
Internet Engineering Task Force
INTERNET-DRAFT J. Lennox, J.Rosenberg, H.Schulzrinne
draft-lennox-sip-cgi-00.ps Columbia U./Bell Labs

November 13, 1998
Expires: April 1999

Common Gateway Interface for SIP

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress”.

To learn the current status of any Internet-Draft, please check the “1id-abstracts.txt” listing contained
in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au
(Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Distribution of this document is unlimited.

Copyright Notice

Copyright (c) The Internet Society (1998). All Rights Reserved.

Abstract

In Internet telephony, there must be a means by which new services are created and deployed rapidly.
In the World Wide Web, the Common Gateway Interface (CGI) has served as popular means towards
programming web services. Due to the similarities between the Session Initiation Protocol (SIP) and
the Hyper Text Transfer Protocol (HTTP), CGI seems a good candidate for service creation in a SIP
environment. This draft proposes a SIP-CGI interface for providing SIP services on a SIP server.

Contents

1 Introduction 3

2 Motivations 3

3 Differences from HTTP-CGI 4
3.1 Basic Model . 4
3.2 Time of Execution . 5
3.3 Naming . 6
3.4 Environment Variables . 6
3.5 Timers . 6

4 Overview of SIP CGI 7

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

5 SIP CGI Specification 8
5.1 Introduction . 8

5.1.1 Relationship with HTTP CGI . 8
5.1.2 Terminology . 8
5.1.3 Specifications . 8
5.1.4 Terminology . 9

5.2 Notational Conventions and Generic Grammar . 9
5.3 Message Metadata (Meta-Variables) . 9

5.3.1 AUTH TYPE . 10
5.3.2 CONTENTLENGTH . 10
5.3.3 CONTENTTYPE . 10
5.3.4 GATEWAY INTERFACE . 10
5.3.5 HTTP* . 10
5.3.6 REMOTEADDR . 11
5.3.7 REMOTEHOST . 11
5.3.8 REMOTEIDENT . 11
5.3.9 REMOTEUSER . 11
5.3.10 REQUESTMETHOD . 11
5.3.11 REQUESTURI . 11
5.3.12 RESPONSESTATUS . 12
5.3.13 RESPONSEREASON . 12
5.3.14 RESPONSETOKEN . 12
5.3.15 SCRIPTCOOKIE . 12
5.3.16 SERVERNAME . 12
5.3.17 SERVERPORT . 12
5.3.18 SERVERPROTOCOL. 12
5.3.19 SERVERSOFTWARE . 12

5.4 Invoking the script . 13
5.5 Data Input to the SIP-CGI Script. 13
5.6 Data Output from the SIP-CGI Script . 13

5.6.1 CGI Action Lines . 14
5.6.2 CGI Header fields . 16

5.7 Local expiration handling . 16
5.8 Locally generated responses. 17
5.9 SIP-CGI and REGISTER . .. 17

6 Security Considerations 17
6.1 Request initiation .. 17
6.2 Authenticated and encrypted messages . 17
6.3 SIP header fields containing sensitive information . 17
6.4 Script Interference with the Server . 18

7 Full Copyright Statement 18

8 Authors’ Addresses 18

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 2]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

1 Introduction

In Internet telephony, there must be a means by which new services are created and deployed rapidly. In
traditional telephony networks, this was accomplished through IN service creation environments, which
provided an interface for creating new services, often using GUI based tools.

The WWW has evolved with its own set of tools for service creation. Originally, web servers simply
translated URL’s into filenames stored on a local system, and returned the file content. Over time, servers
evolved to provide dynamic content, and forms provided a means for soliciting user input. In essence, what
evolved was a means for service creation in a web environment. There are now many means for creation of
dynamic web content, including server side JavaScript, servlets, and the common gateway interface (CGI)
[3].

Multimedia communications, including Internet telephony, will also require a mechanism for creating
services. This mechanism is strongly tied to the features provided by the signaling protocols. The Session
Initiation Protocol (SIP) [1] has been developed for initiation and termination of multimedia sessions. SIP
borrows heavily from HTTP, inheriting its client-server interaction and much of its syntax and semantics.
For this reason, the web service creation environments, and CGI in particular, seem attractive as starting
points for developing SIP based service creation environments.

2 Motivations

CGI has a number of strengths which make it attractive as an environment for creating SIP services:

Language independence:CGI works with perl, C, VisualBasic, tcl, and many other languages, as long as
they support access to environment variables.

Exposes all headers:CGI exposes the content of all the headers in an HTTP request to the CGI application.
An application can make use of these as it sees fit, and ignore those it doesn’t care about. This allows
all aspects of an HTTP request to be considered for creation of content. In a SIP environment, headers
have greater importance than in HTTP. They carry critical information about the transaction, including
caller and callee, subject, contact addresses, organizations, extension names, registration parameters
and expirations, call status, and call routes, to name a few. It is therefore critical for SIP services to
have as much access to these headers as possible. For this reason, CGI is very attractive.

Creation of Responses:CGI is advantageous in that it can create all parts of a response, including headers,
status codes and reason phrases, in addition to message bodies. This is not the case for other mech-
anisms, such as Java servlets, which are focused primarily on the body. In a SIP environment, it is
critical to be able to generate all aspects of a response (and, all aspects of new or proxied requests),
since the body is usually not of central importance in SIP service creation.

Component Reuse:Many of the CGI utilities allow for easy reading of environment variables, parsing of
form data, and often parsing and generation of header fields. Since SIP reuses the basic RFC822 [2]
syntax of HTTP, many of these tools are applicable to SIP CGI.

Familiar Environment: Many web programmers are familiar with CGI.

Ease of extensibility: Since CGI is an interface and not a language, it becomes easy to extend and reapply
to other protocols, such as SIP.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 3]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

The generality, extensibility, and detailed control and access to information provided by CGI, coupled
with the range of tools that exist for it, which can be immediately applied to SIP, make it a good mechanism
for SIP service creation.

3 Differences from HTTP-CGI

Certainly, SIP is different from HTTP. A SIP server does different things than a web server. As such,
SIP-CGI must build upon the basic HTTP-CGI.

3.1 Basic Model

The basic model for HTTP-CGI is depicted in figure 1.

resp

req

CGI
Program

env/
stdin

stdout

Client Server
HTTP HTTP

Figure 1: HTTP CGI Model

A client issues an HTTP request, which is passed either directly to the origin server (as shown), or is
forwarded through a proxy server. The origin server executes a CGI script, and the CGI script returns a
response, which is passed back to the client. The main job of the script is to generate the body for the
response. Only origin servers execute CGI scripts, not proxy servers.

In a SIP server, the model is different, and is depicted in Figure 2.

CGI
Program

env/
stdin

resp

req

resp

req

Server
SIP

Server
SIP

resp

req

Client
SIP

Client
SIP

stdout

Figure 2: SIP CGI Model

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 4]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

The client generates a request, which is forwarded to a server. The server may generate a response
(such as an error or redirect response). Or, if the server is a proxy server, the request is proxied to another
server, and eventually to a user agent, and the response is passed back upstream, through the server, and
back towards the client. A SIP proxy server may additionally fork requests, generating multiple requests in
response to a received request. Generally, a proxy server will not generate the content in responses. These
contain session descriptions created by user agents. Services, such as call forward and mobility services,
are based on the decisions the server makes about (1) when, to where, and how many requests to proxy
downstream, and (2) when to send a response back upstream. Creation of services such as ad-hoc bridging
(where the server acts as a media mixer in a multiparty call, without being asked to do so by the end users)
will require the server to generate new requests of its own, and for it to modify and generate the body in
responses.

An HTTP server is mainly concerned about generation of responses. A SIP server is generally concerned
about performing four basic operations:

Proxying of Requests: Receiving a request, adding or modifying any of the headers, deciding on a set of
servers to forward the request to, and forwarding it to them.

Returning Responses:Receiving a response, adding or modifying any of the headers, and passing the
response towards the client.

Generating Requests:Creating a new request, originating at the server, placing headers and a body into
the message, and sending it to a server.

Generation of Responses:Receiving a request, generating a response to it, and sending it back to the
client.

When a request is received, one or more of the above operations may occur at once. For example, a
SIP server may generate a provisional response, generate a new request, and proxy the original request to
two servers. This implies that SIP-CGI must encompass a greater set of functions than HTTP-CGI. These
functions are a super-set of the simple end-server request/response model, which means SIP-CGI may be
designed as a backward-compatible extension of HTTP-CGI.

3.2 Time of Execution

In HTTP-CGI, a script is executed once for each request. It generates the response, and then terminates.
There is no state maintained across requests from the same user, as a general rule (although this can be done
— and is — for more complex services such as database accesses, which essentially encapsulate state in
client-side cookies or dynamically-generated URLs). A transaction is just a single request, and a response.

In SIP-CGI, since a request can generate many new and proxied requests, these themselves will generate
responses. A service will often require these responses to be processed, and additional requests of responses
to be generated. As a result, whereas an HTTP-CGI script executes once per transaction, a SIP-CGI script
must maintain control somehow over numerous events.

In order to enable this, and to stay with the original CGI model, we mandate that a SIP CGI script
executes when a message arrives, and after generating output (in the form of additional messages), terminate.
State is maintained by allowing the CGI to return an opaque token to the server. When the CGI script is
called again for the same transaction, this token is passed back to the CGI script. When called for a new
transaction, no token is passed.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 5]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

For example, consider a request which arrives at a SIP server. The server calls a CGI script, which
generates a provisional response and a proxied request. It also returns a token to the server, and then
terminates. The response is returned upstream towards the client, and the request is proxied. When the
response to the proxied request arrives, the script is executed again. The environment variables are set based
on the content of the new response. The script is also passed back the token. Using the token as its state, the
script decides to proxy the request to a different location. It therefore returns a proxied request, and another
token. The server forwards this new request, and when the response comes, calls the CGI script once more,
and passes back the token. This time, the script generates a final response, and passes this back to the server.
The server sends the response to the client, destroys the token, and the transaction is complete.

In many cases, calling the CGI script on the reception of every message is inefficient. CGI scripts come
at the cost of significant overhead since they generally require creation of a new process. Therefore, it is
important in SIP-CGI for a script to indicate, after it is called the first time, under what conditions it will be
called for the remainder of the transaction. If the script is not called, the server will take the “default” action,
as specified in this document. This allows an application designer to trade off flexibility for computational
resources. Making an analogy to the Intelligent Network (IN) - a script is able to define the triggers for its
future execution.

So, in summary, whereas an HTTP-CGI script executes once during a transaction, a single SIP-CGI
script may execute many times during a transaction, and may specify at which points it would like to have
control for the remainder of the transaction.

3.3 Naming

In HTTP-CGI, the CGI script itself is generally the resource named in the Request URI of the HTTP request.
This is not so in SIP. In general, the request URI names a user to be called. The mapping to a script to be
executed may depend on other SIP headers, includingTo andFrom fields, the SIP method, status codes,
and reason phrases. As such, the mapping of a message to a CGI script is purely a matter of local policy
administration at a server. A server may have a single script which always executes, or it may have multiple
scripts, and the target is selected by some parts of the header.

3.4 Environment Variables

In HTTP-CGI, environment variables are set with the values of the paths and other aspects of the request.
As there is no notion of a path in SIP, some of these environment variables do not make sense.

3.5 Timers

In SIP, certain services require that the script gets called not only when a message arrives, but when some
timer expires. The classic example of this is “call-forward no answer.” To be implemented with SIP-CGI,
the first time the script is executed, it must generate a proxied request, and also indicate a time at which to be
called again if no response comes. This kind of feature is not present in HTTP-CGI, and some rudimentary
support for it is needed in SIP-CGI.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 6]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

4 Overview of SIP CGI

When a request arrives at a SIP server, initiating a new transaction, the server will set a number of environ-
ment variables, and call a CGI script. The script is passed the body of the request through stdin.

The script returns, on stdout, a set of SIP action lines, each of which may be modified by CGI and/or
SIP headers. This set is delimited by the same rules which delimit multiple SIP messages in a single UDP
request - generally through the use of two carriage returns. The action lines allow the script to specify any of
the four operations defined above, in addition to the default operation. Initiating a new request or generating
a response is done by copying the request line of the request or the status line of the response, respectively,
into an action line of the CGI output. For example, the following will create two new requests, in addition
to responding with a 200 OK to the original request:

SIP/2.0 200 OK

INVITE sip:joe@sales.com SIP/2.0
Call-ID: 309hjfa0hs@122.8.34.66
CSeq: 0
To: sip:joe@sales.com
From: sip:bob@sales.com

REGISTER sip:engineering.org SIP/2.0
Call-ID: 08h08gfa76g@111.22.33.4
CSeq: 1
To: sip:bill@engineering.org
From: sip:bill@engineering.org
Contact: mailto:bill@ieee.org

The operation of proxying a request is supported by the CGI-PROXY-REQUEST CGI action, which
takes the URL to proxy to as an argument. For example, to proxy a request to dante@inferno.com:

CGI-PROXY-REQUEST-TO sip:dante@inferno.com SIP/2.0
Contact: sip:server1@company.com

In this example, the server will take the original request, and modify any header fields normally changed
during the proxy operation (such as decrementingMaxForwards, and adding aVia field). This message
is then “merged” with the output of the CGI script - SIP headers specified below the action line in the CGI
output will be added to the outbound request. In the above example, theContact header will be added. Note
that the action line looks like the request line of a SIP request message. This is done in order to simplify
parsing.

Returning of responses is more complex. A server may receive multiple responses as the result of
forking a request. The script should be able to ask the server to return any of the responses it had received
previously. To support this, the server will pass an opaque token to the script through environment variables,
unique for each response received. To return a response, a CGI script needs to indicate which response is
to be returned. For example, to return a response named with the token abcdefghij, the following output is

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 7]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

generated:

CGI-FORWARD-RESPONSE abcdefghij SIP/2.0

Finally, the default action CGI action tells the server to do what it would normally do when receiving
the message that triggered the script:

CGI-DEFAULT-ACTION dummy SIP/2.0

The SIP CGI script is not only executed when the original request arrives, but on the arrival of any
responses due to proxied or new requests. A CGI script can change this default behavior through the CGI
CGI-Reexecute-On header. Like SIP headers, CGI headers are written underneath the action line. They are
extracted by the SIP server, and used to provide the server with additional guidance. CGI headers always
begin withCGI to differentiate them from SIP headers. In this case, the header tells the server when to
re-execute the script. Allowed values are never, always, and final-responses.

When the script is re-executed, it may need access to some state in order to continue processing. A
script can generate a piece of state, called a cookie, for any new request or proxied request. It is passed to
the server through the CGI headerCGI-Script-Cookie. The server does not examine or parse the data. It is
simply stored. When the script is re-executed, the cookie is passed back to the script through an environment
variable.

5 SIP CGI Specification

5.1 Introduction

5.1.1 Relationship with HTTP CGI

This SIP CGI specification is based on work-in-progress revision 1.1 of the HTTP CGI standard [3]. This
document is a product of the informal CGI-WG, which is not an official IETF working group at this time.
CGI-WG’s homepage is located at the URLhttp://Web.Golux.Com/coar/cgi/ , and the most
recent versions of the CGI specification are available there. A number of sections of this document will
refer to sections from the HTTP-CGI specification, as [HTTP-CGI:xx], rather than repeat information from
that document verbatim.

5.1.2 Terminology

In this document, the key words “MUST”, “ MUST NOT”, “ REQUIRED”, “ SHALL”, “ SHALL NOT”, “ SHOULD”,
“ SHOULD NOT”, “ RECOMMENDED”, “ MAY ”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [4] and indicate requirement levels for compliant SIP CGI implementations.

5.1.3 Specifications

The terms “system defined” and “implementation defined” are used to refer to functions and features of SIP
CGI which are not defined in the main part of this specification. The definitions of these can be found in
[HTTP-CGI:1.3].

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 8]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

5.1.4 Terminology

The terms “meta-variable,” “script,” and “server” are defined in [HTTP-CGI:1.4]. A “message” is a SIP
request or response, typically either the one that triggered the invocation of the CGI script, or one that the
CGI script caused to be sent.

5.2 Notational Conventions and Generic Grammar

In this specification we use the Augmented Backus-Naur Form notation described in RFC 2234 [5]. The
basic rules described in [HTTP-CGI:2.2] are used to describe basic parsing constructs.

5.3 Message Metadata (Meta-Variables)

Each SIP-CGI implementationMUST define a mechanism to pass data about the message from the server to
the script. The meta-variables containing these data are accessed by the script in a system defined manner.
In all cases, a missing meta-variable is equivalent to a zero-length or NULL value, and vice versa. The
representation of the characters in the meta-variables is system defined.

Case is not significant in the meta-variable names, in that there cannot be two different variables whose
names differ in case only. Here they are shown using a canonical representation of capitals plus underscore
(“ ”). The actual representation of the names is system defined; for a particular system the representation
MAY be defined differently than this.

(This description of meta-variables is taken verbatim from [HTTP-CGI:4].)
The meta-variables in SIP-CGI also in HTTP-CGI are:

AUTH_TYPE
CONTENT_LENGTH
CONTENT_TYPE
GATEWAY_INTERFACE
HTTP_*
REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT
REMOTE_USER
REQUEST_METHOD
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE

The new variables introduced in SIP-CGI are:

REQUEST_URI
RESPONSE_STATUS
RESPONSE_REASON
RESPONSE_TOKEN
SCRIPT_COOKIE

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 9]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

The HTTP-CGI variablesPATHINFO, PATHTRANSLATED, QUERYSTRING, andSCRIPT NAME
are not meaningful in the SIP-CGI context, and are omitted from this specification.

A serverMAY also set any additional meta-variables it chooses.

5.3.1 AUTH TYPE

See [HTTP-CGI:4.1]. The auth-scheme token can also bedigest or pgp corresponding to the authentication
methods detailed in the SIP specification.

For the complex authentication schemes, the serverSHOULD perform the authentication checking itself.
If the authentication failed, this meta-variableSHOULD NOT be set.

5.3.2 CONTENT LENGTH

See [HTTP-CGI:4.2]. If the message contains a body, this meta-variableMUST be set set even if aContent-
Length header field was not included in the message.

5.3.3 CONTENT TYPE

See [HTTP-CGI:4.3].

5.3.4 GATEWAY INTERFACE

The version of the SIP-CGI specification to which this server complies. Syntax:

GATEWAY INTERFACE = ”SIP-CGI” ”/” 1*digit ”.” 1*digit

Note that the major and minor numbers are treated as separate integers and hence each may be incre-
mented higher than a single digit. Thus SIP-CGI/2.4 is a lower version than SIP-CGI/2.13 which in turn
is lower than SIP-CGI/12.3. Leading zerosMUST be ignored by scripts andSHOULD NOT be generated by
servers.

This document defines the 1.1 version of the SIP-CGI interface.

For maximal compatibility with existing HTTP-CGI libraries, we want to keep this as similar as possible to the
syntax of CGI 1.1. However, wedo want it to be clear that this is indeed SIP-CGI. Making HTTP-CGI’s version
identifier a substring of the SIP-CGI identifier seemed like a reasonable compromise. (The existing CGI libraries
we checked do not seem to check the version.)

5.3.5 HTTP *

These meta-variables encode the header data of the message; see [HTTP-CGI:4.5]. The server is not re-
quired to create meta-variables for all the header fields it receives; however, because of the relatively greater
importance of headers in SIP, the serverSHOULD provide all headers which are not either potentially sensi-
tive authorization information, such asAuthorization, or which are available via other SIP CGI variables,
such asContent-Length andContent-Type.

The variable names are specified asHTTP* rather thanSIP * in order to make it easier to use existing CGI
libraries unmodified.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 10]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

5.3.6 REMOTE ADDR

This is the IP address of the host sending the message to this server; see [HTTP-CGI:4.9]. This is not
necessarily that of the originating client or user agent server.

For locally generated responses (see section 5.8), this should be the loopback address (i.e. 127.0.0.1 for
IPv4).

5.3.7 REMOTE HOST

This is the hostname of the host sending the message to this server. See [HTTP-CGI:4.10].

5.3.8 REMOTE IDENT

The identity information supported about the connection by a RFC 1413 [6] request, if available; see [HTTP-
CGI:4.11].

The serverMAY choose not to support this feature, and it is anticipated that not many implementations
will, as the information is not particularly useful in the presence of complex proxy paths.

5.3.9 REMOTE USER

If AUTHTYPEwas specified, this specifies the identity specified by that authorization information. See
[HTTP-CGI:4.12].

TBD: specify the syntax of this field for digest and pgp authentication.

5.3.10 REQUESTMETHOD

If the message triggering the script was a request, the method with which the request was made, as described
in section 4.2 of the SIP/2.0 specification [1]; otherwise NULL.

REQUEST METHOD = sip-method
sip-method = ”INVITE” | ”BYE” | ”OPTIONS” | ”CANCEL”

| ”REGISTER”
| extension-method

extension-method = token

Note that ACK is not appropriate for the SIP-CGI/1.1 environment. The implications of REGISTER in
the CGI context are discussed in section 5.9.

5.3.11 REQUESTURI

This meta-variable is specific to requests made with SIP.

REQUEST URI = SIP-URL ; SIP-URL is defined in
; section 2 of [1].

If the message triggering the script was a request, this variable indicates the URI specified with the
request method. This variable is only present ifREQUESTMETHODis non-NULL.

This meta-variable fills the roles of HTTP-CGI’sSCRIPT NAME, PATHINFO, andQUERYSTRING.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 11]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

5.3.12 RESPONSESTATUS

RESPONSE STATUS = Status-Code ; Status-Code is defined in
; section 5.1.1 of [1].

If the message triggering the script was a response, this variable indicates the numeric code specified in
the response.

5.3.13 RESPONSEREASON

RESPONSE REASON = Reason-Phrase ; Reason-Phrase is defined in
; section 5.1.1 of [1].

If the message triggering the script was a response, this variable indicates the textual string specified in
the response.

5.3.14 RESPONSETOKEN

RESPONSE TOKEN = *qchar

If the message triggering the script was a response, the serverMAY specify a token which subsequent
invocations of the CGI script can use to identify this response. This string is chosen by the server and is
opaque to the CGI script. See the discussion ofCGI-FORWARD-RESPONSE in section 5.6.1 below.

5.3.15 SCRIPTCOOKIE

SCRIPT COOKIE = *qchar

This is the value the script passed to the server after an earlier message in this transaction in the optional
CGI headerScript-Cookie. See the description of that header in section 5.6.2 below.

5.3.16 SERVERNAME

See [HTTP-CGI:4.15].

5.3.17 SERVERPORT

See [HTTP-CGI:4.16].

5.3.18 SERVERPROTOCOL

The name and revision of the protocol with which the message arrived; see [HTTP-CGI:4.17]. This will
usually be “SIP/2.0”.

5.3.19 SERVERSOFTWARE

See [HTTP-CGI:4.16].

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 12]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

5.4 Invoking the script

The script is invoked in a system defined manner. Unless specified otherwise, this will be by treating the file
containing the script as an executable program, and running it as a child process of the server.

The serverSHOULD NOT provide any command line arguments to the script.

Command line arguments are used for indexed queries in HTTP CGI; HTTP indexed queries do not have an
equivalent in SIP.

Only one CGI script at a time may be outstanding for a SIP transaction. If subsequently arriving re-
sponses would cause a CGI script to be invoked, handling of them is deferred, except for ACKs if appro-
priate, until CGI scripts for previous messages in the transaction terminate. Messages are processed in the
order they are received.

A serverMAY impose a maximum amount of time a CGI script is allowed to run, a maximum number
of requests or responses that a particular CGI script can initiate, a maximum total number of requests or
responses that can be sent by scripts over the lifetime of a transaction, or any other resource limitations it
desires.

5.5 Data Input to the SIP-CGI Script

As there may be a data entity attached to the request, thereMUST be a system defined method for the script
to read these data. Unless defined otherwise, this will be via the ‘standard input’ file descriptor.

ThereMUST be at leastCONTENTLENGTHbytes available for the script to read ifCONTENTLENGTH
is not NULL. The script is not obliged to read the data, but itMUST NOT attempt to read more than
CONTENTLENGTHbytes, even if more data are available.

5.6 Data Output from the SIP-CGI Script

A SIP CGI’s output consists of any number of messages, each corresponding to actions which the script is
requesting that the server perform. Messages consist of an action line, whose syntax is specific to the type of
action, followed by CGI header fields and SIP header fields. Action lines determine the nature of the action
performed, and are described in section 5.6.1. CGI header fields pass additional instructions or information
to the server, and are described in section 5.6.2.

A messageMUST contain exactly one action line, andMAY also contain any number of CGI header fields
and SIP header fields, andMAY contain a SIP body.

All header fields (both SIP and CGI) occurring in an output message MUST be specified one per line;
SIP-CGI/1.1 makes no provision for continuation lines.

The generic syntax of CGI header fields is specified in [HTTP-CGI:8.2].
A serverMAY choose to honor only some of the requests or responses; in particular, itSHOULD NOT

accept any responses following a Status message which sends a definitive non-success response.
The messages sent by a script are delimited as follows:

1. A message begins with an action line.

2. If the message does not contain aContent-Type header field, or if it contains the header field
"Content-Length: 0" , then it is terminated by a blank line.

3. If the message contains bothContent-Type and Content-Length header fields, the message has
a body consisting of theContent-Length octets following the blank line below the set. The next

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 13]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

message begins after the body (and optionally some number of blank lines). If the script closes its
output prematurely, the serverSHOULD report a 500-class server error.

4. If the message containsContent-Type but notContent-Length, the message’s body similarly begins
with the blank line following the set; this body extends until the script closes its output. In this case,
this is necessarily the last message the script can send. The serverSHOULD insert aContent-Length
header containing the amount of data read before the script closed its output.

5. If a message contains a non-zeroContent-Length but does not contain aContent-Type, it is an error.
The serverSHOULD report a 500-class server error.

The output of a SIP-CGI script is intended to be syntactically identical to that of a UDP packet in which multiple
requests or responses are sent, so that the same message parser may be used.

5.6.1 CGI Action Lines

Status

Status = SIP-Version 3*digit SP reason-phrase NL

This action line causes the server to generate a SIP response and relay it upstream towards the client.
The serverMUST copy theTo, From, Call-ID, andCSeq headers from the original request into the response
if these headers are not specified in the script output. The serverSHOULD copy any other headers from the
request which would normally be copied in the response if these are not specified in the script output.

For compatibility with HTTP-CGI, a serverMAY interpret a message containing aContent-Type header
field and no action line as though it contained"SIP/2.0 200 OK". This usage is deprecated.

Proxy Request

Proxy-Request-To = ”CGI-PROXY-REQUEST” SIP-URI SIP-Version

This action line causes the server to forward the given request to the specified SIP URI. It may be sent
either by a script triggered by a request, or by a script triggered by a response on a server which is running
statefully and remembers the original request.

Any SIP header fieldMAY be specified below the action line. Specified SIP headers replace all those in
the original message in their entirety; if a script wants to preserve header elements from the original message
as well as adding new ones, it can concatenate them by the usual rules of header concatenation, and place
the result in the script output. New header fields are added to the message after anyVia headers but before
any other headers.

Any headers from the original request which are not generated by the CGI script are copied into the
proxied request, after modifications normally performed by a proxy server. In particular, the serverMUST

append aVia field and decrementMaxForwards. A serverMAY perform additional modifications as it sees
fit, such as adding aRecord-Route header.

A script MAY specify that a SIP header is to be deleted from the message by specifying a field name
without a field body, as in

Subject:

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 14]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

If the message does not specify a body, the body from the initial request is used. A message with
Content-Length: 0 is specifying an empty body; this causes the body to be deleted from the mes-
sage.

If the initial request was authenticated by any means other than ‘basic,’ the scriptSHOULD NOT add,
change, or remove any end-to-end headers, as this would break the authentication.

Forward Response

Forward-Response = ”CGI-FORWARD-RESPONSE” Response-Name SIP-Version
Response-Name = response-token | ”this”

This action line causes the server to forward a response on to its appropriate final destination. The same
rules apply for accompanying SIP headers and message bodies as forCGI-PROXY-REQUEST.

The specified response name may either be a response token the server previously submitted in a
RESPONSETOKENmeta-variable, or the string “this.” The string “this” may only be sent if the mes-
sage which triggered this CGI script was a response; it indicates that this triggering response should be
forwarded.

Initiate Request

Initiate-Request = sip-method sip-uri SIP-Version

This action line causes the server to initiate a new SIP request, with the specified method, to the specified
URI. Any SIP headerMAY be included in the request.

The SIP serverSHOULD only allow appropriate SIP methods to be sent. In particular, unknown SIP
methods and script-generatedACK messagesSHOULD NOT be sent.

Default Action

Default-Action = ”CGI-DEFAULT-ACTION” ”dummy” SIP-Version

This action line tells the server to execute the default action at this point in the transaction. The default
actions depend on the event which triggered the script:

Request received:When the request is first received, the default action of the server is to check the registra-
tion database against the request, and either proxy or redirect the request based on the action specified
by the user agent in the registation.

Proxied response received:If a response is received to a proxied request, the server forwards the response
towards the caller if the response was a 200 or 600 class response, and sends a CANCEL on all
pending branches. If the response was informational, the state machinery for that branch is updated,
and the response is not proxied upstream towards the caller. For 300, 400, and 500 class responses,
an ACK is sent, and the response is forwarded upstream towards the caller if all other branches have
terminated, and the response is the best received so far. If not all branches have terminated, the server
does nothing. If all branches have terminated, but this response is not the best, the best is forwarded
upstream. This is the basic algorithm outlined in the SIP specification.

Generated Response Received:If the original CGI script generated its own request, and a response arrives,
the default action is to ACK the response if it isINVITE, otherwise nothing is done.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 15]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

This headerMUST NOT be combined with any SIP headers, or any CGI headers exceptScript-Cookie.

Open issue: CGI script does proxy encription,Max-Forwards, etc., but doesn’t want to handle the contact
database. Should this be SIP headers accompanying this CGI request?

If a SIP CGI script produces no output or no definitive response before closing its communication
channel, the serverSHOULD assume this action.

5.6.2 CGI Header fields

CGI header fields syntactially resemble SIP header fields, but their names all begin with the string “CGI-”.
The SIP serverMUST strip all CGI header fields from any request before sending it, including those it does
not recognize.

Script-Cookie

Script-Cookie = ”CGI-Script-Cookie” ”:” < ” > *qchar < ” >
| ”CGI-Script-Cookie” ”:”

This CGI header field allows the script to pass a quoted-string to the server. If the header had a value, sub-
sequent invocations of the script on this transaction branch will have theSCRIPT COOKIEmeta-variable
set. Sending this header field without a value will cause subsequent invocations not to have the variable set;
this is useful to clear a script cookie from a transaction.

When included as a CGI header for a request (either new or proxied), the value is passed back to the
script for responses received to that request only. This allows a script which generates multiple requests
to receive a different cookie depending on which response arrives. When included as a CGI header for a
response (either new or proxied), the cookie will be passed back to the script for any subsequent trigger.

This allows a SIP CGI script to retain state across multiple invocations in a complex transaction.

Reexecute-On

Reexecute-On = ”CGI-Reexecute-On” ”:” (”all” | ”final-responses” | ”never”)

This CGI header allows the script to inform the server of the conditions upon which the server should
re-execute the script or take the default action. The keyword “all” means that the script would like to be
re-executed when any response for the transaction is received. The keyword “final-responses” means that
the script would like to be invoked upon any final responses (all but 1xx). The keywork “never” means the
script should not be executed again. In cases where the script is not executed, the default action is taken.

A script is never reexecuted when a retransmitted request or response is received. Note that since any
request for the same transaction is by definition a retransmission, a script is called for the first time due to
a request, but always by a response for subsequent invocations. A script is never executed when anACKor
CANCELis received.

5.7 Local expiration handling

If a CGI script specifies anExpires header field along with a new request orCGI-PROXY-REQUEST, the
SIP serverSHOULD track the expiration timeout locally as well as sending the message to the remote server.
When the timeout expires, the serverSHOULD generate a “408 Request Timeout” response. The timeout
responseSHOULD be handled as specified in section 5.8. At the time the request is timed out, the server
SHOULD also transmitCANCEL messages for the request.

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 16]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

This allows a SIP-CGI script in a proxy server to implement services like “Call Forward No Answer” to trigger
after a user-determined time, even if the remote user-agent server is not responding or does not properly handle the
Expires header field.

It might be better to separate this functionality with aCGI-Expires or CGI-Timeout CGI header field.

5.8 Locally generated responses

In a proxy environment, locally generated responses such as “408 Request Timeout”SHOULD be sent to the
CGI script in the same manner as received messages are. However, messages which merely report a problem
with a message, such as “400 Bad Request”,SHOULD NOT be.

This is the other half of the requirements for the implementation of the “Call Forward No Answer” service, along
with the local handling of theExpires header.

5.9 SIP-CGI and REGISTER

The specific semantics of a SIP-CGI script which is triggered by aREGISTER request are somewhat
different than that of those triggered by call-related requests; however, allowing user control of registration
may in some cases be useful. The two specific actions forREGISTER that need to be discussed are the
response “200” andCGI-DEFAULT-ACTION. In the former case, the serverSHOULD assume that the CGI
script is handling the registration internally, andSHOULD NOTadd the registration to its internal registration
database; in the latter case, the serverSHOULD add the registration to its own database. The server also
SHOULD NOTadd the registration if a 3xx, 4xx, 5xx, or 6xx status was returned, or if the registration request
was proxied to another location.

6 Security Considerations

6.1 Request initiation

CGI scripts are able to initiate arbitrary SIP transactions, or to produce spoofed responses of any sort. This
protocol does not attempt to restrict the actions CGI scripts can take. Server administratorsMUST consider
CGI scripts to be as security-sensitive as their SIP server itself, and perform equivalent levels of security
review before installing them.

6.2 Authenticated and encrypted messages

CGI scripts must be careful not to interfere with authentication. In particular, adding or removing header
fields that are below theAuthorization header will cause the message to fail authentication at the user agent.

When a SIP request is encrypted, the headers which are in the clear are passed to the server according to
this specification. The encrypted portion of the request is not passed to the script. Any SIP headers output
by the script will be added to the message. However, scripts should be aware that these may be discarded if
they also exist within the encrypted portion.

6.3 SIP header fields containing sensitive information

Some SIP header fields may carry sensitive information which the serverSHOULD NOT pass on to the
script unless explicitly configured to do so. For example, if the server protects the script using the Basic

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 17]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

authentication scheme, then the client will send anAuthorization header field containing a username and
password. If the server, rather than the script, validates this information then the passwordSHOULD NOT be
passed on to the script via theHTTPAUTHORIZATIONmeta-variable.

6.4 Script Interference with the Server

The most common implementation of CGI invokes the script as a child process using the same user and
group as the server process. ItSHOULD therefore be ensured that the script cannot interfere with the server
process, its configuration, or documents.

If the script is executed by calling a function linked in to the server software (either at compile-time
or run-time) then precautionsSHOULD be taken to protect the core memory of the server, or to ensure that
untrusted code cannot be executed.

7 Full Copyright Statement

Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implmentation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works.

However, this document itself may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for copyrights defined in the Internet Standards
process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an ”AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.”

8 Authors’ Addresses

Jonathan Lennox
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027
USA
electronic mail:lennox@cs.columbia.edu

Jonathan Rosenberg
Rm. 4C-526
Bell Laboratories, Lucent Technologies

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 18]

INTERNET-DRAFT draft-lennox-sip-cgi-00.ps November 13, 1998

101 Crawfords Corner Rd.
Holmdel, NJ 07733
USA
electronic mail:jdrosen@bell-labs.com

Henning Schulzrinne
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027
USA
electronic mail:schulzrinne@cs.columbia.edu

References

[1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation protocol,” Internet
Draft, Internet Engineering Task Force, Sept. 1998. Work in progress.

[2] D. Crocker, “Standard for the format of ARPA internet text messages,” Request for Comments (Stan-
dard) STD 11, 822, Internet Engineering Task Force, Aug. 1982. (Obsoletes RFC733); (Updated by
RFC987); (Updated by RFC1327).

[3] D. Robinson and K. Coar, “The WWW common gateway interface version 1.1,” Internet Draft, Internet
Engineering Task Force, May 1998. Work in progress.

[4] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” BC 2119, Internet Engineering
Task Force, Mar. 1997.

[5] D. Crocker and P. Overell, “Augmented BNF for syntax specifications: ABNF,” Request for Comments
(Proposed Standard) 2234, Internet Engineering Task Force, Nov. 1997.

[6] M. S. Johns, “Identification protocol,” Request for Comments (Proposed Standard) 1413, Internet En-
gineering Task Force, Feb. 1993. (Obsoletes RFC931).

J. Lennox, J.Rosenberg, H.Schulzrinne Expires April 1999 [Page 19]

