Internet Telephony for Universities

Henning Schulzrinne Internet Real-Time Lab
Dept. of Computer Science
Columbia University
New York, New York schulzrinne@cs.columbia.edu

Columbia University Ivy+ Meeting
November 18, 1999
(Joint work with Jonathan Lennox, Gautam Nair, Jonathan Rosenberg, Kundan Singh, Elin Wedlund, and Jianqi Yin)

Overview

- Internet telephony: motivation and problems
- Campus VoIP architectures
- Session Initiation Protocol (SIP)
- Internet telephony "appliances"
- Programming your telephone (service)
- Mobile services

The phone works - why bother with VoIP?

user perspective

- variable compression: tin can to broadcast quality
- security through encryption
- caller, talker identification
- better user interface
- internat. calls: TAT transatlantic cable $=\$ 0.03 / \mathrm{hr}$
- no local access fees (3.4c)
- easy: video, whiteboard, ...
- silence suppression III traffic \downarrow
- shared facilities management, redundancy
- advanced services (simpler than AIN and CTI)
- operational advantages
- cheaper switching
- fax as data

The new phone companies

- separation bit carriage \leftrightarrow services
- anybody with Internet connection can provide services (ACD, 800, 900, directory, ...)
- distinction "in" vs. "out" of network not useful
- incremental start-up investment not large
- new players:
- cable companies II* no new infrastructure, but mostly one-way
- electric utilities
- Qwest, IXC (resell to ISPs), ...

Internet telephony services

- voice mail \longrightarrow email
- calendar integration
- user-programmable call processing logic
- call first available sales person (ACD)
- call whole department
- web IVR
- return web page with favorite "on hold" music

Internet Telephony Services

- camp-on without holding a line
- short message service ("instant messaging")
- schedule call into the future
- call with expiration date
- add/remove parties to/from call ${ }^{\text {n+ }}$ mesh
- "buddy lists"

Switching Costs

Device	port speed	port cost	cost/64 kb/s
8-port Ethernet hub	$10 / 100 \mathrm{Mb} / \mathrm{s}$	8	0.008
24-port Ethernet switch	$10 \mathrm{Mb} / \mathrm{s}$	55	0.35
8-port Ethernet switch	$100 \mathrm{Mb} / \mathrm{s}$ fiber	474	0.30
8-port Ethernet switch	$1 \mathrm{~Gb} / \mathrm{s}$	1187	0.08
24×100BaseT + GigE	$10 / 100 \mathrm{Mb} / \mathrm{s}$	141	0.09
100 T1 circuit switch	$1.5 \mathrm{Mb} / \mathrm{s}$	25,000	1041
5ESS local (no AIN), 5000 lines	$64 \mathrm{~kb} / \mathrm{s}$	300	300
5ESS local (AIN), 20,000 lines	$64 \mathrm{~kb} / \mathrm{s}$	175	175
Small PBX (few hundred lines)	$64 \mathrm{~kb} / \mathrm{s}$	1,000	1,000
Large PBX (>5000 lines)	$64 \mathrm{~kb} / \mathrm{s}$	500	500

Telephone Costs

Transport Costs

network	$\$ / \mathrm{min}$	$\$ / \mathrm{MB}$
wholesale telephone	$0.01-0.02$	
U.S. domestic interstate consumer rates	$0.05-0.15$	
U.S. domestic intrastate consumer rates	$0.05-0.25$	
modem		$0.25-0.50$
private line	$0.50-1.00$	
frame relay	0.30	
MCI frame SVC	0.05	
Internet	$0.04-0.15$	
Internet modem	0.33	
Internet backbone	0.01	

1^{\prime} voice $=480 \mathrm{kB} \mathrm{w} /$ silence suppr., 1 MB without

Phone Usage

"Free" phone calls does not mean unbounded increase:

year	lines (millions)	local calls $\mathrm{min} /$ day/line	local calls $\mathrm{min} /$ day/person
1980	102.2	39	17.5
1988	127.1	39	20.2
1996	166.3	40	25.1

Why Aren't We Using It Now?

Internet capacity \ll phone traffic:

world phone traffic	600	$\mathrm{~Gb} / \mathrm{s}$	U.S. total	368	$\mathrm{~Gb} / \mathrm{s}$
international traffic	13	$\mathrm{~Gb} / \mathrm{s}$	U.S. interstate	55	$\mathrm{~Gb} / \mathrm{s}$
			AT\&T long distance	61	$\mathrm{~Gb} / \mathrm{s}$

- unpredictable sound quality, reliability
- doesn't work well for dial-up users
- no cheap Internet devices
- 640 M phone lines, 122 M in U.S.
- no billing infrastructure

Projections

- MCI: " 80% data, 20% voice"
- "AT\&T could lose $\$ 350$ million in international calls by 2001"
- "By 2002, the Internet could account for 11% of U.S. and international long-distance voice traffic"
- "Up to 10% of the world's fax market, which generates $\$ 45$ billion in telecom revenue a year, will move to Internet in 2 or 3 years"
- May 1999: BT builds IP phone network in Spain
- but: cable modems only 250,000 to 275,000 users in US, 10% of Internet users by 2000

Data vs. Voice Traffic

Why on Campus?

- PBX nearing end of useful life, capacity
- dorm rooms, offices already wired with Cat-3/5
- backbone high-speed data capacity (20,000 users at 0.1 Erlang $\rightarrow 128 \mathrm{Mb} / \mathrm{s}$, but not all calls are across campus)
- no latency issues
- video, data sharing
- re-use data connections as tie-lines to satellite campuses, dorms, faculty housing, ...

Internet Telephony Architecture

Campus Data Architecture

Architecture Options

- separate wiring vs. same network
- stimulus control vs. intelligent end systems
- IP Centrex vs. external PSTN interface

A Campus VoIP Architecture

Separate Wiring

- re-use CAT3 wiring \longrightarrow just requires centralized changes
- but: distance limitation of $100-150 \mathrm{~m}$
- power requirements:

Etherphones
Wireless access point
Ethercams
Ethernet hub

- powering for end systems and hubs:
- local battery
- Ethernet powering

Ethernet Power

Ethernet cable (802.3 working group):

- phantom powered on $3 / 6,1 / 2$
- idle wires (4/5 and/or 7/8)
- automatic recognition of powered devices

Do all systems need to be powered?

Architecture for 20,000 Lines

Stimulus Control vs. Intelligent End Systems

	stimulus	end system
protocol	MGCP	SIP, H.323
>1 service provider	no	yes
new services	upgrade MGC	proxy, end system software
user interface	like phone	more state information
scaling	single server	distributed
simple devices	yes	SIP: yes, H.323:?

Quality of Service

- codecs can be same or better than POTS
- primarily, delay:
audio encoding/decoding: look-ahead, block (20-50 ms)
application: non-adaptive playout buffers
end system: operating system, sound card (buffer) propagation: $5 \mu \mathrm{~s} / \mathrm{km}$
queueing: depends on congestion
transmission: line speed; insignificant for $\geq \mathrm{T} 1$

Delay

- ITU.T delay target $<150 \mathrm{~ms}$
- average vs. peaks!
- avg. US round-trip (UUnet, Oct. 1999): 45.49 ms
- Miami - Seattle (CWI, Nov. 1999): 92.4 ms

