and the F0 root mean square error
(RMSE) between our synthesized utterances and the original
utterance in BURNC. These statistics are presented in Table 1,
which demonstrates that our model performs better on both met-
rics. This indicates that our pipeline does in fact produce speech
that is closer to natural human speech.

6.2. Listening Test

In order to test whether our model was useful for news data from
other corpora, including lengthier utterances, we also tested our
model on sentences from recent news data and crowd-sourced
these for human labeling. Specifically, using the same model as
above, we synthesized 20 short paragraphs (ranging in length
from 1 to 4 sentences) from news stories on the National Public
Radio (NPR) show Morning Edition, with breaks and accents
predicted using the model presented above.

These twenty utterances were then presented to Amazon
Mechanical Turk workers, who were provided with two ver-
sions of the utterance, one synthesized using this pipeline
and the other synthesized using the baseline standard Merlin
pipeline. The Turkers were then asked to select which of the
two they found more natural. This was a forced choice task;
there is no ”no opinion” option. The utterances were ordered so
that in a random half of the questions, the users were presented
with the baseline first, and in the other half, they were presented
with the prosodically trained utterance.

Five workers provided judgments on each of these 20 ut-
terances, for a total of 100 judgments. Of these judgments,
80% rated the utterances with our new, additional prosodic fea-
tures better than the baseline. These judgments demonstrate
that the new TTS pipeline we have developed, using the fea-
tures described above, is significantly preferred, with a p-value
of 1.97 ∗ 10−9.

7. Discussion and Future Research
In this paper, we have presented a pipeline that can produce
prosodically appropriate synthesized speech for novel utter-
ances, many of which are quite lengthy. Additionally, since this

pipeline predicts prosodic features strictly based on text-based
features that can easily be extracted using NLP tools, it is very
likely this pipeline can be used on other corpora that have no
gold standard ToBI labels.

However, while our voice is significantly better than the
baseline, it still suffers from some noticeable voice quality is-
sues. These issues are probably due to the small size of the
BURNC corpus, as well as the limitations of Merlin, which uses
a somewhat outdated TTS pipeline. In our future work, we plan
to create a similar pipeline using an end-to-end system, since
such end-to-end systems have been shown to produce higher
quality speech for TTS. Additionally, since our TTS pipeline
does not rely on the training corpus having any manual ToBI la-
bels, we will be able to work with a much larger set of training
data.

While we have shown that this pipeline works well for repli-
cating the prosody of news data, it is unclear if it will work as
well on other prosodically challenging domains, such as con-
versational speech. While our previous work has shown that
our prosodic event prediction model does not generalize well to
the conversational domain, there are several ToBI-labeled con-
versational corpora, such as the Switchboard Corpus and the
Columbia Games Corpus, which will provide a strong starting
point for work on this problem. In our future work, we will
examine this problem further, using various conversational cor-
pora as training data. These include corpora collected in our
lab, including the Games and Switchboard corpora as well as
the Columbia Cross-Cultural Deception Corpus (CxD).

Additionally, while our approach notably improves
prosody, because we are only modeling phrase boundaries and
pitch accents, there are aspects of prosody that it cannot prop-
erly synthesize. This problem is compounded by the fact that
our model cannot currently distinguish between boundary tones
or between high and low accents. One possible way to over-
come some of these shortcomings, particularly when working
with end-to-end systems, is to use our low-level approach to
prosody alongside a sentence-level approach, such as adding
style embeddings to the system. Since Tyagi et al. showed
that conditioning style embeddings on linguistic features can
improve prosody [15], this could also be a way to incorporate
features like dialogue act tags, which have a large impact on
prosody but a small impact on the location of prosodic events.
In the future, we plan to perform experiments where we in-
corporate models to capture both word-level and sentence-level
prosody.
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