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Abstract
Entrainment is the tendency of speakers engaged in conversa-
tion to align different aspects of their communicative behavior.
In this study we explore in more detail a measure of prosodic
entrainment defined in previous work, which uses a discrete
parametrization of intonational contours defined by the ToBI
conventions for prosodic description. We divide this measure
into two asymmetric variants: backward mimicry (in which a
speaker uses a contour used previously by the interlocutor) and
forward influence (in which a speaker’s contour appears later
in the speech of the interlocutor). This distinction sheds new
light on significant correlations with a number of social vari-
ables related to the level of engagement of speakers in a corpus
of task-oriented dialogues in Standard American English.
Index Terms: Dialogue, entrainment, prosody, ToBI, social
variables.

1. Introduction
When engaged in conversation, speakers tend to coordinate dif-
ferent aspects of their communicative behavior, often adapt-
ing their speech to match, or synchronize with, their interlocu-
tors’ behavior. This phenomenon is known as ENTRAINMENT,
ADAPTATION, MIMICRY or ALIGNMENT, and has been shown
to occur in pronunciation [1]; choice of referring expressions
[2]; linguistic style [3, 4], syntactic structure [5, 6]; speaking
rate [7]; acoustic-prosodic features such as fundamental fre-
quency, intensity and voice quality [7]; turn-taking cues [8, 9];
and choice of intonational contour [10].

Entrainment arising through spoken interactions is closely
linked to creating, negotiating and maintaining relationships be-
tweeen interlocutors in several social dimensions and reflects
speakers’ need for social integration or identification with an-
other [11]. For example, entraining interlocutors tend to be
more successful in completing tasks [12, 13] and to be perceived
as more competent, socially attractive, or likeable [14, 8, 15].
It has been already shown that entrainment improves the per-
ceived naturalness and effectiveness of human-machine inter-
actions [16, 17, 18].

In [10] we presented three measures of prosodic entrain-
ment that take advantage of the descriptions of prosodic con-
tours annotated using the ToBI labeling conventions [19]. We
focused on these higher level representations of prosodic varia-
tion, such as sequences of PITCH ACCENTS, PHRASE ACCENTS,

and BOUNDARY TONES. We found significant correlations be-
tween each of these measures of prosodic entrainment and man-
ual annotations of a number of social variables related to the
level of engagement of speakers. In this study we further ex-
plore one measure of prosodic entrainment described in our pre-
vious study, based on the similarity of previous and subsequent
contours produced by interlocutors. We divide this metric into
two asymmetric variants: backward and forward entrainment –
or, backward mimicry and forward influence, and analyze the
utility of each measure at a wider temporal range. This new
approach provides novel and finer-grained information on the
correlation of speakers’ pitch contours with social variables in
our corpus of task-oriented dialogues in Standard American En-
glish (SAE).

2. Corpus
Our experiments were conducted on a subset of the Columbia
Games Corpus, a collection of 12 spontaneous task-oriented
dyadic conversations between 13 native speakers of SAE, com-
prising 9h 8m of recorded dialogue. In this corpus, subjects
played a set of computer games using only verbal communi-
cation to achieve a common goal — a score which determined
their overall compensation. Each speaker was recorded on a
separate channel. The corpus was transcribed and words were
manually aligned to the speech. In this study we examine a por-
tion of the Games Corpus that has complete ToBI annotations,
the Objects Games, which comprises just under half of the cor-
pus (4h 18m). In these exercises, one player (the Describer)
described the position of an object on his/her screen to the other
(the Follower), whose task was to position the same object on
his/her own screen. Neither could see the other’s screen. The
closer the Follower’s object to the Describer’s, the higher the
score; subjects were later paid a bonus based on the number of
points they earned. Each session included the same set of 14
placement tasks, with subjects alternating in the Describer and
Follower roles.

Prosodic information was annotated using the ToBI con-
ventions for SAE [19]. These consist of annotations at four
levels of analysis: an ORTHOGRAPHIC TIER of time-aligned
words; a BREAK INDEX TIER indicating degrees of juncture be-
tween words, from 0 ‘no word boundary’ to 4 ‘full intonational
phrase boundary’; a TONAL TIER, where pitch accents, phrase
accents and boundary tones describing targets in the F0 con-
tour are annotated; and a MISCELLANEOUS TIER, in which phe-



nomena such as disfluencies may be optionally marked. Break
indices define two levels of phrasing: level 3 corresponds to
an INTERMEDIATE PHRASE in Pierrehumbert’s [20] schema
for representing SAE, and level 4 corresponds to her INTONA-
TIONAL PHRASE. This tier is supplemented by the tonal tier in
which type of phrase accent and boundary tone is identified. As
in [20], level 4 phrases consist of one or more level 3 phrases,
plus a high or low BOUNDARY TONE (H% or L%) at the right
edge of the phrase. Level 3 phrases consist of one or more pitch
accents, aligned with the stressed syllable of lexical items, plus
a PHRASE ACCENT, which also may be high (H-) or low (L-).

Several aspects of speakers’ social behavior in the Ob-
jects Games were annotated using Amazon’s Mechanical Turk
(AMT) crowdsourcing.1 Annotators listened to an audio clip
of an Objects Games task and were asked to answer a series of
questions about the dialogue and about each speaker, including
Does Person A make it difficult for his/her partner to speak?
Seem engaged in the game? Seem to dislike his/her partner? Is
s/he bored with the game? Directing the conversation? Doing
a good job contributing to successful completion? Encourag-
ing his/her partner? Making him/herself clear? Planning what
s/he is going to say? Polite? Trying to dominate the conversa-
tion?, inter alia. Each task was rated by five unique annotators
who answered ‘yes’ or ‘no’ to each question, yielding a score
ranging from 0 to 5 for each social variable, representing the
number of annotators who answered ‘yes.’ A fuller description
of the annotation for social variables and prosodic information
may be found in [10].

3. Measure of prosodic entrainment and
social variables

In [10] we presented three measures of prosodic entrainment
derived from an analysis of sequences of ToBI tone labels in
the corpus. Here we focus on one of those metrics, based on
the similarity of the neighboring contours produced by the in-
terlocutors. In [10] we termed that measure E2; here we call it
simply E .

We define an INTONATIONAL CONTOUR as a sequence of
ToBI tone labels corresponding to an intermediate phrase. For
example, given the sequence of ToBI labels “L* L-H% L* L-
L% H* !H* H- H* !H- L* H-H%”, the corresponding list of
contours is [“L* L-H%”, “L* L-L%”, “H* !H* H-”, “H* !H-
”, “L* H-H%”]. Further, we define a similarity function sim
between contours c1 and c2 as sim(c1, c2) = (m − l)/m,
where m = max(length(c1), length(c2)), and l is the Leven-
shtein distance [21] between contours c1 and c2 (defined such
that l ≤ m always holds). In these calculations, c1 and c2
are considered to be simple strings. Following this definition,
sim(c1, c2) ranges from 0 when c1 and c2 are completely dif-
ferent, to 1 when they are identical.

Next, we extract the list of contours produced by each
speaker in an entire Objects Games session, and compute the
E(A,B) measure of prosodic entrainment between speakers A
and B using Algorithm 1. Figure 1 illustrates this procedure.
For each contour c1 from speaker B, we look in its near vicinity
(a window of radius k sec around c1) for the most similar con-
tour from speaker A, and record the similarity score between
the two contours. We then average all such similarity scores to
define our measure of overall prosodic entrainment between A
and B. As noted in [10], E is asymmetric, and a high value of
E(A,B) suggests roughly that contours(B) ⊆ contours(A),

1http://www.mturk.com

Algorithm 1 Computation of E(A,B).
1: L← new list
2: for each contour c1 from B do
3: C ← contours from A at most k sec before/after c1
4: append

(
max
c2∈C

sim(c1, c2)
)

to L

5: end for
6: return mean(L)

since for each contour from B, speaker A also produces a sim-
ilar contour shortly before or after.

Figure 1: Illustration of the E measure presented in [10].

As discussed in [10], to determine how the E measure of
prosodic entrainment correlates with our social variables, we
build a vector with the value of E for each member of each
speaker pair. Since there are 12 sessions in our corpus, this
is a 24-dimensional vector,

−→
E =

〈
E(A1, B1), E(B1, A1),

E(A2, B2), E(B2, A2), . . . , E(A12, B12), E(B12, A12)
〉
,

where Ai, Bi are the two speakers from session i. Similarly, we
build a 24-dimensional vector for each social variable v (such as
bored-with-game or making-self-clear), −→v =

〈
v(A1), v(B1),

v(A2), v(B2), . . . , v(A12), v(B12)
〉
, where again Ai, Bi are

the two speakers from session i, and v(Ai) is the mean value of
v for speaker A in session i (likewise for speaker Bi).

In [10] we report significant positive correlations between
−→
E (using k = 30 seconds – i.e., one minute around each target
contour) and the−→v vectors for six social variables: contributes-
to-successful-completion (r = 0.73), engaged-in-game (0.71),
making-self-clear (0.63), gives-encouragement (0.59), difficult-
for-partner-to-speak (0.48) and planning-what-to-say (0.47), as
well as negative correlations with two variables: bored-with-
game (r = −0.75) and dislikes-partner (−0.54). Generally we
found that, when E(A,B) is high, speaker A is more likely to
be perceived as making well-planned, clear contributions to the
dialogue, being engaged in the game, and giving encouragement
to their partner, and is less likely to be perceived as disliking
their partner or being bored with the game [10].

3.1. Backward mimicry and forward influence

In this study, we divide this measure of prosodic entrainment
into backward mimicry and forward influence. To accomplish
this, in step 3 of Algorithm 1, we now consider speaker A’s
contours that lie either k seconds before c1 (backward mimicry,
or Eback) or after target contour c1 (forward influence, or Efwd).

Figure 2 illustrates the computation of Eback(A,B). For
each contour c1 from speaker B, we look in its preceding k
seconds for the most similar contour from speaker A, and save
the similarity score between the two contours. We then define
Eback(A,B) as the mean of all such similarity scores.

Thus, Eback(A,B) attempts to capture the degree to which
speaker B mimics (a subset of) the contours produced by
speaker A shortly before speaker B’s production. Similarly,
Efwd(A,B) attempts to capture the extent to which speaker B



Figure 2: Illustration of the Eback measure

influences the subsequent choice of (a subset of) speaker A’s
prosodic contours.

As an example, we show how these measures are computed,
given the following contours taken from a short conversation,
for a large enough value of k:

SpkrA: H* L-L% L+H* !H* L-H%
SpkrB: L* H- H* L-L%

Eback(A,B) = (sim(“L* H-”, “H* L-L%”)+
sim(“H* L-L%”, “H* L-L%”))/2

= (0.429 + 1)/2 = 0.714

Efwd(A,B) = (sim(“L* H-”, “L+H* !H* L-H%”)+
sim(“H* L-L%”, “L+H* !H* L-H%”))/2

= (0.385 + 0.462)/2 = 0.423

Eback(B,A) = max(sim(“L+H* !H* L-H%”, “L* H-”),
sim(“L+H* !H* L-H%”, “H* L-L%”))

= max(0.385, 0.462) = 0.462

Efwd(B,A) = max(sim(“H* L-L%”, “L* H-”),
sim(“H* L-L%”, “H* L-L%”))

= max(0.429, 1) = 1

In particular, note that Eback(A,B) (i.e., how B mimics A’s re-
cent contours) is not equal to Efwd(B,A) (how A influences B’s
future contour choices). At first sight, these two expressions
might seem equivalent, but they are actually different. In the
former, for each of B’s contours we look for the most similar
contour from A’s previous speech – i.e., we compare each of
B’s contours against a set of contours from A. In the latter ex-
pression, we do the opposite – we compare each of A’s contours
against a set of contours from B’s succeeding speech. Thus,
while these two expressions are related, due to this asymmetry
they in fact compute different things.

Since we have no prior knowledge of how far into the past
or future we should look, we analyze the behavior of Eback

and Efwd over increasing window sizes k. Figure 3 shows,
for each speaker pair in our corpus, the value of Eback when
k = 5, 10, 15, ..., 180 seconds. We observe that, for most
speakers, this measure remains fairly constant after two min-
utes. We therefore restrict our subsequent experiments to values
of k between 5 and 120 seconds. The results for our forward in-
fluence measure, Efwd, are essentially identical, but are omitted
due to space constraints.

4. Results
In this section we examine how our Eback and Efwd measures cor-
relate with the eight social variables listed in Section 3. Addi-
tionally, we explore different values for the width of the window
in step 3 of Algorithm 1, to study the span of backward mimicry
and forward influence in prosodic contour choice. The eight
plots shown in Figure 4 summarize our results. In each plot, the
horizontal axis corresponds to the window width k, in seconds,
and the vertical axis shows Pearson’s correlation coefficient r.
The statistical significance of each test is indicated with a star
when p < 0.01, or with a dot when 0.01 ≤ p < 0.05.

Figure 3: Eback measure for different window widths (in sec-
onds), for the 24 speaker pairs in our corpus.

Plots (a) through (d) in Figure 4 exhibit a similar pattern.
These plots correspond to four social variables directly related
to the degree of speaker engagement in the task – contributes-
to-successful-completion, making-self-clear, engaged-in-game
and planning-what-to-say. In these plots we observe that
these four social variables are positively correlated with Eback

at around 15 seconds, and also with Efwd for 25 seconds or
greater values of k. This indicates that, when subjects are per-
ceived to have a positive view of the game and to make clear,
well-planned contributions, they exhibit a short-range backward
mimicry (they use contours similar to those produced by their
interlocutors shortly before) and they also have a longer-range
forward influence on their interlocutors’ contour choice.

Plot (e) in Figure 4 corresponds to gives-encouragement.
It shows a strong positive correlation with backward mimicry,
for k values of 40 seconds and longer. This seems to suggest
that, the more encouragement subjects give to their partners,
the more they use prosodic contours similar to the ones used by
their interlocutors earlier in the conversation.

Plot (f) corresponds to difficult-for-partner-to-speak. This
variable correlates positively in our data with trying-to-
dominate-the-conversation (r = 0.73, p < 0.001) and with
directs-the-conversation (r = 0.51, p < 0.05), and negatively
with is-polite (r = −0.46, p < 0.05); correlations with all
other social variables are not significant. In other words, this
variable describes the behavior of one who is trying to take con-
trol of the conversation. It is interesting, then, to find that such
a behavior correlates positively with a short-range entrainment
(k between 10 and 35 seconds), both in backward and forward
directions. These correlations are weaker for wider windows,
suggesting that this social dimension is related to shorter- rather
than longer-range entrainment of intonational contours.

The last two plots in Figure 4 show the correlations for
bored-with-game and dislikes-partner – variables that reflect
negative aspects of the speakers’ social behavior. Note that the
correlation coefficients on the vertical axes are negative. Plot
(g) suggests that, the greater the tendency of a speaker to be
bored with the game, the less likely they are to mimic their in-
terlocutor’s recent contours or to have a long-range influence on
their interlocutor’s prosodic contour choice. Plot (h) indicates
that, when a speaker dislikes their partner, they are also unlikely
to influence their partner’s prosodic contour choice.



Figure 4: Correlations of the Eback and Efwd measures of prosodic entrainment with eight social variables, for varying window widths.
Horizontal axes: window width k (in seconds); vertical axes: Pearson’s correlation coefficient r. Statistical significance is signalled
with a star (?) when p < 0.01, or with a dot (·) when 0.01 ≤ p < 0.05.

5. Conclusions

In this study we refine the definition of a measure of prosodic
entrainment presented in previous work, derived from an anal-
ysis of ToBI intonational contours. We divide this measure into
two variants: backward mimicry (Eback) and forward influence
(Efwd). This distinction sheds new light on significant correla-
tions of different forms of prosodic entrainment with a num-
ber of social variables in a corpus of task-oriented dialogues
in SAE: 1) speakers perceived as engaged in the game exhibit
a short-range backward mimicry as well as a longer-range for-
ward influence on prosodic contour usage; 2) when speakers
are perceived as encouraging their partners, they tend to mimic
their partners’ previous prosodic contours; 3) the behavior of
speakers thought to be trying to control the conversation corre-
lates positively with a short-range entrainment, both backward
and forward; 4) when speakers are believed to be bored with the

game and/or to dislike their partners, they are unlikely to mimic
or influence their partners’ choice of prosodic contours.

In future, we will analyze the feasibility of replacing the
manual annotations of prosody with automatic estimates such
as AuToBI [22]. We will also investigate whether Eback and Efwd

may be employed with other discrete labels besides ToBI con-
tours, such as part-of-speech labels, to measure other types of
entrainment.
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