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Figure 1 - a possible realization for sentence (1). Figure 2 — decomposition of one specific event vignette that can real-
ize Commerce_buy and decomposes to the spatial arrangement in
Figure 1.

We outline ongoing work on WordsEye, a text-to-scene generation system. While
WordsEye (Coyne and Sproat, 2001) currently recognizes descriptions of simple spa-
tial relations between objects, we are aiming to add support for complex actions,
events and states-of-affairs. To this end we use frame-based representations for both
asserted and terminological knowledge. The resulting scenes are static spatial ar-
rangements of pre-existing 3D models. For instance, the following sentence might
produce the scene in Figure 1:

(1) Mary bought an apple for $1

To convert a description into a scene, different sources of knowledge are required: lex-
ical knowledge, graphical knowledge, and world knowledge. We discuss them in turn.

First, lexical knowledge links words in their syntactic context to semantic represen-
tations. Such knowledge is already described by frame semantics (Fillmore, 1982) and
recorded in FrameNet (Fillmore et al, 2003 and Ruppenhofer, 2010), which we build
on. To analyze sentence (1), a semantic parser would label buy with the Com-
merce_buy frame and assign the frame elements buyer to Mary, goods to an apple,
and money to for $1. In FrameNet annotations, frame elements are filled with text
spans. In contrast, we create a single semantic representation for the whole sentence:
we fill frame elements recursively with further frame instances. Each frame instance
is associated with its type (the frame). Frame instances, shown as iy ... ig in Figure 1,
are the entities or events mentioned in the description.

Second, we need graphical knowledge about the arrangements of 3D models in a
scene. FrameNet frames describe functional relations between frame elements, without
characterizing the nature of the relation in detail. As we are interested in generating
static 3D scenes, we require knowledge about the spatial relations between actual enti-
ties needed for visualization. For this purpose, we extend FrameNet frames by adding
specific visually-oriented information. We call these extended frames vignettes. In
order to represent scenes, vignettes a) optionally introduce new frame elements repre-
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senting additional entities required to convey the man- Aopiel
ner in which an action is carried out; b) limit certain
frame elements to certain classes of fillers, such as ISA(Fruit)
small round objects; and c) specify concrete 3D mod- Size(fig:self, size:small)
. Shape(fig:self, shape:round)
els (most entity frames) or a set of sub-frames

representing graphical relations between entities par- ~ Figure 3 -abasic vignette for apples.
ticipating in the frame (event frames). Figure 2 shows the decomposition of one of
several possible vignettes extending Commerce_buy. On is a primitive graphical
frame that can be interpreted directly by low-level spatial inference. At_counter de-
scribes a common template for scenes in which two parties interact over a counter.
Vignettes are connected to their lexical super-frame via inheritance and selected by
selectional restrictions on the frame elements.

Finally, we need to represent factual knowledge about objects as well as selectional
restrictions. We use FrameNet's inheritance frame-to-frame relation to build an ontol-
ogy of concepts. To assert selectional restrictions and properties of objects, all frames
carry a self frame element, relating to the frame instance itself, which allows us to de-
fine properties of a Frame or Vignette. Figure 3 shows a simple definition for Apple
that works with the above definition for Commerce_counter.

Our semantic resource, called VigNet (Coyne et al, 2011), currently contains all of
FrameNet and about 3000 3D models, with information about their properties (size,
color, shape, texture). VigNet also contains a number of handcrafted abstract vignettes
(similar to At _counter above) for situations and events, as well as rooms. New
vignettes are being added using Amazon Mechanical Turk and the WordsEye system
itself.

To create a scene from an input sentence two inference levels are required: Resolv-
ing high-level frame semantics into vignettes and interpreting primitive spatial rela-
tions (On, Near...) using spatial reasoning to create an actual 3D scene. Here we fo-
cus only on the first subtask. WordsEye already supports spatial inference and support
for more elaborate reasoning (in rooms and other environments) is currently being
added.

To convert a high-level FrameNet-style semantic parse into a vignette semantic de-
scription, we first analyze the sentence syntactically and create n-best FrameNet-style
semantic parses for each frame evoking word and its frame elements in isolation. As
other semantic parsers do not support n-best analyses, we developed our own semantic
parser. The parser maps a new input parse to frame annotations observed in the
FrameNet data using a probabilistic model of alignments between syntactic dependen-
cy structures. The set of annotation hypotheses thus derived is ranked using semantic
information. Initial results have shown that the gold frame structure is recovered with-
in the best-10 results most of the time (~80%) and we are currently optimizing the
ranking model. We can construct a forest of possible analyses for the entire sentence
from the n-best annotations for each sentence. From this forest we need to select a sin-
gle tree that can be rendered into a scene.

Not only does the system need to select appropriate lexical frames for each frame-
evoking element in the sentence, it also needs to find suitable vignette extensions for
these frames. The difficulty is that all selected vignettes need to be mutually con-
sistent. As frame descriptions do not involve quantification and negation, we only need
to check if the selectional restrictions are met. On the other hand, finding a set of con-
sistent vignettes for a sentence is hard. In a first implementation, we will search the
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entire space of possible assignments for all lexical frames proposed by the parser, but
several heuristics can be employed. For instance, we can first assign the most specific
vignette to the main frames in a sentence, i.e. the vignette that has the most constraints
on its frame elements. This limits the choice for other vignettes. We also expect this
strategy to produce more interesting visualizations. In future work we are planning to
make factual and graphical knowledge provided by VigNet available to the semantic
parser, integrating linguistic semantic analysis and inference more tightly.

Our work stands in a tradition of semantic analysis using decomposition into primi-
tives, for instance Conceptual Dependency theory (Schank and Abelson, 1977), the
Generative Lexicon (Pustejovsky, 1991), Event Logic (Siskind, 1994), and VerbNet’s
(Kipper Schuler, 2005) definitions of verb class semantics. Other related work deals
with grounding of semantic representations in graphical relations (Simmons, 1975,
Kahn, 1979, Ma and McKevitt, 2003), ontologies (Nirenburg and Raskin, 2004,
Scheffczyk et al, 2006, Yu et al, 2007), or perceptual and motoric embodiment (Ber-
gen and Chang, 2005).

This material is based upon work supported by the National Science Foundation under
Grant No.11S5-0904361.
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