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Abstract
In this paper, we introduce a new approach to dialect recog-

nition that relies on context-dependent (CD) phonetic differ-
ences between dialects as well as phonotactics. Given a speech
utterance, we obtain the phone sequence using a CD-phone rec-
ognizer. We then identify the most likely dialect of these CD-
phones using SVM classifiers. Augmenting these phones with
the output of these classifiers, we extract augmented phono-
tactic features which are subsequently given to a logistic re-
gression classifier to obtain a dialect detection score. We test
our approach on the task of detecting four Arabic dialects from
30s utterances. We compare our performance to two baselines,
PRLM and GMM-UBM, as well as to our own improved ver-
sion of GMM-UBM which employs fMLLR adaptation. Our
approach performs significantly better than all three baselines
at 5% absolute Equal Error Rate (EER). The overall EER of our
system is 6%.

1. Introduction
The last few decades have seen considerable progress in auto-
matically identifying the language of a speaker given a sample
of his/her speech. Accent and dialect recognition have more re-
cently begun to receive attention from the speech science and
technology communities. The task of dialect identification is
the recognition of a speaker’s regional dialect, within a pre-
determined language, given the acoustic signal alone. Dialect
identification for Arabic dialects, in particular, can help in Auto-
matic Speech Recognition (ASR), since speakers with different
dialects pronounce some words differently, consistently alter-
ing certain phones and even morphemes. Identifying regional
dialect prior to ASR allows for the use of a more restricted pro-
nunciation dictionary in decoding, resulting in a reduced search
space and lower language modeling perplexity. Moreover, iden-
tifying the dialect first will enable the ASR system to adapt its
acoustic, morphological, and language models appropriately.

Identifying the regional dialect of a speaker will also pro-
vide important benefits for speech technology beyond improv-
ing ASR. It will allow us to infer the speakers regional origin
and ethnicity, and to adapt the output of text-to-speech synthe-
sis to produce regional speech — important for spoken dialogue
systems’ development.

The problem of dialect recognition has been viewed as more
challenging than that of language recognition due to the greater
similarity between dialects of the same language. Although
dialects may differ in any dimension(s) of the linguistic spec-
trum including, morphological, lexical, syntactic, phonetic and

phonological differences, these differences are likely to be more
subtle across dialects than those across languages.

In this work, we first attempt to identify the phonetic cues
that distinguish different Arabic dialects by training discrimi-
native classifiers. We use these classifiers to extract augmented
phonotactic features, which are then used to identify the dialect
of the speaker. We conduct a series of experiments to test our
approach on four Arabic dialects of spontaneous telephone con-
versations and compare our results to three baselines. In Sec-
tion 2, we describe related work in language and dialect recog-
nition. The Arabic dialect corpora employed in our experiments
are described in Section 3. In Section 4, we describe the front-
end and context-dependent phone recognize, we have built for
our approach. We discuss the context-dependent classifier in
Section 5, and then describe how to use these classifiers to iden-
tify linguistic differences between pairs of dialects in Section 6.
We described our discriminative phonotactic approach to dialect
recognition in Section 7 and discuss experimental results in Sec-
tion 8. Finally, in Section 9, we conclude and identify directions
for future work.

2. Related Work
Some successful approaches to language identification have
made use of phonotactic variation. For example, the parallel
Phone Recognition followed by Language Modeling (parallel
PRLM) [1] approach uses phonotactic information to identify
languages using n-gram language models over phones. Ziss-
man et al. [2] show that the PRLM approach yields good results
classifying Cuban and Peruvian dialects of Spanish in the Mi-
ami corpus, using an English phone recognizer. We have used
the parallel PRLM with 9 phone recognizers trained on different
languages to distinguish among the four Arabic dialects we ex-
amine in this work, as well as Modern Standard Arabic (MSA),
in [3]. Shen et al. [4] describe a dialect recognition system that
made use of adapted phonetic models per dialect applied in a
PRLM framework to distinguish American vs. Indian English
and two Mandarin dialects (Mainland and Taiwanese).

Gaussian Mixture Models - Universal Background model
(GMM-UBM) has also achieved considerable success in
speaker and language recognition [5, 6]. Torres-Carrasquillo et
al. [7] developed a system using GMM-UBM with shifted delta
cepstral (SDC) features. The system performed worse than that
of Zissman et al [2] on the Miami corpus, but performs well
on two Mandarin dialects and two Spanish dialects from Call-
Home. Discriminative training has proven quite useful in recent
language recognition systems (e.g., [8, 9]). Torres-Carrasquillo
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et al. [10] showed that a GMM-UBM based model discrimina-
tively trained with SDC features with an eigen-channel compen-
sation component and vocal-tract normalization (VTLN) pro-
vides good results for the recognition of American vs. In-
dian English, four Chinese dialects, and three Arabic dialects
(Gulf, Iraqi, and Levantine). Alorfi explores ergodic HMMs to
model phonetic differences between two Arabic dialects (Gulf
and Egyptian Arabic) employing standard MFCC features [11].

In addition to phonotactic and acoustic-based systems, di-
alects may also differ in their prosodic structure (e.g., [12, 13]).
We observed in our previous work that four Arabic dialects sig-
nificantly differ in their rhythmic and syllabic structure as well
as in vowel durations and some intonational patterns, such as
pitch peak alignments within syllables [14]. We showed that
modeling a sequence of prosodic features extracted from auto-
matically obtained pseudo syllables using ergodic HMMs sig-
nificantly improves the results of Parallel PRLM.

3. Corpora
When training a system to recognize languages or dialects, it
is essential to use training and testing corpora recorded under
similar acoustic conditions. Otherwise, the trained models may
capture channel specific information as opposed to linguistic
differences. In this work, we test our approach on the following
four Arabic dialects.1

• Iraqi Arabic, including three sub-dialects: Baghdadi,
Northern, and Southern.

• Gulf Arabic, including three sub-dialects: Omani, UAE,
and Saudi Arabic.

• Levantine Arabic, contains four sub-dialects: Jordanian,
Lebanese, Palestinian, and Syrian Arabic.

• Egyptian Arabic, including primarily Cairene Arabic.

The data are spontaneous telephone conversations, pro-
duced by native speakers of the dialects, speaking with family
members, friends, and unrelated individuals, sometimes about
predetermined topics. We use the speech of the 478 speakers
from the Iraqi Arabic Conversational Telephone Speech corpus
[15], holding out 20% of the speakers for testing. We use the
976 speakers from the Gulf Arabic Conversational Telephone
Speech corpus [16], again holding out 20% of the speakers
for testing. Our Levantine data consists of 985 speakers from
the Levantine Arabic Conversational Telephone Speech corpus
[17], also holding out 20% of the speakers for testing. These
three corpora were collected by the same company (Appen Pty
Ltd) and appear to have been collected under similar conditions.
Each of the corpora contains male and female speakers speaking
by landline or mobile phones. Since it is likely that the distri-
bution of these categories may influence the trained models, we
decided to equalize the number of test speakers in each category.
So, our test set for each of the three dialects include: 25% are
selected randomly from the set of female speakers speaking on
mobile phones; 25% selected from male speakers speaking on
mobile phones; 25% selected from females speaking on land-
line phones; and 25% selected from males speaking over land-
lines. For the Egyptian dialect corpus, we use the 280 speakers
in CallHome Egyptian and its supplement [18] for training. At-
tempting to test our system on different acoustic conditions, we

1See [3] for the linguistic background pertaining to these four di-
alects

employ a completely different corpus for testing: 120 speak-
ers from CallFriend Egyptian [19].2 The Egyptian data also
includes male and female speakers, but it is not clear if the
speakers used landlines, mobile phones, or both. All corpora are
provided by the Linguistic Data Consortium (LDC). Although
some of the data have been annotated phonetically and/or ortho-
graphically by LDC, we do not make use of these annotations
for our work.

To identify speech regions in the audio files, we segmented
the files based on silence using Praat [20] using a silence thresh-
old of -35db with a minimum silence interval of 0.5s and min-
imum sounding intervals of 0.5s. All segments were used in
training. In this paper, we present results from testing our sys-
tem on 30-second cuts. Each cut consists of consecutive speech
segments totaling 30s in length.3 Multiple cuts are extracted
from each speaker. For Iraqi, we have a total of 477 30s test
cuts, and 801, 818, 1912 30s test cuts for Gulf, Levantine, and
Egyptian, respectively.4

4. Context-Dependent Phone Recognizer
To support our approach to dialect recognition, we first build
a continuous HMM-based triphone context-dependent (CD)
phone recognizer using IBM’s Attila system [21]. This phone
recognizer is trained on Modern Standard Arabic (MSA) using
50 hours of GALE speech data of broadcast news and broadcast
conversations. Our phone recognizer consists of 230 context-
dependent acoustic models and a total of 20,000 Gaussians.5

The number of Gaussians per state is variable (about 80 Gaus-
sians on average).

We use one acoustic model for silence, one for non-vocal
noise and another to model vocal noise. Therefore, in total,
we have 227 CD-phones. The set of CD-phones is automati-
cally generated by using a decision tree which asks questions
about left and right contexts of each triphone. Contexts with the
smallest acoustic difference are clustered together.

The front-end is a 13-dimensional Perceptual Linear Pre-
diction (PLP) front-end with cepstral mean and variance nor-
malization (CMVN). Each frame is spliced together with four
preceding and four succeeding frames and then Linear Discrim-
inant Analysis (LDA) is performed to yield 40-dimensional fea-
ture vectors. We use the LDA matrix derived for IBM’s Attila
Arabic ASR system here [21].

All CD-phone HMMs consist of 3 states, except for the the
MSA short vowels (/a/ /i/ /u/) which consist of only 2 states.6

All state observation densities are Gaussian Mixture Models
(GMM). We utilize a unigram language model of phones trained
on MSA. We do not use higher order of n-gram to avoid bias for
any particular dialect. The pronunciation dictionary and MSA
phonetic inventory used in this work are generated as described
in [22].

The phone-recognizer is a two-pass system. In the first
pass, we obtain the most likely phone sequence hypothesis. The
second pass uses this hypothesis to perform model adaptation,

2Because the Egyptian corpora were not collected by the same com-
pany which collected the other three corpora.

3N.B. It is sometimes necessary to truncate speaker turns to achieve
exactly 30 seconds.

4Our training/testing splits and segmentations are available on
www.cs.columbia.edu/speech/corpora

5We use only 230 CD models since we build a classifier for each
CD-phone type in Section 5, otherwise we will have data sparsity issue.

6It has been previously shown that 2 states for short vowels as op-
posed to 3 significantly improves ASR word error rate [21].
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Figure 1: Dialect Classification of Context-Depdendent Phones

followed by decoding. In this work, we first apply feature space
Maximum Likelihood Linear Regression (fMLLR) followed by
MLLR adaptation, given the most likely phone sequence hy-
pothesis. The resulting CD-phones are exemplified by the CD-
phone /r/: [Voiced-Consonant & !Glide]-/r/-[Front Vowel].

5. Context-Dependent Phone Classifiers
As noted above, dialects typically differ in some number of pho-
netic realizations in context. For example, the /r/ in Scottish
English is trilled in some phonetic contexts but approximant in
others. However, /r/ is typically approximant in American En-
glish. In this section, we describe an approach that allows us
to classify each CD-phone instance in an utterance as belong-
ing to one of our dialects. This approach is similar in spirit to
the GMM-SVM approach introduced by Campbell et al. [23]
for speaker verification. However, in our approach, we target
the acoustic differences at the level of CD-phones as opposed
to the differences in the entire speaker’s acoustic data.

As illustrated in Figure 1, the first step in our approach,
after front-end processing, is to obtain the context-dependent
phone sequence of a given speech segment. To do this, we run
the CD-phone recognizer described in Section 4 to obtain the
most likely phone sequence hypothesis. In the second step, for
each CD-phone instance in the sequence, we extract the phone
acoustic features aligned to each HMM state in the correspond-
ing acoustic model. Note that these features are extracted after
normalization (CMVN) and fMLLR transformation. In other
words, for each CD-phone instance in the phone sequence, we
have one sequence of acoustic frames aligned to the first state
in the HMM, and another frame sequence aligned to the second
state. If the HMM has three states, then we have also another
frame sequence aligned to the third state. See the second row in
Figure 1.

Recall that there is a GMM for each HMM state. For each
CD-phone instance in the utterance, we use the acoustic frames
aligned to the HMM states to MAP (Maximum A-Posteriori)
adapt each GMM in each state to the corresponding frames.
That is, if the HMM has three states, then we get three new
adapted GMMs for each CD-phone instance in the utterance;
see the fourth row in Figure 1. In our implementation, we only
adapt the means of the Gaussians using a relevance factor of
r = 0.1. In the context of the GMM-UBM approach, the HMM

can be viewed as the universal background model of the CD-
phone type.

Now, to classify a CD-phone instance as belonging to one
of our dialects, we adopt the GMM-SVM approach [23] — but
at the level of phone instances. We represent each CD-phone
instance in the utterance by a Supervector which is the result
of stacking all the mean vectors of the two or all three adapted
GMMs of the CD-phone HMM. The intuition is that some of
these adapted means ‘summarize’ the spectral characteristics of
the CD-phone instance. We previously observed that the dura-
tion of vowels and certain consonants significantly differ across
Arabic dialects. Therefore we also include the phone duration
as an additional feature in the Supervector of each CD-phone
[14].7

During training, we apply the procedure described above
on the training data to obtain a set of Supervectors for each CD-
phone type from each dialect. Using these sets of Supervectors,
we train a binary discriminative classifier for each CD-phone
type for each pair of dialects. From our 227 CD-phones, we thus
have a total of 227 binary classifiers for each pair of dialects.
In our implementation, we train SVM classifiers with an RBF
kernel.8 We have found that an SVM with such a kernel per-
forms significantly better than an SVM with a linear kernel and
also better than a logistic regression classifier for the vast ma-
jority of the 227 classifiers. During testing, given a CD-phone
instance with its frame alignment, we apply the procedure de-
scribed above to extract its Supervector, and then run the corre-
sponding SVM classifier to classify this CD-phone into one of
our dialects.

6. Automatic Extraction of Linguistic
Knowledge

There are several uses of our CD-phone classification frame-
work. First, we can utilize it to automatically extract linguistic
knowledge, specifically the phonetic cues that may distinguish
one of our dialects from another. We are particularly interested

7One could add additional prosodic features to the phone vector
(such as F0 shape features). We hypothesis that such features would
be particularly useful for tonal dialects.

8In our implementation, we use LibSVM and LibLinear toolkits
[24].
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in knowing what phones in which contexts are realized differ-
ently across dialects. An empirical measure of the classifica-
tion performance of each CD-phone classifier provides us with
a measure of how the realization of a CD-phone is distinguish-
able across pairs of dialects.9

To extract these phonetic cues, we conducted the following
experiment. We split the training speaker set of each dialect
into halves. We used the first half to train the CD-phone clas-
sifiers for each pair of dialects and the second to test each clas-
sifier’s performance. We randomly balanced the number of test
instances so that a chance baseline is 50%. For each classifier,
using the test instances, we applied the binomial test procedure
to identify which CD-phone classifier performed on the test set
with a significance level of 0.05. We report on this performance
in Table 1 where we show the weighted accuracy of the clas-
sifiers that performed significantly better than chance for each
dialect pair. We observe that the Egyptian dialect has the high-
est number of top performing classifiers under our definition.

Dialect Pair Num. of * classifiers Weighted accuracy (%)
Egyptian/Iraqi 195 70.9
Egyptian/Gulf 196 69.1
Egyptian/Levantine 199 68.6
Levantine/Iraqi 172 63.96
Gulf/Iraqi 166 61.77
Levantine/Gulf 179 61.53

Table 1: Number of CD-phone classifiers out of the 227 that
performed significantly higher than chance for each pair of di-
alects. * significance level of 0.05.

We report the accuracy of the CD-phone classification re-
sults in Table 2-4 for the 10 most and 3 least accurate clas-
sifiers for some of our dialect pairs (with significance level of
0.05).10 The third column in these tables contains the number of
instances used in the classification task per dialect. The top 10
CD-phones can be viewed as those that best distinguish between
a pair of dialects. We found, for example, that some consonants
in the context of central vowels can be useful cues to distinguish
Arabic dialects. Moreover, the phoneme /k/ is one of the top 10
cues for distinguishing between Iraqi and Levantine. This might
be due to the consistent replacement of the MSA /k/ sound to
/ch/ by rural sub-dialects of Levantine.11 These empirical find-
ings can be useful for dialectologists as well as speech scientists
and engineers.

It should be noted that substantially more accurate pho-
netic cues can be obtained by making use of orthographic tran-
scripts in the system instead of using a phone recognizer. In
other words, we can do forced-alignment to obtain the phone
sequences and then train/analyze the CD-phone classifiers from
that. However, we currently lack such orthographic transcripts
and/or a pronunciation dictionary that maps our colloquial di-
alect transcripts onto a shared phonetic inventory.

7. Dialect-Recognition Framework
The task of dialect recognition is the identification of a speakers
regional dialect given a sample of his/her speech. We now show

9Note that other methods (such as Kullback-Leibler divergence) can
be used to quantify differences between adapted dialect acoustic mod-
els. However our approach uses held out data instead of “distance”
between models. Also our accuracy measures can be more easily inter-
preted.

10See [22] for the MSA phonetic symbols used in this work.
11Note that /ch/ and /k/ are modeled as one phoneme in the phone

recognizer.

CD-Phone ([l-context]–phone–[r-context] Accuracy #
[∗]–sh–[∗] 71.1 6302
[SIL]–a–[∗] 70.3 3935
[SIL]–?–[Central Vowel] 68.7 1323
[∗]–j–[∗] 68.5 3722
[! Central Vowel]–s–[! High Vowel] 68.5 1975
[Nasal]–A–[Anterior] 68.1 5459
[!SIL & ! Central Vowel]–E–[!Central Vowel] 67.8 3687
[Central Vowel]–m–[Central Vowel] 66.7 2639
[!Voiced Cons. & !Glottal & !Pharyngeal & !Nasal
& !Trill & !w & !Emphatic]–A–[Anterior]

66.4 11857

[∗]–k–[Central Vowel] 66.4 1433
... ... ...
[!SIL & !Central Vowel]–G–[!Central Vowel] 57.5 852
[!A]–h–[Back Vowel] 57.0 409
[!Vowel & !SIL]–m–[!Central Vowel & !Back Vowel] 56.2 300

Table 2: The 10 most and 3 least accurate CD-phone classifiers
for Levantine/Iraqi dialects (with significance level of 0.05)

CD-Phone ([l-context]–phone–[r-context] Accuracy #
[!Central Vowel & !Unvoiced Cons.]–t–[SIL] 71.2 473
[∗]–sh–[∗] 67.9 6302
[SIL]–w–[Central Vowel] 67.3 745
[!Central Vowel]–H–[Central Vowel] 67.0 1234
[SIL]–a–[∗] 66.5 3935
[!Central Vowel]–s–[!Hight Vowel] 66.2 1975
[SIL]–b–[!Central Vowel & !Front Vowel] 66.1 505
[!Central Vowel & !SIL]–b–[Central Vowel] 66.1 750
[!SIL & !Central Vowel]–E–[Central Vowel] 65.8 1480
[!SIL & !Central Vowel]–E–[! Central Vowel] 65.7 3687
... ... ...
[Strident]–u–[∗] 55.7 380
[Glottal Stop]–a–[∗] 55.3 515
[Pharyngeal]–A–[!SIL & !Anterior] 55.1 484

Table 3: The 10 most and 3 least accurate CD-phone classifiers
for Gulf/Iraqi dialects

CD-Phone ([l-context]–phone–[r-context] Accuracy #
[∗]–sh–[∗] 80.2 8127
[Central Vowel]–H–[Central Vowel] 77.4 1980
[SIL]–f–[!Front Vowel] 76.5 612
[SIL]–m–[Central Vowel] 75.8 2547
[∗]–T–[Central Vowel Vowel] 75.5 1145
[!Central Vowel]–s–[!High Vowel] 75.3 3396
[SIL]–a–[*] 75.1 7411
[h]–A–[Anterior] 74.5 1370
[!Central Vowel & !Unvoiced Cons.]–t–[SIL] 74.4 857
[SIL]–w–[Central Vowel] 74.1 1534
... ... ...
[Front Vowel]–h–[!Back & !Central Vowels] 59.0 183
[Central Vowel]–?–[Central Vowel] 58.4 353
[!Vowel & !SIL]–m–[SIL] 57.5 389

Table 4: The 10 most and 3 least accurate CD-phone classifiers
for Egyptian/Gulf dialects

how we can employ our CD-phone classification framework to
distinguish among dialects.

We have shown in our previous work that Arabic dialects
significantly differ in terms of their phonotactic distribution.
Particularly, we have shown that Phone Recognition followed
by Language Modeling (PRLM) [1] distinguishes Arabic di-
alects with a high identification accuracy for four Arabic di-
alects [3]. In this section, we show how we can use the CD-
phone classifiers described above to augment the phonotactic
approach for dialect recognition. We term this new approach
discriminative phonotactics.

Given an utterance, we first run our CD-phone recognizer
to obtain the most likely CD-phone sequence hypothesis and
frame alignment. Then, for each CD-phone in the sequence, we
extract its Supervector and run the corresponding SVM classi-
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fier, as described in Section 5. We next attach the classifica-
tion output to the CD-phone identity itself. If, for example, a
CD-phone is [Voiced Cons.]–r–[Central Vowel] and the classi-
fication output is Iraqi, then we get [Voiced Cons.]–r–[Central
Vowel]Iraqi. We apply this procedure for the entire CD-phone
sequence, and we denote the output as the annotated CD-phone
sequence. Note that the idea of appending extra information to
the phone identity was suggested by Zissman [1], who attached
duration tags (Long/Short) to vowels based on their duration.

Now the task is classifying an annotated CD-phone
sequence to one of the dialects. One could simply adopt the
PRLM approach using the annotated CD-phone sequences
instead of raw phone sequences. However, we decided to treat
the problem as one of purely text classification. Instead of
applying a generative model (n-grams for each dialect), we
train a discriminative classifier for each pair of dialects. In
our implementation, we employ logistic regression classifiers.
These classifiers are trained on the following list of textual
features extracted from the annotated phone sequence:

• Frequency of annotated CD-Phone bigrams, e.g.,
“[Nasal]–r–[Vowel]Iraqi [Voiced Cons.]–a–[Liquid]Gulf ”

• Frequency of bigrams with only one annotated CD-
Phone, e.g.,
“[Nasal]–r–[Vowel] [Voiced Cons.]–a–[Liquid]Gulf ”

• Frequency of annotated unigrams, e.g.,
[!Central Vowel]–E–[Central Vowel]Egyptian

• Frequency of not annotated CD-Phone unigrams and bi-
grams, e.g.,
“[Nasal]–r–[Vowel] [Voiced Cons.]–a–[Liquid]”

• Frequency of context independent phone trigrams, e.g.,
“s A l”

We normalize the feature vector by the norm of the vec-
tor to address duration differences across samples. Most of our
features are CD-phone unigrams and bigrams. This is because
the classification is performed at the level of CD-phone not —
context-independent (CI). Moreover, using CD bi-phones cap-
tures phonetic context better than CI bi-phones but less success-
fully than CI quad-phones. In fact, we found that using a PRLM
with bigram models trained on CD-phone sequences, instead of
trigrams trained on CI phones, performs slightly better.

There is a commonly held belief that discriminative clas-
sifiers are almost always to be preferred over generative classi-
fiers due to modeling directly the posterior probability, or a map
from input to class label. It has also been shown empirically that
logistic regression and maximum entropy have typically lower
asymptotic error than native Bayes for multiple classification
tasks as well as for text classification [25, 26]. Moreover, the
advantage of using a discriminative classifier over an n-gram
model in our case is due to the noisy identity tags attached
to phones. An n-gram model trained on such sequences may
not be robust; however a logistic classifier with a regularizer or
SVM classifier will focus on the informative features and at-
tempt to avoid irrelevant features that do not contribute to the
classification task.

In addition, using a classification framework allows us to
include different types of features at any level — even global
features, which cannot be modeled using an n-gram model.
In our experiments, we find that logistic regression with L2-
regularizer performs slightly worse than SVM with a linear
kernel. However, surprisingly, logistic-regression with a L2-
regularizer typically performs slightly better than a logistic re-

gression with a L1-regularizer, although the L1-regularizer is
known for its feature selection capability [27]. For our detec-
tion task, we are interested in using confidence scores. There-
fore, we choose logistic regression with a L2-regularizer. We
will make use of the posterior probability provided by logistic
regression as our detection scores, described below.

8. Dialect Recognition Experiments
In this section, we evaluate our discriminative phonotactics ap-
proach on the task of Arabic dialect recognition. We compare
it to three baselines: a standard phonotactics approach (i.e.,
PRLM), a standard GMM-UBM approach, and finally our own
improved version of GMM-UBM which applies fMLLR adap-
tation. We adopt the NIST language/dialect and speaker recog-
nition evaluation framework to report detection results instead
of identification. In the detection task, we are given a hypoth-
esis and a set of test trials. We are asked to give a decision for
each test trial to accept or reject the hypothesis, along with a
confidence score. Using these scores, we report our results us-
ing Detection Error Tradeoff (DET) figures, which plots false
alarms versus miss probabilities, and Equal Error Rate (EER),
the error rate when both false alarm and miss probabilities are
equal [28]. To plot an overall DET, our results are pooled across
each pair of dialects with dialect prior equalized to discount the
impact of different number of test trials in each dialect.12

8.1. Scoring

We denote the feature vector extracted for a given test trial r,
as Or . Every test trial is given a confidence score of belong-
ing to target dialect Dt. Assuming that the dialect priors are
equal, the posterior probability of Or can be reduced to the ex-
pression in (1). We use these posterior probabilities to repre-
sent our scores, similar to [9]; where D is the set of dialects of
interest, p(Or|λDx) represents the likelihood of Or given the
model λDx of dialect Dx, and τr normalizes duration differ-
ences across trials.

Since we do pairwise detection, for score computation we
can make use of the knowledge that an utterance belongs to
either the target or non-target dialect. In this paper, we test
two scoring schemes: ALLSCORING and PAIRSCORING. In
ALLSCORING, we normalize by the likelihoods of Or under
every model to represent the final score — i.e., D in (1) con-
tains all our dialects. In PAIRSCORING, we normalize by the
likelihoods under the target and non-target dialect models only
— i.e., D in (1) contains only Dt and Dnt, the non-target di-
alect.

P (Dt|Or) =
p(Or|λDt)

τr

P

Dx∈D p(Or|λDx)τr
(1)

8.2. Phonotactics Baseline

As noted above, we have previously shown that a phonotac-
tic approach, particularly the PRLM approach is effective in
identifying Arabic dialects. Moreover, since our discriminative
phonotactic approach captures phonotactic features as well, we
think it is essential to compare both. For PRLM, every non-
silent segment in the training data of all dialects is tokenized to
the most likely CI phone sequence hypothesis, using the CD-
phone recognizer described in Section 4. Afterwards, using the

12We use the NIST scoring software developed for LRE07:
www.itl.nist.gov/iad/mig/tests/lre/2007
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CI phone sequences of dialect Dx, we train a phonotactic back-
off trigram model with Witten-Bell smoothing for this dialect,
denoted as λDx , using the SRILM toolkit [29].

During testing, we calculate the scores as in (1), where Or

represents the most likely CI phone sequence of trial r, and
p(Or|λDx) represents the likelihood of Or given the phono-
tactic trigram model λDx of dialect Dx, and τr is the inverse of
the number of phones in the sequence Or . Using our test data
for the four dialects, and employing ALLSCORING scheme, we
found that the overall EER obtained by pooling the six pairs
of dialects is 23.0%. Interestingly, when we use the target and
non-target models only, i.e., using PAIRSCORING, we achieve
a significant improvement: the EER is 17.3%, as shown in Fig-
ure 2.

8.3. GMM-UBM Baseline

Gaussian Mixture Model-Universal Background Model
(GMM-UBM) is one of the most widely employed approaches
in the Speaker and Language Recognition communities
[5, 6]. Since, in our discriminative phonotactic approach,
the CD-phone classifiers rely upon acoustic features, we
believe that it is also essential to compare the performance
of our approach to an approach that utilizes such features.
For GMM-UBM, we use the same front end described in
Section 4 to extract the 40-dimensional PLP features, followed
by CMVN. We use an equal number of training frames from
three dialects (Iraqi, Gulf, and Levantine) to ML (Maximum
Likelihood) train the UBM with 2048 Gaussian components,
using the Expectation-Maximization algorithm. Although it
has been shown that broader temporal (e.g., Shifted Delta
Cepstral) features typically outperform the standard cepstral
features [30], we use the same front-end used in the CD-phone
classifiers to allow for a simple comparison. Moreover, our
features are extracted from a relatively wide context; recall that
our 40D PLP features span over 9 frames followed by LDA.

A GMM (λDx ) is created for each dialect (Dx) by MAP
adapting only the means of the UBM using the entire training
data for that dialect. We run the MAP adaptation in 5 iterations
with a relevance factor of r = 16. These settings are similar to
[10]. In this work, we do not employ fast scoring.

During testing, we calculate the scores as in (1), where Or

represents the sequence of 40D PLP features of trial r, and
p(Or|λDx) represents the likelihood of Or given GMM λDx

of dialect Dx, and τr is the inverse of the number of frames in
the sequence Or .

Similar to the PRLM approach, we use the test data of the
four dialects, described in Section 3, to test the performance
of the GMM-UBM approach. Again we test the two scoring
schemes described above. Using ALLSCORING, which uses
all the scores from all GMM models, we obtain an EER of
20%, and, similar to the phonotactics approach, we get a sig-
nificant improvement when utilizing PAIRSCORING: an EER
of 15.3%. Interestingly, this GMM-UBM significantly outper-
forms the PRLM approach, as shown in Figure 2.

8.4. GMM-UBM with fMLLR Adaptation

It has been shown that the GMM-UBM approach can be im-
proved by applying some normalization/transformation tech-
niques for the acoustic signal. For example, Wong and Sridha-
ran [31] and Torres-Carrasquillo et al. [30] have shown that Vo-
cal Tract Normalization (VTLN), to remove speaker-depednet
features, improves language and dialect recognition results. In
addition, channel compensation techniques to retain only lan-

guage dependent information have been shown to significantly
improve performance (c.f. [30]).

In this paper, we apply the fMLLR adaptation technique to
transform the feature space given the phone hypotheses. Specif-
ically, we first run the CD-phone recognizer to obtain the most
likely phone sequences.13 Afterwards, we use the CD-phone
sequences to transform the acoustic data. Finally, we use the
transformed frames as new features in our GMM-UBM ap-
proach. To the best of our knowledge, fMLLR has not been
employed for the task of language/dialect recognition in such
framework.

Applying the same settings of the GMM-UBM experiment
above, but with fMLLR adaptation, we achieve an EER of
15.8% with the ALLSCORING scheme. Similar to both PRLM
and GMM-UBM, we obtain significantly better results when
utilizing PAIRSCORING: an EER of 11.0%. The GMM-UBM
approach with fMLLR, interestingly, provides us with signifi-
cantly higher results when compared to the PLRM and GMM-
UBM without adaptation (see Figure 2).

8.5. Discriminative Phonotactics

To explain how we evaluate our discriminative phonotactic ap-
proach, recall that we train two types of models for each pair of
dialects: the SVM CD-phone classifiers (see Section 5) and a
logistic regression classifier, which relies on features extracted
in part from the predictions of the SVM classifiers. To train
these two models, we divide our training speakers into two sets
(SETI and SETII). Initially, we run the CD-phone recognizer on
both sets to obtain a CD-phone sequence for each speaker. We
then train the SVM CD-phone classifiers using SETI (see Sec-
tion 5). Afterwards, we use these SVM classifiers to annotate
the CD-phone sequences of SETII. Note that we are interested
in testing our system on 30s cuts, but our training files are sub-
stantially longer. Therefore, all files in SETII are divided into
segments of approximately 30s each. We then extract the tex-
tual features, described in Section 7, for each of these 30s seg-
ments, producing one feature vector for each segment. Using
these vectors, we finally train a logistic regression classifier for
each pair of dialects.

Note that one way to utilize the entire training data is to use
the second set for training the SVM classifiers and the first set
to train the logistic regression classifier. For classification, we
simply use the average of the posteriors of both logistic classi-
fiers; we denote this as a cross training method.

Recall that, during testing, given a trial r, we first run the
CD-phone recognizer to obtain the most likely CD-phone se-
quence. We then extract a Supervector for each CD-phone.
Each Supervector is classified using the corresponding SVM
classifier to obtain a dialect label. Attaching the labels to the
phones in the CD-phone sequence, we then extract our tex-
tual features to obtain a feature vector Fr . On the hypothesis
that each trial is either a target dialect, Dt or non-target Dnt,
we simply use the posterior probability provided by the corre-
sponding logistic regression model (ΘDtDnt ) to represent our
trial score: p(Dt|Fr; ΘDtDnt).

As shown in Figure 2, using the discriminative phonotac-
tic approach with the cross-trainig method, described above,
the overall EER after pooling all test trials across dialect is
6.0%. The discriminative phonotactic approach achieves sig-
nificantly higher results than all baseline approaches above,

13Recall that our phone recognizer employs fMLLR followed by
MLLR.
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Figure 2: Overall DET for each of the four approaches for the
four dialects with the best scoring scheme for all approaches.

PRLM, GMM-UBM, and our own GMM-UBM-fMLLR. With-
out cross-training, the EER is 6.9%.

We also compare the detection of each dialect against the
rest separately, to determine whether the discriminative phono-
tactic approach outperforms the best baseline (GMM-UBM
with fMLLR) in every dialect. As shown in Figure 3, we can see
that, for all dialects, the discriminative phonotactic approach is
superior when compared to the GMM-UBM with fMLLR. In
addition, we can see that the Egyptian dialect is the most dis-
tingushable dialect across all dialects for both GMM-UBM and
discriminative phonotactics. This is consistent with our previ-
ous work [14, 22]. This could be due to several reasons: (1)
According to linguists, the Egyptian Arabic has distinguishable
linguistic cues (e.g., syllabic structure is simple); (2) our Egyp-
tian dialect corpus contains mostly Cairene Arabic as opposed
to the other dialect corpora which include multiple sub-dialects;
(3) the Egyptian test corpus was not collected by the same com-
pany which collected the other three dialect corpora. Therefore
it is possible that different recording conditions have inflated
the results, although our test utterances are from a completely
different corpus than the training data.

We have also conducted more experiments in which we
exclude the Egyptian dialect from our test trials. For the dis-
criminative phonotactics approach, we obtain 10.5%; we obtain
17.6% for the GMM-UBM with fMLLR adaptation; we obtain
23.1% for the GMM-UBM without adaptation, and 21.5% us-
ing the PRLM approach — all using PAIRSCORING scheme.

9. Discussion
In this paper, we have introduced a new approach to dialect
recognition that automatically identifies context-dependent
phonetic differences between dialects. Our approach discov-
ers which phones in what contexts significantly distinguish be-
tween dialect pairs. In developing this approach, we have ap-
plied the GMM-SVM approach [23], but at the level of context-
dependent (CD) phones to build discriminative classifiers to
identify the likely dialect of each CD-phone. We use this infor-
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Figure 3: Comparing the overall DET of each dialect against the
rest, with two approaches: Discriminative Phonotactics (thicker
lines) vs. GMM-UBM-fMLLR

mation to augment the phonotactic sequences with dialect la-
bels and then train a discriminative classifier to classify dialects
using these augmented phonotactic sequences. Thus, discrimi-
native phonotactic approach can be viewed as taking advantage
of both phonotactic and acoustic information in a discriminative
manner.

We have analyzed the performance of our discriminative
phonotactic approach on detecting four Arabic dialects, with
30 second trials. We have shown that our discriminative phono-
tactic approach significantly outperforms two well-known base-
lines (PRLM and GMM-UBM) as well as our own improved
version of GMM-UBM which applies fMLLR adaptation to
transform the acoustic feature vectors. Discriminative phono-
tactics achieves an EER of 6.0%, an improvement of 5% (in
absolute EER) over our best baseline (GMM-UBM-fMLLR).

We speculate that our approach may also be effective on
shorter segments of speech, since we target differences at the
level of CD-phones. Our plans for future work include compar-
ing the performance of our system on 3s and 10s utterances to
the corresponding baselines. Since it is well-known that back-
end classifiers typically improve detection results, we would
also like to see the impact of such a component on our approach.
As noted above, our Gulf, Iraqi and Levantine corpora contain
3-4 sub-dialects each. We hypothesize that teasing these apart
may improve the CD-phone classifiers by capturing phonetic
differences within these sub-dialects. We intend to integrate
confidence scores for the CD-phone classifiers into our discrim-
inative phonotactic approach. In addition, as mentioned above,
vocal tract normalization and channel compensation techniques
improve language and dialect recognition systems; therefore,
we also will test the impact of such techniques on our approach,
particularly the SVM nuisance attribute projection (NAP) [32].
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