Internet Engineering Task Force SIP WG
INTERNET-DRAFT J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Schooler
draft-ietf-sip-rfc2543bis-07.9.ps dynamicsoft,Columbia U.,Ericsson,Worldcom,Neustar,dynamicsoft, ACIRI,AT&T

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

February 18, 2002
Expires: Aug 2002

SIP: Session Initiation Protocol

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1lid-abstracts.txt
To view the list Internet-Draft Shadow Directories, $eg://www.ietf.org/shadow.html.

Copyright Notice
Copyright (c) The Internet Society (2002). All Rights Reserved.

Abstract

The Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creating,
modifying, and terminating sessions with one or more participants. These sessions include Internet
telephone calls, multimedia distribution, and multimedia conferences.

SIP invitations used to create sessions carry session descriptions that allow participants to agree on
a set of compatible media types. SIP makes use of elements called proxy servers to help route requests
to the user’s current location, authenticate and authorize users for services, implement provider call-
routing policies, and provide features to users. SIP also provides a registration function that allows users
to upload their current locations for use by proxy servers. SIP runs on top of several different transport

protocols.

Contents

1 Introduction 8
2 Overview of SIP Functionality 8
3 Terminology 9
4 Overview of Operation 9
5 Structure of the Protocol 14
6 Definitions 16
7 SIP Messages 20

7.1 Requests 20

7.2 RESPONSES o o e e e e e e 21

35

36

37

38

39

40

a1

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

68

69

70

72

73

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

7.3 HeaderFields e 22
7.3.1 HeaderFieldFormat 22
7.3.2 Header Field Classification 24
7.3.3 CompactForm e e e e 24
7.4 BodieS e 25
7.4.1 MessageBody Type e 25
7.4.2 MessageBodylLength 25
7.5 Framing SIPmMessages o 0 i i e e 25
8 General User Agent Behavior 25
8.1 UACBehavior. e e e 26
8.1.1 Generatingthe Request e 26
8.1.2 Sendingthe Request 30
8.1.3 Processing Responses. 30
8.2 UASBehavior e 33
8.2.1 Method Inspection 33
8.2.2 HeaderlInspection e 33
8.2.3 Content Processing... v o v i i 34
8.2.4 Applying EXtensions e e 35
8.25 Processingthe Request 35
8.2.6 Generatingthe Response i i e 35
8.2.7 Stateless UAS Behavior 36
8.3 Redirect Servers e 36
9 Canceling a Request 37
9.1 ClientBehavior e 38
9.2 ServerBehavior e 39
10 Registrations 39
10.1 OVEIVIEW o o e e e e e 39
10.2 Constructing thREGISTERRequest e 41
10.2.1 Adding Bindings e 42
10.2.2 Removing Bindings 43
10.2.3 Fetching Bindings e e 43
10.2.4 Refreshing Bindings e e 43
10.2.5 Settingthe Internal Clock 43
10.2.6 Discoveringa Reqistrar e e 43
10.2.7 Transmittinga Request. 44
10.2.8 Error RESpoNSES 0 o e e e e e e e 44
10.3 ProcessinREGISTER Requests i i 44
11 Querying for Capabilities 46
11.1 Construction oDPTIONS Request e 47
11.2 Processing of OPTIONS Request i 47
12 Dialogs 48

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Schio¥pires Aug 2002 [Page 2]

75

76

7

78

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

110

111

112

113

114

115

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

12.1 CreationofaDialog. e 49
12.1.1 UASbehavior e 49
12.1.2 UACBehavior e 50
12.2 RequestswithinaDialog e 50
12.2.1 UACBehavior e e 51
12.2.2 UASBehavior e 52
12.3 TerminationofaDialog 53
13 Initiating a Session 53
13.1 OVEIVIEW o o e e e e e 53
13.2 UACPIOCESSING . - .« v v oo e e e e e e e e e e e e e e e 54
13.2.1 Creatingthe InitidNVITE i 54
13.2.2 ProcessintNVITEResponses it 55
13.3 UASProcessing o o v v i e e e e e e e e 57
13.3.1 Processing of tHBIVITE i e 57
14 Modifying an Existing Session 59
14.1 UACBehavior e e e 59
14.2 UAS Behavior o e e e e e 60
15 Terminating a Session 61
15.1 Terminating a Session wittBYE Request 61
15.1.1 UACBehavior e 61
15.1.2 UASBehavior e 62
16 Proxy Behavior 62
16.1 OVEIVIEW o o e e e e e e e e e 62
16.2 Stateful Proxy e e e e e e 63
16.3 Request Validation 63
16.4 Route Information Preprocessing o o 0 e e e e 66
16.5 Determining requesttargets e 66
16.6 Request Forwarding e e e e 68
16.7 Response ProCessSiNg. v v v v v vt i e e 73
16.8 Processing TiImerC e e e e e e e 78
16.9 Handling Transport Errors o e e e e e e e e 78
16.10CANCEL Processing. o v v o e e e e 78
16.11Stateless ProXy o o o e e e e e e 78
16.12Summary of Proxy Route Processing« o o v v i i e e 80
16.12.1Examples e e e e 80
17 Transactions 84
17.1 Client Transaction e e e e e 85
17.1.1 INVITE Client Transaction et et 85
17.1.2 NonNVITE Client Transaction i 89
17.1.3 Matching Responses to Client Transactions 91
17.1.4 Handling Transport Errors e 91
J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Schimipires Aug 2002 [Page 3]

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

134

135

136

137

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

157

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

17.2 Server Transaction 91
17.2.1 INVITE Server Transaction vttt 91
17.2.2 NoniNVITE Server Transaction 95
17.2.3 Matching Requests to Server Transactions 95
17.2.4 Handling Transport Errors 96

18 Transport 96

18.1 Clients e 97
18.1.1 Sending Requests e 97
18.1.2 Receiving REeSpONSES. v i i e e e 98

18.2 SEIVEIS . . . o e e 98
18.2.1 Receiving Requests... e 98
18.2.2 Sending RESPONSES o i i e e e e e 99

183 Framing o o 100

18.4 ErrorHandling e e e 100

19 Common Message Components 100

19.1 SIP and SIPS Uniform Resource Indicators 100
19.1.1 SIPand SIPSURIComponents. 101
19.1.2 Character Escaping Requirements 103
19.1.3 Example SIPand SIPSURIs 104
19.1.4 URICOMPAriSON ot e e e e e e 104
19.1.5 Forming RequestsfromaURI 106
19.1.6 RelatingSIPURIsandtelURLs 107

19.2 OptioN TAGS . -+« v o v e e e e e e 108

19.3 Tags o e 109

20 Header Fields 109

20.1 ACCEPL . . . 112

20.2 Accept-Encoding e e e 112

20.3 Accept-Language e 113

204 Alert-Info L e e 113

20.5 Allow . . L e 113

20.6 Authentication-Info L 114

20.7 Authorization L e 114

208 Call-ID 114

209 Call-Info e 114

20.10C0NtaCt L e e e 115

20.11Content-Disposition e e e 115

20.12Content-Encoding 116

20.13Content-Language e e e e e e e 116

20.14Content-Length L 116

20.15C0oNtent-TYPe e e e e e e e 117

20.18CSEQ . . - e 117

20.17DAte e e 117

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Schimipires Aug 2002 [Page 4]

158

159

160

161

162

163

164

165

166

167

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

186

187

188

189

190

191

192

193

194

195

197

198

199

200

201

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

21

20.18rror-Info . . L L L e 118
20.1EXPINES . . . i e e e 118
20.20Fr0mM . L L e 118
20.21N-Reply-TO o e e e e e e 119
20.22Max-Forwards e e e 119
20.23VIIN-EXPIrES o e e e e e e 119
20.2AMIME-VEISION o o e e e e 119
20.250rganization e e e e e 119
20.26PriONtY 120
20.27Proxy-Authenticate e 120
20.28Proxy-Authorization 120
20.2Proxy-Require e e e e e 121
20.3Record-Route e 121
20.31IRePIY-TO . . . o o 121
20.3REqUITE e e 121
20.3Retry-After 122
20.34R0OULE 122
20.355€rver .. oL 122
20.365ubject 122
20.37Supported . .. 123
20.38Timestamp e e e e e e 123
20.39T0 e 123
20.400nsupported L L e e e e e e e e 123
20.40User-Agent L e e e e e e e e e 124
20.42VIa e 124
20.43NVArNING e e e e e e e e e 124
20.4ANWW-Authenticate e 126
Response Codes 126
21.1 Provisional IXX e e 126
21.1.1 100 TrYiING . . v v o e e e 126
21.1.2 180RINGING e e 126
21.1.3 181 CalllsBeing Forwarded 126
21.1.4 182 Queued e 127
21.1.5 183 SesSioN Progress v i i e e e e e e e 127
21.2 Successful 2xXX L e e e 127
21.2.1 2000K e 127
21.3 RedireCtion 3XX o e e e e e e e 127
21.3.1 300 Multiple Choices e 127
21.3.2 301 Moved Permanently 127
21.3.3 302 Moved Temporarily. e 128
21.3.4 305USEProXy o o i e 128
21.3.5 380 Alternative Service L 128
21.4 Request Failure 4xX o 128
21.4.1 400Bad Request e 128

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Schim#pires Aug 2002 [Page 5]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

202 21.4.2 401 Unauthorized e 128
203 21.4.3 402 PaymentRequired 129
204 21.4.4 403 Forbidden e 129
205 21.45 404 NotFound e 129
206 21.4.6 405 Method Not Allowed 129
207 21.4.7 406 Not Acceptable... e 129
208 21.4.8 407 Proxy Authentication Required 129
209 21.4.9 408 Request Timeout i i e e e 129
210 21.4.10410 GONE o o e e 129
211 21.4.11 413 Request Entity TooLarge. e 130

212 21.4.12414 Request-URITooLong o i 130
213 21.4.13 415 Unsupported Media Type. e 130

214 21.4.14 416 Unsupported URIScheme 130

215 21.4.15420 Bad EXtension e e e 130
216 21.4.16 421 Extension Required e 130
217 21.4.17 423 Interval Too Brief 130
218 21.4.18 480 Temporarily Unavailable 131

219 21.4.19 481 Call/Transaction Does NotExist. 131

220 21.4.20482 Loop Detected e 131
221 21421483 TooMany HOPS o 0 131
222 21.4.22 484 Address Incomplete e 131
223 21.4.23485 Ambiguous L 131

224 21.4.24486 Busy Here e 132
225 21.4.25487 Request Terminated e 132
226 21.4.26 488 Not Acceptable Here. 132

227 21.4.27491 RequestPending 132
228 21.4.28493 Undecipherable 132
229 215 ServerFailure 5xx L 132
230 21.5.1 500 ServerInternal Error e e 132
231 21.5.2 501 NotImplemented 133
232 2153 502BadGateway 133
233 21.5.4 503 Service Unavailable oo 133
234 21.5.5 504 Server Time-out o e e e e 133
235 21.5.6 505 Version NotSupported e 133

236 21.5.7 513 Message TooLarge e e e 133

237 21.6 Global Failures 6XX o e e e 133
238 21.6.1 600 Busy Everywhere 134
239 21.6.2 603 Decline 134
240 21.6.3 604 Does Not Exist Anywhere 134
241 21.6.4 606 Not Acceptable... 134
22 22 Usage of HTTP Authentication 134

243 22.1 Framework e e 135
244 22.2 User-to-User Authentication e 136
245 22.3 Proxy-to-User Authentication e 137

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Schimipires Aug 2002 [Page 6]

246

247

248

249

250

251

252

253

254

255

256

257

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

23

24

25

26

27

22.4 The Digest Authentication Scheme e 139
S/MIME 140
23.1 S/MIME Certificates. e 140
23.2 SIMIME Key Exchange 141
23.3 Securing MIME bodies 142
23.4 SIP Header Privacy and Integrity using S/IMIME: TunnelingSIP 143
23.4.1 Integrity and Confidentiality Properties of SIP Headers. 144
23.4.2 Tunneling Integrity and Authentication 145
23.4.3 Tunneling Encryption. e e e 146
Examples 148
24.1 Registration e e e e e e 148
24.2 SESSION SEtUP . ..ot v 149
Augmented BNF for the SIP Protocol 154
25.1 BasicRules e 155
Security Considerations: Threat Model and Security Usage Recommendations 169
26.1 Attacks and ThreatModels e 169
26.1.1 Registration Hijackingo 170
26.1.2 Impersonating a Server 170
26.1.3 Tampering with Message Bodies 171
26.1.4 Tearing DOWN SESSIONS. o v i e e e e e e e 171
26.1.5 Denial of Service and Amplification L. 172
26.2 Security Mechanisms e 172
26.2.1 Transport and Network Layer Security 173
26.2.2 SIPSURIscheme e 173
26.2.3 HTTP Authentication 174
26.2.4 SIMIME e 174
26.3 Implementing Security Mechanisms0 175
26.3.1 Requirements for Implementersof SIP. 175
26.3.2 Security Solutions 175
26.4 Limitations e e 179
26.4.1 HTTPDigest e e e e e 179
26.4.2 SIMIME e e e 179
26.4.3 TLS e 180
26.4.4 SIPSURIS e 180
26.5 PrivaCy e e e e 181
IANA Considerations 181
27.1 OptONTAGS . .« « . o v e e e e e e e 181
27.2 Warn-Codes 182
27.3 Header Field Names e e 182
27.4 Methodand Response Codes i i i i i i 183
27.5 The “application/sip” MIME type. e e 183

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Schimipires Aug 2002 [Page 7]

287

288

289

290

291

292

293

294

295

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

28 Changes From RFC 2543 183
28.1 Major Functional Changes e e 184
28.2 Minor Functional Changes 186

29 Acknowledgments 187

30 Authors’ Addresses 187

A Table of Timer Values 191

1 Introduction

There are many applications of the Internet that require the creation and management of a session, where
a session is considered an exchange of data between an association of participants. The implementation of
these applications is complicated by the practices of participants: users may move between endpoints, they
may be addressable by multiple names, and they may communicate in several different media - sometimes
simultaneously. Numerous protocols have been authored that carry various forms of real-time multimedia
session data such as voice, video, or text messages. SIP works in concert with these protocols by enabling
Internet endpoints (calledser agentsto discover one another and to agree on a characterization of a ses-
sion they would like to share. For locating prospective session participants, and for other functions, SIP
enables creation of an infrastructure of network hosts (cgltedy serversto which user agents can send
registrations, invitations to sessions, and other requests. SIP is an agile, general-purpose tool for creating,
modifying, and terminating sessions that works independently of underlying transport protocols and without
dependency on the type of session that is being established.

2 Overview of SIP Functionality

SIP is an application-layer control protocol that can establish, modify, and terminate multimedia sessions
(conferences) such as Internet telephony calls. SIP can also invite participants to already existing sessions,
such as multicast conferences. Media can be added to (and removed from) an existing session. SIP trans-
parently supports name mapping and redirection services, which suppostsal mobilityf26] - users can
maintain a single externally visible identifier regardless of their network location.

SIP supports five facets of establishing and terminating multimedia communications:

User location: determination of the end system to be used for communication;

User availability: determination of the willingness of the called party to engage in communications;
User capabilities: determination of the media and media parameters to be used,;

Session setup:‘ringing”, establishment of session parameters at both called and calling party;

Session managementincluding transfer and termination of sessions, modifying session parameters, and
invoking services.

SIP is not a vertically integrated communications system. SIP is rather acomponent that can be used with
other IETF protocols to build a complete multimedia architecture. Typically, these architectures will include

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Schimipires Aug 2002 [Page 8]

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

protocols such as the real-time transport protocol (RTP) (RFC 1889 [27]) for transporting real-time data and
providing QoS feedback, the real-time streaming protocol (RTSP) (RFC 2326 [28]) for controlling delivery
of streaming media, the Media Gateway Control Protocol (MEGACO) (RFC 3015 [29]) for controlling
gateways to the Public Switched Telephone Network (PSTN), and the session description protocol (SDP)
(RFC 2327 [1]) for describing multimedia sessions. Therefore, SIP should be used in conjunction with other
protocols in order to provide complete services to the users. However, the basic functionality and operation
of SIP does not depend on any of these protocols.

SIP does not provide services. SIP rather provides primitives that can be used to implement different
services. For example, SIP can locate a user and deliver an opaque object to his current location. If this
primitive is used to deliver a session description written in SDP, for instance, the endpoints can agree on the
parameters of a session. If the same primitive is used to deliver a photo of the caller as well as the session
description, a "caller ID” service can be easily implemented. As this example shows, a single primitive is
typically used to provide several different services.

SIP does not offer conference control services such as floor control or voting and does not prescribe how
a conference is to be managed. SIP can be used to initiate a session that uses some other conference control
protocol. Since SIP messages and the sessions they establish can pass through entirely different networks,
SIP cannot, and does not, provide any kind of network resource reservation capabilities.

The nature of the services provided make security particularly important. To that end, SIP provides a
suite of security services, which include denial-of-service prevention, authentication (both user to user and
proxy to user), integrity protection, and encryption and privacy services.

SIP works with both IPv4 and IPv6.

3 Terminology

In this document, the key words1UST”, “ MUST NOT”, “ REQUIRED', “ SHALL", “ SHALL NOT”, “ SHOULD",
“SHOULD NOT’, “RECOMMENDED’, “NOT RECOMMENDED, “MAY”, and “OPTIONAL" are to be inter-
preted as described in RFC 2119 [2] and indicate requirement levels for compliant SIP implementations.

4 Overview of Operation

This section introduces the basic operations of SIP using simple examples. This section is tutorial in nature
and does not contain any normative statements.

The first example shows the basic functions of SIP: location of an end point, signal of a desire to com-
municate, negotiation of session parameters to establish the session, and teardown of the session once es-
tablished.

Figure 1 shows a typical example of a SIP message exchange between two users, Alice and Bob. (Each
message is labeled with the letter “F” and a number for reference by the text.) In this example, Alice uses a
SIP application on her PC (referred to as a softphone) to call Bob on his SIP phone over the Internet. Also
shown are two SIP proxy servers that act on behalf of Alice and Bob to facilitate the session establishment.
This typical arrangement is often referred to as the “SIP trapezoid” as shown by the geometric shape of the
dashed lines in Figure 1.

Alice “calls” Bob using his SIP identity, a type of Uniform Resource Identifier (URI) callegiR
URI and which is defined in Section 19.1. It has a similar form to an email address, typically containing
a username and a host name. In this case, it is sip:bob@biloxi.com, where biloxi.com is the domain of

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Schimipires Aug 2002 [Page 9]

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

e “ atlanta.com biloxi.com Proxy SsL N

e Proxy Server Server Sso
i ~
Alice’s PC Bob's SIP Phone

INVITE F1

- > INVITE /2

< 100 Trying 73 > INVITE 74
100 Trying F5 »
180 Ringing F6
180 Ringing £7 <

180 Ringing F8

200 OK F9

200 OK F10
200 OK F11 <

ACK F12

RTP Media Session

>
>

BYE F13

A A A A

200 OK F14

>

Figure 1: SIP session setup example with SIP trapezoid

Bob’s SIP service provider (which can be an enterprise, retail provider, etc). Alice also has a SIP URI
of sip:alice@atlanta.com. Alice might have typed in Bob’s URI or perhaps clicked on a hyperlink or
an entry in an address book. SIP also provides a secure URI, called a SIPS URI. An example would be
sips:bob@biloxi.com. A call made to a SIPS URI guarantees that secure, encrypted transport (namely TLS)
is used to carry all SIP messages at every hop between the caller and callee.

SIP is based on an HTTP-like request/response transaction model. Each transaction consists of a request
that invokes a particulamethod or function, on the server and at least one response. In this example, the
transaction begins with Alice’s softphone sendingMXITE request addressed to Bob’s SIP URIVITE
is an example of a SIP method that specifies the action that the requestor (Alice) wants the server (Bob)
to take. ThelNVITE request contains a number of header fields. Header fields are named attributes that
provide additional information about a message. The ones presentNV#FRE include a unique identifier
for the call, the destination address, Alice’s address, and information about the type of session that Alice
wishes to establish with Bob. THNVITE (message F1 in Figure 1) might look like this:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 10]

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Content-Length: 142

(Alice’s SDP not shown)

The first line of the text-encoded message contains the method neMEE). The lines that follow
are a list of header fields. This example contains a minimum required set. The header fields are briefly
described below:

Via contains the address (pc33.atlanta.com) at which Alice is expecting to receive responses to this
request. It also contains a branch parameter that contains an identifier for this transaction.

To contains a display name (Bob) and a SIP or SIPS URI (sip:bob@biloxi.com) towards which the
request was originally directed. Display hames are described in RFC 2822 [3].

From also contains a display name (Alice) and a SIP or SIPS URI (sip:alice@atlanta.com) that indicate
the originator of the request. This header field also hgygparameter containing a pseudorandom string
(1928301774) that was added to the URI by the softphone. It is used for identification purposes.

Call-ID contains a globally unique identifier for this call, generated by the combination of a pseudoran-
dom string and the softphone’s IP address. The combination @bttesy, From tag, andCall-ID completely
define a peer-to-peer SIP relationship between Alice and Bob and is referred diabsga

CSeq or Command Sequence contains an integer and a method nam@Se&heumber is incremented
for each new request within a dialog and is a traditional sequence number.

Contact contains a SIP or SIPS URI that represents a direct route to contact Alice, usually composed
of a username at a fully qualified domain name (FQDN). While an FQDN is preferred, many end systems
do not have registered domain names, so IP addresses are permitted. \W¥ike leader field tells other
elements where to send the response,Gbatact header field tells other elements where to send future
requests.

Max-Forwards serves to limit the number of hops a request can make on the way to its destination. It
consists of an integer that is decremented by one at each hop.

Content-Type contains a description of the message body (not shown).

Content-Length contains an octet (byte) count of the message body.

The complete set of SIP header fields is defined in Section 20.

The details of the session, type of media, codec, sampling rate, etc. are not described using SIP. Rather,
the body of a SIP message contains a description of the session, encoded in some other protocol format.
One such format is Session Description Protocol (SDP) [1]. This SDP message (not shown in the example)
is carried by the SIP message in a way that is analogous to a document attachment being carried by an email
message, or a web page being carried in an HTTP message.

Since the softphone does not know the location of Bob or the SIP server in the biloxi.com domain, the
softphone sends tH&IVITE to the SIP server that serves Alice’s domain, atlanta.com. The address of the
atlanta.com SIP server could have been configured in Alice’s softphone, or it could have been discovered by
DHCP, for example.

The atlanta.com SIP server is a type of SIP server known as a proxy server. A proxy server receives
SIP requests and forwards them on behalf of the requestor. In this example, the proxy server receives the
INVITE request and sends a 100 (Trying) response back to Alice’s softphone. The 100 (Trying) response
indicates that théNVITE has been received and that the proxy is working on her behalf to roults VWEE
to the destination. Responses in SIP use a three-digit code followed by a descriptive phrase. This response
contains the sam&o, From, Call-ID,CSeq and branch parameter in théa as thelNVITE, which allows
Alice’s softphone to correlate this response to the $8MITE. The atlanta.com proxy server locates the

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 11]

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

454

455

456

457

458

459

460

461

462

464

465

466

467

469

470

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

proxy server at biloxi.com, possibly by performing a particular type of DNS (Domain Name Service) lookup

to find the SIP server that serves the biloxi.com domain. This is described in [4]. As a result, it obtains
the IP address of the biloxi.com proxy server and forwards, or proxieSNME E request there. Before
forwarding the request, the atlanta.com proxy server adds an addii@anatader field that contains its own
address (th&\VITE already contains Alice’s address in the fivéh). The biloxi.com proxy server receives
theINVITE and responds with a 100 (Trying) response back to the atlanta.com proxy server to indicate that
it has received th&NVITE and is processing the request. The proxy server consults a database, generically
called a location service, that contains the current IP address of Bob. (We shall see in the next section how
this database can be populated.) The biloxi.com proxy server adds aWidhegader field value with its

own address to thENVITE and proxies it to Bob’s SIP phone.

Bob’s SIP phone receives thRVITE and alerts Bob to the incoming call from Alice so that Bob can
decide whether to answer the call, that is, Bob’s phone rings. Bob’s SIP phone indicates this in a 180
(Ringing) response, which is routed back through the two proxies in the reverse direction. Each proxy uses
the Via header field to determine where to send the response and removes its own address from the top.
As a result, although DNS and location service lookups were required to route thelMMdIE, the 180
(Ringing) response can be returned to the caller without lookups or without state being maintained in the
proxies. This also has the desirable property that each proxy that sés/ii& will also see all responses
to theINVITE.

When Alice’s softphone receives the 180 (Ringing) response, it passes this information to Alice, perhaps
using an audio ringback tone or by displaying a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up the handset, his SIP phone sends a
200 (OK) response to indicate that the call has been answered. The 200 (OK) contains a message body with
the SDP media description of the type of session that Bob is willing to establish with Alice. As a result, there
is a two-phase exchange of SDP messages: Alice sent one to Bob, and Bob sent one back to Alice. This
two-phase exchange provides basic negotiation capabilities and is based on a simple offer/answer model of
SDP exchange. If Bob did not wish to answer the call or was busy on another call, an error response would
have been sent instead of the 200 (OK), which would have resulted in no media session being established.
The complete list of SIP response codes is in Section 21. The 200 (OK) (message F9 in Figure 1) might
look like this as Bob sends it out:

SIP/2.0 200 OK

Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9hG4bKnashds8
rreceived=10.2.1.1

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9nG4bK77ef4c2312983.1
rreceived=10.1.1.1

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
rreceived=10.1.3.3

To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.8>

Content-Type: application/sdp

Content-Length: 131

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 12]

471

472

473

474

475

476

477

478

479

480

481

482

483

484

486

487

488

489

490

491

492

493

494

495

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

(Bob’s SDP not shown)

The first line of the response contains the response code (200) and the reason phrase (OK). The remain-
ing lines contain header fields. Tha, To, From, Call-ID, andCSeq header fields are copied from the
INVITE request. (There are thrééa header field values - one added by Alice’s SIP phone, one added by
the atlanta.com proxy, and one added by the biloxi.com proxy.) Bob’s SIP phone has dddg@demeter
to the To header field. This tag will be incorporated by both endpoints into the dialog and will be included
in all future requests and responses in this call. Thatact header field contains a URI at which Bob can
be directly reached at his SIP phone. T®entent-Type and Content-Length refer to the message body
(not shown) that contains Bob's SDP media information.

In addition to DNS and location service lookups shown in this example, proxy servers can make flexible
“routing decisions” to decide where to send a request. For example, if Bob’s SIP phone returned a 486 (Busy
Here) response, the biloxi.com proxy server could proxylMMITE to Bob’s voicemail server. A proxy
server can also send #NVITE to a number of locations at the same time. This type of parallel search is
known asforking.

In this case, the 200 (OK) is routed back through the two proxies and is received by Alice’s softphone,
which then stops the ringback tone and indicates that the call has been answered. Finally, Alice’s softphone
sends an acknowledgement mességeK to Bob’s SIP phone to confirm the reception of the final response
(200 (OK)). In this example, th&CK is sent directly from Alice’s softphone to Bob’s SIP phone, bypassing
the two proxies. This occurs because the endpoints have learned each other's address @omiatte
header fields through tH&IVITE/200 (OK) exchange, which was not known when the initdVITE was
sent. The lookups performed by the two proxies are no longer needed, so the proxies drop out of the call
flow. This completes thtNVITE/200/ACK three-way handshake used to establish SIP sessions. Full details
on session setup are in Section 13.

Alice and Bob’s media session has now begun, and they send media packets using the format to which
they agreed in the exchange of SDP. In general, the end-to-end media packets take a different path from the
SIP signaling messages.

During the session, either Alice or Bob may decide to change the characteristics of the media session.
This is accomplished by sending alVITE containing a new media description. ThisINYITE refer-
ences the existing dialog so that the other party knows that it is to modify an existing session instead of
establishing a new session. The other party sends a 200 (OK) to accept the change. The requestor responds
to the 200 (OK) with arACK. If the other party does not accept the change, he sends an error response such
as 406 (Not Acceptable), which also receiveA&IK. However, the failure of the reNVITE does not cause
the existing call to fail - the session continues using the previously negotiated characteristics. Full details on
session modification are in Section 14.

At the end of the call, Bob disconnects (hangs up) first and generd@&@¥€anessage. ThiBYE is
routed directly to Alice’s softphone, again bypassing the proxies. Alice confirms receipt B¥tavith a
200 (OK) response, which terminates the session anBtietransaction. NACK is sent - arACK is only
sent in response to a response tdMXITE request. The reasons for this special handlingN/ITE will
be discussed later, but relate to the reliability mechanisms in SIP, the length of time it can take for a ringing
phone to be answered, and forking. For this reason, request handling in SIP is often classified as either
INVITE or nonINVITE, referring to all other methods besid®&8VITE. Full details on session termination
are in Section 15.

Full details of all the messages shown in the example of Figure 1 are shown in Section 24.2.

In some cases, it may be useful for proxies in the SIP signaling path to see all the messaging between the

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 13]

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

endpoints for the duration of the session. For example, if the biloxi.com proxy server wished to remain in the
SIP messaging path beyond the initidVITE, it would add to thdNVITE a required routing header field

known asRecord-Route that contained a URI resolving to the hostname or IP address of the proxy. This
information would be received by both Bob’s SIP phone and (due t®#word-Route header field being

passed back in the 200 (OK)) Alice’s softphone and stored for the duration of the dialog. The biloxi.com
proxy server would then receive and proxy th€K, BYE, and 200 (OK) to theBYE. Each proxy can
independently decide to receive subsequent messaging, and that messaging will go through all proxies that
elect to receive it. This capability is frequently used for proxies that are providing mid-call features.

Registration is another common operation in SIP. Registration is one way that the biloxi.com server
can learn the current location of Bob. Upon initialization, and at periodic intervals, Bob’s SIP phone sends
REGISTER messages to a server in the biloxi.com domain known as a SIP registrdREBKSTER mes-
sages associate Bob’s SIP or SIPS URI (sip:bob@biloxi.com) with the machine into which he is currently
logged (conveyed as a SIP or SIPS URI in @entact header field). The registrar writes this association,
also called a binding, to a database, calledltvation service where it can be used by the proxy in the
biloxi.com domain. Often, a registrar server for a domain is co-located with the proxy for that domain. Itis
an important concept that the distinction between types of SIP servers is logical, not physical.

Bob is not limited to registering from a single device. For example, both his SIP phone at home and
the one in the office could send registrations. This information is stored together in the location service and
allows a proxy to perform various types of searches to locate Bob. Similarly, more than one user can be
registered on a single device at the same time.

The location service is just an abstract concept. It generally contains information that allows a proxy to
input a URI and receive a set of zero or more URIs that tell the proxy where to send the request. Registrations
are one way to create this information, but not the only way. Arbitrary mapping functions can be configured
at the discretion of the administrator.

Finally, it is important to note that in SIP, registration is used for routing incoming SIP requests and
has no role in authorizing outgoing requests. Authorization and authentication are handled in SIP either
on a request-by-request basis with a challenge/response mechanism, or by using a lower layer scheme as
discussed in Section 26.

The complete set of SIP message details for this registration example is in Section 24.1.

Additional operations in SIP, such as querying for the capabilities of a SIP server or clientQRing
TIONS, or canceling a pending request usl@gNCEL, will be introduced in later sections.

5 Structure of the Protocol

SIP is structured as a layered protocol, which means that its behavior is described in terms of a set of fairly

independent processing stages with only a loose coupling between each stage. The protocol behavior is
described as layers for the purpose of presentation, allowing the description of functions common across

elements in a single section. It does not dictate an implementation in any way. When we say that an element
“contains” a layer, we mean it is compliant to the set of rules defined by that layer.

Not every element specified by the protocol contains every layer. Furthermore, the elements specified
by SIP are logical elements, not physical ones. A physical realization can choose to act as different logical
elements, perhaps even on a transaction-by-transaction basis.

The lowest layer of SIP is its syntax and encoding. Its encoding is specified using an augmented Backus-
Naur Form grammar (BNF). The complete BNF is specified in Section 25; an overview of a SIP message’s
structure can be found in Section 7.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 14]

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The second layer is the transport layer. It defines how a client sends requests and receives responses and
how a server receives requests and sends responses over the network. All SIP elements contain a transport
layer. The transport layer is described in Section 18.

The third layer is the transaction layer. Transactions are a fundamental component of SIP. A transaction
is a request sent by a client transaction (using the transport layer) to a server transaction, along with all
responses to that request sent from the server transaction back to the client. The transaction layer handles
application-layer retransmissions, matching of responses to requests, and application-layer timeouts. Any
task that a user agent client (UAC) accomplishes takes place using a series of transactions. Discussion of
transactions can be found in Section 17. User agents contain a transaction layer, as do stateful proxies.
Stateless proxies do not contain a transaction layer. The transaction layer has a client component (referred
to as a client transaction) and a server component (referred to as a server transaction), each of which are
represented by a finite state machine that is constructed to process a particular request.

The layer above the transaction layer is called the transaction user (TU). Each of the SIP entities, except
the stateless proxy, is a transaction user. When a TU wishes to send a request, it creates a client transaction
instance and passes it the request along with the destination IP address, port, and transport to which to send
the request. A TU that creates a client transaction can also cancel it. When a client cancels a transaction,
it requests that the server stop further processing, revert to the state that existed before the transaction was
initiated, and generate a specific error response to that transaction. This is doneOMAMCEL request,
which constitutes its own transaction, but references the transaction to be cancelled (Section 9).

The SIP elements, that is, user agent clients and servers, stateless and stateful proxies and registrars,
contain acorethat distinguishes them from each other. Cores, except for the stateless proxy, are transaction
users. While the behavior of the UAC and UAS cores depends on the method, there are some common rules
for all methods (Section 8). For a UAC, these rules govern the construction of a request; for a UAS, they
govern the processing of a request and generating a response. Since registrations play an important role in
SIP, a UAS that handlesREGISTER is given the special name registrar. Section 10 describes UAC and
UAS core behavior for thREGISTER method. Section 11 describes UAC and UAS core behavior for the
OPTIONS method, used for determining the capabilities of a UA.

Certain other requests are sent within a dialog. A dialog is a peer-to-peer SIP relationship between two
user agents that persists for some time. The dialog facilitates sequencing of messages and proper routing
of requests between the user agents. W& TE method is the only way defined in this specification to
establish a dialog. When a UAC sends a request that is within the context of a dialog, it follows the common
UAC rules as discussed in Section 8 but also the rules for mid-dialog requests. Section 12 discusses dialogs
and presents the procedures for their construction and maintenance, in addition to construction of requests
within a dialog.

The most important method in SIP is tie¢VITE method, which is used to establish a session between
participants. A session is a collection of participants, and streams of media between them, for the purposes
of communication. Section 13 discusses how sessions are initiated, resulting in one or more SIP dialogs.
Section 14 discusses how characteristics of that session are maodified through the ub&\OT&Tequest
within a dialog. Finally, section 15 discusses how a session is terminated.

The procedures of Sections 8, 10, 11, 12, 13, 14, and 15 deal entirely with the UA core (Section 9
describes cancellation, which applies to both UA core and proxy core). Section 16 discusses the proxy
element, which facilitates routing of messages between user agents.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 15]

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

6 Definitions

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
The terms and generic syntax of URI and URL are defined in RFC 2396 [5]. The following terms have
special significance for SIP.

Address-of-Record: An address-of-record (AOR) is a SIP or SIPS URI that points to a domain with a
location service that can map the URI to another URI where the user might be available. Typically,
the location service is populated through registrations. An AOR is frequently thought of as the “public
address” of the user.

Back-to-Back User Agent: A back-to-back user agent (B2BUA) is a logical entity that receives a request
and processes it as an user agent server (UAS). In order to determine how the request should be
answered, it acts as an user agent client (UAC) and generates requests. Unlike a proxy server, it
maintains dialog state and must participate in all requests sent on the dialogs it has established. Since
it is a concatenation of a UAC and UAS, no explicit definitions are needed for its behavior.

Call: A call is an informal term that refers to some communication between peers generally set up for the
purposes of a multimedia conversation.

Call Leg: Another name for a dialog [30]; no longer used in this specification.

Call Stateful: A proxy is call stateful if it retains state for a dialog from the initiatifgVITE to the ter-
minating BYE request. A call stateful proxy is always transaction stateful, but the converse is not
necessarily true.

Client: A client is any network element that sends SIP requests and receives SIP responses. Clients may or
may not interact directly with a human ustiser agent clienteindproxiesare clients.

Conference: A multimedia session (see below) that contains multiple participants.

Core: Core designates the functions specific to a particular type of SIP entity, i.e., specific to either a
stateful or stateless proxy, a user agent or registrar. All cores except those for the stateless proxy are
transaction users.

Dialog: A dialog is a peer-to-peer SIP relationship between two UAs that persists for some time. A dialog
is established by SIP messages, such as a 2xx responséNVIdiE request. A dialog is identified
by a call identifier, local address, and remote address. A dialog was formerly known as a call leg in
RFC 2543.

Downstream: A direction of message forwarding within a transaction that refers to the direction that re-
quests flow from the user agent client to user agent server.

Final Response: A response that terminates a SIP transaction, as opposegravigional respons¢hat
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Header: A header is a component of a SIP message that conveys information about the message. It is
structured as a sequence of header fields.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 16]

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Header field: A header field is a component of the SIP message header. It consists of one or more header
field values separated by comma or having the same header field name.

Header field value: A header field value consists of a field name and a field value, separated by a colon.

Home Domain: The domain providing service to a SIP user. Typically, this is the domain present in the
URI in the address-of-record of a registration.

Informational Response: Same as a provisional response.

Initiator, Calling Party, Caller: The party initiating a session (and dialog) with BMVITE request. A
caller retains this role from the time it sends the initidVITE that established a dialog until the
termination of that dialog.

Invitation: An INVITE request.

Invitee, Invited User, Called Party, Callee: The party that receives dNVITE request for the purposes of
establishing a new session. A callee retains this role from the time it receivé\HEE until the
termination of the dialog established by thsi/ITE.

Location Service: A location service is used by a SIP redirect or proxy server to obtain information about
a callee’s possible location(s). It contains a list of bindings of address-of-record keys to zero or more
contact addresses. The bindings can be created and removed in many ways; this specification defines
aREGISTER method that updates the bindings.

Loop: A request that arrives at a proxy, is forwarded, and later arrives back at the same proxy. When it
arrives the second time, iRequest-URI is identical to the first time, and other header fields that
affect proxy operation are unchanged, so that the proxy would make the same processing decision on
the request it made the first time. Looped requests are errors, and the procedures for detecting them
and handling them are described by the protocol.

Loose Routing: A proxy is said to be loose routing if it follows the procedures defined in this specification
for processing of th&koute header field. These procedures separate the destination of the request
(present in th&Request-URI) from the set of proxies that need to be visited along the way (present
in the Route header field). A proxy compliant to these mechanisms is also known as a loose router.

Message: Data sent between SIP elements as part of the protocol. SIP messages are either requests or
responses.

Method: The method is the primary function that a request is meant to invoke on a server. The method is
carried in the request message itself. Example method®&tid E andBYE.

Outbound Proxy: A proxy that receives requests from a client, even though it may not be the server re-
solved by theRequest-URI. Typically, a UA is manually configured with an outbound proxy, or can
learn about one through auto-configuration protocols.

Parallel Search: In a parallel search, a proxy issues several requests to possible user locations upon re-
ceiving an incoming request. Rather than issuing one request and then waiting for the final response
before issuing the next request as isequential searcha parallel search issues requests without
waiting for the result of previous requests.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 17]

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Provisional Response:A response used by the server to indicate progress, but that does not terminate a SIP
transaction. 1xx responses are provisional, other responses are confiidgrédovisional responses
are not sent reliably.

Proxy, Proxy Server: An intermediary entity that acts as both a server and a client for the purpose of
making requests on behalf of other clients. A proxy server primarily plays the role of routing, which
means its job is to ensure that a request is sent to another entity “closer” to the targeted user. Proxies
are also useful for enforcing policy (for example, making sure a user is allowed to make a call). A
proxy interprets, and, if necessary, rewrites specific parts of a request message before forwarding it.

Recursion: A client recurses on a 3xx response when it generates a new request to one or more of the URIs
in the Contact header field in the response.

Redirect Server: Aredirect server is a user agent server that generates 3xx responses to requests it receives,
directing the client to contact an alternate set of URISs.

Registrar: A registrar is a server that acceREGISTER requests and places the information it receives
in those requests into the location service for the domain it handles.

Regular Transaction: A regular transaction is any transaction with a method other tR&MTE, ACK, or
CANCEL.

Request: A SIP message sent from a client to a server, for the purpose of invoking a particular operation.

Response:A SIP message sent from a server to a client, for indicating the status of a request sent from the
client to the server.

Ringback: Ringback is the signaling tone produced by the calling party’s application indicating that a
called party is being alerted (ringing).

Route Set: A route set is a collection of ordered SIP or SIPS URI which represent a list of proxies that
must be traversed when sending a particular request. A route set can be learned, through headers like
Record-Route, or it can be configured.

Server: A server is a network element that receives requests in order to service them and sends back re-
sponses to those requests. Examples of servers are proxies, user agent servers, redirect servers, and
registrars.

Sequential Search:In a sequential search, a proxy server attempts each contact address in sequence, pro-
ceeding to the next one only after the previous has generated a final response. A 2xx or 6xx class final
response always terminates a sequential search.

Session: From the SDP specification: “A multimedia session is a set of multimedia senders and receivers
and the data streams flowing from senders to receivers. A multimedia conference is an example of a
multimedia session.” (RFC 2327 [1]) (A session as defined for SDP can comprise one or more RTP
sessions.) As defined, a callee can be invited several times, by different calls, to the same session. If
SDP is used, a session is defined by the concatenation 80Reuser namesession igdnetwork type
address typeandaddresselements in the origin field.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 18]

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

737

738

739

740

741

742

743

744

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

SIP Transaction: A SIP transaction occurs between a client and a server and comprises all messages from
the first request sent from the client to the server up to a final (non-1xx) response sent from the server
to the client. If the request INVITE and the final response is a non-2xx, the transaction also includes
anACK to the response. ThHECK for a 2xx response to diNVITE request is a separate transaction.

Spiral: A spiral is a SIP request that is routed to a proxy, forwarded onwards, and arrives once again at that
proxy, but this time differs in a way that will result in a different processing decision than the original
request. Typically, this means that the requeRixjuest-URI differs from its previous arrival. A
spiral is not an error condition, unlike a loop. A typical cause for this is call forwarding. A user calls
joe@example.com. The example.com proxy forwards it to Joe’s PC, which in turn, forwards it to
bob@example.com. This request is proxied back to the example.com proxy. However, this is not a
loop. Since the request is targeted at a different user, it is considered a spiral, and is a valid condition.

Stateful Proxy: A logical entity that maintains the client and server transaction state machines defined by
this specification during the processing of a request. Also known as a transaction stateful proxy. The
behavior of a stateful proxy is further defined in Section 16. A (transaction) stateful proxy is not the
same as a call stateful proxy.

Stateless Proxy: A logical entity that does not maintain the client or server transaction state machines
defined in this specification when it processes requests. A stateless proxy forwards every request it
receives downstream and every response it receives upstream.

Strict Routing: A proxy is said to be strict routing if it follows thRoute processing rules of RFC 2543
and many prior Internet Draft versions of this RFC. That rule caused proxies to destroy the contents of
the Request-URI when aRoute header field was present. Strict routing behavior is not used in this
specification, in favor of a loose routing behavior. Proxies that perform strict routing are also known
as strict routers.

Target Refresh Request: A target refresh request sent within a dialog is defined as a request that can
modify the remote target of the dialog.

Transaction User (TU): The layer of protocol processing that resides above the transaction layer. Trans-
action users include the UAC core, UAS core, and proxy core.

Upstream: A direction of message forwarding within a transaction that refers to the direction that responses
flow from the user agent server back to the user agent client.

URL-encoded: A character string encoded according to RFC 1738, Section 2.2 [6].

User Agent Client (UAC): A user agent client is a logical entity that creates a new request, and then uses
the client transaction state machinery to send it. The role of UAC lasts only for the duration of that
transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration
of that transaction. If it receives a request later, it assumes the role of a user agent server for the
processing of that transaction.

UAC Core: The set of processing functions required of a UAC that reside above the transaction and trans-
port layers.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiodpires Aug 2002 [Page 19]

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

User Agent Server (UAS): A user agent server is a logical entity that generates a response to a SIP request.
The response accepts, rejects, or redirects the request. This role lasts only for the duration of that
transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the
duration of that transaction. If it generates a request later, it assumes the role of a user agent client for
the processing of that transaction.

UAS Core: The set of processing functions required at a UAS that reside above the transaction and transport
layers.

User Agent (UA): A logical entity that can act as both a user agent client and user agent server.

The role of UAC and UAS as well as proxy and redirect servers are defined on a transaction-by-
transaction basis. For example, the user agent initiating a call acts as a UAC when sending the initial
INVITE request and as a UAS when receivinBéE request from the callee. Similarly, the same software
can act as a proxy server for one request and as a redirect server for the next request.

Proxy, location, and registrar servers defined abovdogiieal entities; implementationsAy combine
them into a single application.

7 SIP Messages

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [7]).

A SIP message is either a request from a client to a server, or a response from a server to a client.

Both Request (section 7.1) andResponse (section 7.2) messages use the basic format of RFC 2822
[3], even though the syntax differs in character set and syntax specifics. (SIP allows header fields that would
not be valid RFC 2822 header fields, for example.) Both types of messages consisaidfleme, one or
more header fields, an empty line indicating the end of the header fields, and an ap&ssalge-body.

generic-message = start-line
*message-header
CRLF
[message-body]

start-line = Request-Line / Status-Line

The start-line, each message-header line, and the emptylise be terminated by a carriage-return
line-feed sequenceCRLF). Note that the empty lin®usT be present even if the message-body is not.

Except for the above difference in character sets, much of SIP’s message and header field syntax is
identical to HTTP/1.1. Rather than repeating the syntax and semantics here, we use [HX.Y] to refer to
Section X.Y of the current HTTP/1.1 specification (RFC 2616 [8]).

However, SIP is not an extension of HTTP.

7.1 Requests

SIP requests are distinguished by havinRequest-Line for a start-line. A Request-Line contains a
method name, Request-URI, and the protocol version separated by a single sgaeg ¢haracter.

The Request-Line ends withCRLF. No CR or LF are allowed except in the end-of-lif@RLF se-
guence. No linear whitespace (LWS) is allowed in any of the elements.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 20]

778

779

780

781

782

783

784

785

787

788

789

790

791

792

793

794
795

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Request-Line = Method SP Request-URI SP SIP-Version CRLF

Method: This specification defines six method®EGISTER for registering contact informatiohiNVITE,
ACK, andCANCEL for setting up sessionBYE for terminating sessions, a@PTIONS for query-
ing servers about their capabilities. SIP extensions, documented in standards track RFCs, may define
additional methods.

Request-URI: The Request-URI is a SIP or SIPS URI as described in Section 19.1 or a general URI
(RFC 2396 [5]). Itindicates the user or service to which this request is being addressétequest-
URI MUST NOT contain unescaped spaces or control charactersasd NOT be enclosed in<>".

SIP elementsAy supportRequest-URIs with schemes other than “sip” and “sips”, for example the
“tel” URI scheme of RFC 2806 [9]. SIP elementzy translate non-SIP URIs using any mechanism
at their disposal, resulting in either SIP URI, SIPS URI, or some other scheme.

SIP-Version: Both request and response messages include the version of SIP in use, and follow [H3.1] (with
HTTP replaced by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version ordering, compliance
requirements, and upgrading of version numbers. To be compliant with this specification, applications
sending SIP messagesJsT include aSIP-Version of “SIP/2.0”. TheSIP-Version string is case-
insensitive, but implementatiomsusT send upper-case.

Unlike HTTP/1.1, SIP treats the version number as a literal string. In practice, this should make no
difference.

7.2 Responses

SIP responses are distinguished from requests by hav8igtas-Line as theirstart-line. A Status-Line
consists of the protocol version followed by a numeétatus-Code and its associated textual phrase, with
each element separated by a sirfgRecharacter.

No CR or LF is allowed except in the fin&lRLF sequence.

Status-Line = SIP-Version SP Status-Code SP Reason-Phrase CRLF

The Status-Code is a 3-digit integer result code that indicates the outcome of an attempt to understand
and satisfy a request. ThHeeason-Phrase is intended to give a short textual description of Status-
Code. TheStatus-Code is intended for use by automata, whereasRleason-Phrase is intended for the
human user. A client is not required to examine or displayRbason-Phrase.

While this specification suggests specific wording for the reason phrase, implementatiorthoose
other text, for example, in the language indicated inAleept-Language header field of the request.

The first digit of theStatus-Code defines the class of response. The last two digits do not have any
categorization role. For this reason, any response with a status code between 100 and 199 is referred to as
a “1xx response”, any response with a status code between 200 and 299 as a “2xx response”, and so on.
SIP/2.0 allows six values for the first digit:

1xx: Provisional — request received, continuing to process the request;
2xx: Success — the action was successfully received, understood, and accepted;

3xx: Redirection — further action needs to be taken in order to complete the request;

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 21]

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

4xx: Client Error — the request contains bad syntax or cannot be fulfilled at this server;
5xx: Server Error — the server failed to fulfill an apparently valid request;
6xx: Global Failure — the request cannot be fulfilled at any server.

Section 21 defines these classes and describes the individual codes.

7.3 Header Fields

SIP header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header
fields follow the [H4.2] definitions of syntax fanessage-header and the rules for extending header fields
over multiple lines. However, the latter is specified in HTTP with implicit whitespace and folding. This
specification conforms with RFC 2234 [10] and uses only explicit whitespace and folding as an integral part
of the grammar.

[H4.2] also specifies that multiple header fields of the same field name whose value is a comma-separated
list can be combined into one header field. That applies to SIP as well, but the specific rule is different
because of the different grammars. Specifically, any SIP header whose grammar is of the form:

header = "header-name” HCOLON header-value *(COMMA header-value)

allows for combining header fields of the same name into a comma-separated list. This is also true for
the Contact header, as long as none of the header field values are “*”.

7.3.1 Header Field Format

Header fields follow the same generic header format as that given in Section 2.2 of RFC 2822 [3]. Each
header field consists of a field name followed by a colon (") and the field value.

field-name: field-value

The formal grammar for anessage-header specified in Section 25 allows for an arbitrary amount of
whitespace on either side of the colon; however, implementations should avoid spaces between the field
name and the colon and use a single sp&€Y petween the colon and thield-value. Thus,

Subject: lunch
Subject : lunch
Subject :lunch

Subject: lunch

are all valid and equivalent, but the last is the preferred form.

Header fields can be extended over multiple lines by preceding each extra line with at Ie88t one
horizontal tab HT). The line break and the whitespace at the beginning of the next line are treated as a
single SP character. Thus, the following are equivalent:

Subject: | know you're there, pick up the phone and talk to me!
Subject: | know you're there,

pick up the phone

and talk to me!

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 22]

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The relative order of header fields with different field names is not significant. HoweveRHCioM-
MENDED that header fields which are needed for proxy processitig, Route, Record-Route, Proxy-
Require, Max-Forwards, andProxy-Authorization, for example) appear towards the top of the message
to facilitate rapid parsing. The relative order of header field rows with the same field name is important.
Multiple header field rows with the sanfield-name MAY be present in a message if and only if the entire
field-value for that header field is defined as a comma-separated list (that is, if follows the grammar defined
in Section 7.3). ImusT be possible to combine the multiple header field rows into one “field-name: field-
value” pair, without changing the semantics of the message, by appending each sublelguesitie to
the first, each separated by a comma. The exceptions to this rule aMAWE-Authenticate, Authoriza-
tion, Proxy-Authenticate, andProxy-Authorization header fields. Multiple header field rows with these
namesMAY be present in a message, but since their grammar does not follow the general form listed in
Section 7.3, themusT NOT be combined into a single header field row.

Implementations/usT be able to process multiple header field rows with the same name in any combi-
nation of the single-value-per-line or comma-separated value forms.

The following groups of header field rows are valid and equivalent:

Route: <sip:alice@atlanta.com>
Subject: Lunch

Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>
Subject: Lunch

Subject: Lunch
Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>, <sip:carol@chicago.com>

Each of the following blocks is valid but not equivalent to the others:

Route: <sip:alice@atlanta.com>
Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:bob@biloxi.com>
Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,<sip:bob@biloxi.com>

The format of a header field-value is defined per header-name. It will always be either an opaque
sequence of TEXT-UTF8 octets, or a combination of whitespace, tokens, separators, and quoted strings.
Many existing header fields will adhere to the general form of a value followed by a semi-colon separated
sequence of parameter-name, parameter-value pairs:

field-name: field-value *(;parameter-name=parameter-value)

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiodpires Aug 2002 [Page 23]

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Even though an arbitrary number of parameter pairs may be attached to a header field value, any given
parameter-name MUST NOT appear more than once.

When comparing header fields, field names are always case-insensitive. Unless otherwise stated in
the definition of a particular header field, field values, parameter names, and parameter values are case-
insensitive. Tokens are always case-insensitive. Unless specified otherwise, values expressed as quoted
strings are case-sensitive.

For example,

Contact: <sip:alice@atlanta.com>;expires=3600

is equivalent to

CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600

and

Content-Disposition: session;handling=optional

is equivalent to

content-disposition: Session;HANDLING=OPTIONAL
The following two header fields are not equivalent:

Warning: 370 devnull "Choose a bigger pipe"
Warning: 370 devnull "CHOOSE A BIGGER PIPE"

7.3.2 Header Field Classification

Some header fields only make sense in requests or responses. These are called request header fields and
response header fields, respectively. If a header field appears in a message not matching its category (such
as a request header field in a responseylusT be ignored. Section 20 defines the classification of each
header field.

7.3.3 Compact Form

SIP provides a mechanism to represent common header field names in an abbreviated form. This may
be useful when messages would otherwise become too large to be carried on the transport available to it
(exceeding the maximum transmission unit (MTU) when using UDP, for example). These compact forms
are defined in Section 20. A compact formay be substituted for the longer form of a header field name at

any time without changing the semantics of the message. A header fieldvramappear in both long and

short forms within the same message. ImplementationsT accept both the long and short forms of each
header name.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 24]

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943
944
945

946
947

948

949

950

951

952

953

954

955

956

957

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

7.4 Bodies

Requests, including new requests defined in extensions to this specification;ontain message bodies
unless otherwise noted. The interpretation of the body depends on the request method.

For response messages, the request method and the response status code determine the type and inter-
pretation of any message body. All responses include a body.

7.4.1 Message Body Type

The Internet media type of the message brd\sT be given by theContent-Type header field. If the body
has undergone any encoding such as compression, themukis be indicated by th€ontent-Encoding
header field; otherwis€&ontent-Encoding MUST be omitted. If applicable, the character set of the message
body is indicated as part of tl@ontent-Type header-field value.

The "multipart” MIME type defined in RFC 2046 [1MAY be used within the body of the message.
Implementations that send requests containing multipart message bugigssend a session description
as a non-multipart message body if the remote implementation requests this throdgteanhheader field
that does not contaimultipart.

Note that SIP messages\y contain binary bodies or body parts.

7.4.2 Message Body Length

The body length in bytes is provided by tl@®ntent-Length header field. Section 20.14 describes the
necessary contents of this header field in detail.

The “chunked” transfer encoding of HTTP/IMMUST NOT be used for SIP. (Note: The chunked encoding
modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator.)

7.5 Framing SIP messages

Unlike HTTP, SIP implementations can use UDP or other unreliable datagram protocols. Each such data-

gram carries one request or response. See Section 18 on constraints on usage of unreliable transports.
Implementations processing SIP messages over stream-oriented transpertgnore anyCRLF ap-
pearing before thetart-line [H4.1].

The Content-Length header field value is used to locate the end of each SIP message in a stream. It will always
be present when SIP messages are sent over stream-oriented transports.

8 General User Agent Behavior

A user agent represents an end system. It contains a user agent client (UAC), which generates requests, and
a user agent server (UAS), which responds to them. A UAC is capable of generating a request based on
some external stimulus (the user clicking a button, or a signal on a PSTN line) and processing a response. A
UAS is capable of receiving a request and generating a response based on user input, external stimulus, the
result of a program execution, or some other mechanism.

When a UAC sends a request, it will pass through some number of proxy servers, which forward the
request towards the UAS. When the UAS generates a response, the response is forwarded towards the UAC.

UAC and UAS procedures depend strongly on two factors. First, based on whether the request or
response is inside or outside of a dialog, and second, based on the method of a request. Dialogs are discussed

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 25]

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

thoroughly in Section 12; they represent a peer-to-peer relationship between user agents and are established
by specific SIP methods, such&sVITE.

In this section, we discuss the method-independent rules for UAC and UAS behavior when processing
requests that are outside of a dialog. This includes, of course, the requests which themselves establish a
dialog.

Security procedures for requests and responses outside of a dialog are described in Section 26. Specif-
ically, mechanisms exist for the UAS and UAC to mutually authenticate. A limited set of privacy features
are also supported through encryption of bodies using S/MIME.

8.1 UAC Behavior

This section covers UAC behavior outside of a dialog.

8.1.1 Generating the Request

Avalid SIP request formulated by a UA@UST at a minimum contain the following header fields, From,
CSeq, Call-ID, Max-Forwards, and Via; all of these header fields are mandatory in all SIP messages.
These six header fields are the fundamental building blocks of a SIP message, as they jointly provide for
most of the critical message routing services including the addressing of messages, the routing of responses,
limiting message propagation, ordering of messages, and the unique identification of transactions. These
header fields are in addition to the mandatory request line, which contains the niRétpast-URI, and
SIP version.

Examples of requests sent outside of a dialog includéNafiTE to establish a session (Section 13) and
anOPTIONS to query for capabilities (Section 11).

8.1.1.1 Request-URI The initial Request-URI of the messageHOULD be set to the value of the URI
in the To field. One notable exception is tIREGISTER method; behavior for setting tHieequest-URI
of REGISTER is given in Section 10. It may also be undesirable for privacy reasons or convenience to
set these fields to the same value (especially if the originating UA expects thaetheest-URI will be
changed during transit).

In some special circumstances, the presence of a pre-existing route set can affRequiest-URI of
the message. A pre-existing route set is an ordered set of URIs that identify a chain of servers, to which a
UAC will send outgoing requests that are outside of a dialog. Commonly, they are configured on the UA by
a user or service provider manually, or through some other non-SIP mechanism. When a provider wishes
to configure a UA with an outbound proxy, it ’RECOMMENDED that this be done by providing it with a
pre-existing route set with a single URI, that of the outbound proxy.

When a pre-existing route set is present, the procedures for populatirRetheest-URI and Route
header field detailed in Section 12.2.10sT be followed, even though there is no dialog. If Request-
URI specifies a SIPS URI, all the SIP URI in the route igetsT be converted to SIPS URI (by changing
the scheme to SIPS) before performing the processing of Section 12.2.1.1.

8.1.1.2 To TheTo header field first and foremost specifies the desired “logical” recipient of the request,
or the address-of-record of the user or resource that is the target of this request. This may or may not be
the ultimate recipient of the request. The header fielduAy contain a SIP or SIPS URI, but it may also
make use of other URI schemes (the tel URL [9], for example) when appropriate. All SIP implementations

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 26]

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

MUST support the SIP and URI scheme. Any implementation that supportsMilsS support the SIPS
URI scheme. Thdo header field allows for a display name.

A UAC may learn how to populate thEo header field for a particular request in a number of ways.
Usually the user will suggest thio header field through a human interface, perhaps inputting the URI
manually or selecting it from some sort of address book. Frequently, the user will not enter a complete
URI, but rather, a string of digits or letters (for example, “bob”). It is at the discretion of the UA to choose
how to interpret this input. Using it to form the user part of a SIP URI implies that the UA wishes the
name to be resolved in the domain to the right-hand side (RHS) of the at-sign in the SIP URI (for instance,
sip:bob@example.com). Using it to form the user part of a SIPS URI implies that the UA wishes to securely
communicate, and that the name is to be resolved in the domain to the RHS of the at-Slgm.RHS
will frequently be the home domain of the user, which allows for the home domain to process the outgoing
request. This is useful for features like “speed dial” that require interpretation of the user part in the home
domain. The tel URL may be used when the UA does not wish to specify the domain that should interpret a
telephone number that has been inputted by the user. Rathen, domain through which the request passes
would be given that opportunity. As an example, a user in an airport might log in and send requests through
an outbound proxy in the airport. If they enter “411” (this is the phone number for local directory assistance
in the United States), that needs to be interpreted and processed by the outbound proxy in the airport, not
the user's home domain. In this case, tel:411 would be the right choice.

A request outside of a dialagusT NOT contain a tag; the tag in thio field of a request identifies the
peer of the dialog. Since no dialog is established, no tag is present.

For further information on th&o header field, see Section 20.39. The following is an example of valid
To header field:

To: Carol <sip:carol@chicago.com>

8.1.1.3 From TheFrom header field indicates the logical identity of the initiator of the request, possibly
the user's address-of-record. Like the header field, it contains a URI and optionally a display name. It

is used by SIP elements to determine which processing rules to apply to a request (for example, automatic
call rejection). As such, it is very important that theem URI not contain IP addresses or the FQDN of the

host on which the UA is running, since these are not logical names.

TheFrom header field allows for a display name. A UABOULD use the display name “Anonymous”,
along with a syntactically correct, but otherwise meaningless URI (like sip:thisis@anonymous.invalid), if
the identity of the client is to remain hidden.

Usually the value that populates theom header field in requests generated by a particular UA is pre-
provisioned by the user or by the administrators of the user’s local domain. If a particular UA is used by
multiple users, it might have switchable profiles that include a URI corresponding to the identity of the
profiled user. Recipients of requests can authenticate the originator of a request in order to ascertain that
they are who theiFrom header field claims they are (see Section 22 for more on authentication).

The From field MUST contain a newtag” parameter, chosen by the UAC. See Section 19.3 for details
on choosing a tag.

For further information on th€rom header field, see Section 20.20. Examples:

From: "Bob" <sips:bob@biloxi.com> ;tag=a48s

From: sip:+12125551212@phone2net.com;tag=887s
From: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 27]

1039

1040

1041

1042

1043

1044

1045

1046

1047
1048
1049
1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

8.1.1.4 Call-ID TheCall-ID header field acts as a unique identifier to group together a series of mes-
sages. ImMusT be the same for all requests and responses sent by either UA in a diadegoutD be the
same in each registration from a UA.

In a new request created by a UAC outside of any dialogCthleID header fieldmusT be selected by
the UAC as a globally unique identifier over space and time unless overridden by method-specific behavior.
All SIP UAs must have a means to guarantee thaiGh#-1D header fields they produce will not be inad-
vertently generated by any other UA. Note that when requests are retried after certain failure responses that
solicit an amendment to a request (for example, a challenge for authentication), these retried requests are
not considered new requests, and therefore do not nee€abyD header fields; see Section 8.1.3.5.

Use of cryptographically random identifiers [12] in the generation of Call-IDRElSOMMENDED. Im-
plementationavAy use the form “localid@host”.Call-IDs are case-sensitive and are simply compared
byte-by-byte.

Using cryptographically random identifiers provides some protection against session hijacking and reduces the
likelihood of unintentionalCall-ID collisions.

No provisioning or human interface is required for the selection ofxal-ID header field value for a
request.

For further information on th€all-ID header field, see Section 20.8.

Example:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91eb6bf6@foo.bar.com

8.1.1.5 CSeq The CSeq header field serves as a way to identify and order transactions. It consists
of a sequence number and a method. The methosT match that of the request. For n&EGISTER
requests outside of a dialog, the sequence number value is arbitrary. The sequence numbes ¥alue
be expressible as a 32-bit unsigned integer 8T be less than 2**31. As long as it follows the above
guidelines, a client may use any mechanism it would like to s€l&etq header field values.

Section 12.2.1.1 discusses construction of@lszq for requests within a dialog.

Example:

CSeq: 4711 INVITE

8.1.1.6 Max-Forwards TheMax-Forwards header field serves to limit the number of hops a request
can transit on the way to its destination. It consists of an integer that is decremented by one at each hop.
If the Max-Forwards value reaches 0 before the request reaches its destination, it will be rejected with a
483(Too Many Hops) error response.

A UAC musT insert aMax-Forwards header field into each request it originates with a value which
SHOULD be 70. This number was chosen to be sufficiently large to guarantee that a request would not be
dropped in any SIP network when there were no loops, but not so large as to consume proxy resources when
a loop does occur. Lower values should be used with caution and only in networks where topologies are
known by the UA.

8.1.1.7 Via TheVia header field is used to indicate the transport used for the transaction and to identify
the location where the response is to be sentlis®Aheader field value is added only after the transport that
will be used to reach the next hop has been selected (which may involve the usage of the procedures in [4]).

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiodpires Aug 2002 [Page 28]

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088
1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

When the UAC creates a requestvitsT insert aVia into that request. The protocol name and protocol
version in the header fieldusT be SIP and 2.0, respectively. Théa header field valususT contain a
branch parameter. This parameter is used to identify the transaction created by that request. This parameter
is used by both the client and the server.

The branch parameter valugusT be unique across space and time for all requests sent by the UA.
The exceptions to this rule a@ANCEL andACK for non-2xx responses. As discussed belo@faNCEL
request will have the same value of the branch parameter as the request it cancels. As discussed in Section
17.1.1.3, arACK for a non-2xx response will also have the same branch ID ad\¥iel E whose response
it acknowledges.

The uniqueness property of the branch ID parameter, to facilitate its use as a transaction ID, was not part of RFC
2543

The branch ID inserted by an element compliant with this specificatioaT always begin with the
characters “zZ9nG4bK”. These 7 characters are used as a magic cookie (7 is deemed sufficient to ensure that
an older RFC 2543 implementation would not pick such a value), so that servers receiving the request can
determine that the branch ID was constructed in the fashion described by this specification (that is, globally
unique). Beyond this requirement, the precise format obtiaech token is implementation-defined.

The Via heademaddr, ttl, andsent-by components will be set when the request is processed by the
transport layer (Section 18).

Via processing for proxies is described in Section 16.6 Item 8 and Section 16.7 Iltem 3.

8.1.1.8 Contact TheContact header field provides a SIP URI that can be used to contact that specific
instance of the UA for subsequent requests. CThatact header fieldwusT be present and contain exactly
one SIP URIin any request that can result in the establishment of a dialog. For the methods defined in this
specification, that includes only thRVITE request. For these requests, the scope ofthetact is global.
That is, theContact header field value contains the URI at which the UA would like to receive requests,
and this URIMUST be valid even if used in subsequent requests outside of any dialogs.

If the Request-URI contains a SIPS URI, théontact header fieldvusT contain a SIPS URI as well.

For further information on th€ontact header field, see Section 20.10.

8.1.1.9 Supported and Require If the UAC supports extensions to SIP that can be applied by the
server to the response, the UABoULD include aSupported header field in the request listing the option
tags (Section 19.2) for those extensions.

The option tags listedhusT only refer to extensions defined in standards-track RFCs. This is to pre-
vent servers from insisting that clients implement non-standard, vendor-defined features in order to receive
service. Extensions defined by experimental and informational RFCs are explicitly excluded from usage
with the Supported header field in a request, since they too are often used to document vendor-defined
extensions.

If the UAC wishes to insist that a UAS understand an extension that the UAC will apply to the request
in order to process the requestMitiST insert aRequire header field into the request listing the option tag
for that extension. If the UAC wishes to apply an extension to the request and insist that any proxies that are
traversed understand that extensiomutsT insert aProxy-Require header field into the request listing the
option tag for that extension.

As with theSupported header field, the option tags in tRequire and Proxy-Require header fields
MUST only refer to extensions defined in standards-track RFCs.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 29]

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145
1146
1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

8.1.1.10 Additional Message ComponentsAfter a new request has been created, and the header fields
described above have been properly constructed, any additional optional header fields are added, as are any
header fields specific to the method.

SIP requestsiAY contain a MIME-encoded message-body. Regardless of the type of body that a request
contains, certain header fields must be formulated to characterize the contents of the body. For further
information on these header fields, see Sections 20.11 through 20.15.

8.1.2 Sending the Request

The destination for the request is then computed. Unless there is local policy specifying otherwise, then
the destinatiormusT be determined by applying the DNS procedures described in [4] as follows. If the
first element in the route set indicated a strict router (resulting in forming the request as described in Sec-
tion 12.2.1.1), the proceduresusT be applied to thdRequest-URI of the request. Otherwise, the pro-
cedures are applied to the filRbute header field value in the request (if one exists), or to the request’s
Request-URI if there is noRoute header field present. These procedures yield an ordered set of address,
port, and transports to attempt.

Local policy MmAY specify an alternate set of destinations to attempt. IfRequest-URI contains a
SIPS URI, any alternate destinations ST be contacted with TLS. Beyond thatere are no restrictions on
the alternate destinations if the request containfRaote header field. This provides a simple alternative
to a pre-existing route set as a way to specify an outbound proxy. However, that approach for configuring
an outbound proxy isSiOT RECOMMENDED a pre-existing route set with a single URHouLD be used
instead. If the request contain®Raute header field, the requestouLD be sent to the locations derived
from its topmost value, butAYy be sent to any server that the UA is certain will honor BReute and
Request-URI policies specified in this document (as opposed to those in RFC 2543). In particular, a UAC
configured with an outbound proxsHouLD attempt to send the request to the location indicated in the first
Route header field value instead of adopting the policy of sending all messages to the outbound proxy.

This ensures that outbound proxies choosing not toReltbrd-Route header field values will drop out of the

path of subsequent requests. It allows endpoints that cannot resolve tiRofitst URI to delegate that task to an
outbound proxy.

The UAC sHouLD follow the procedures defined in [4] for stateful elements, trying each address until
a server is contacted. Each try constitutes a new transaction, and therefore each carries a different topmost
Via header field value with a new branch parameter. Furthermore, the transport valu¥ia tieader field
is set to whatever transport was determined for the target server.

8.1.3 Processing Responses

Responses are first processed by the transport layer and then passed up to the transaction layer. The trans-
action layer performs its processing and then passes the response up to the TU. The majority of response
processing in the TU is method specific. However, there are some general behaviors independent of the
method.

8.1.3.1 Transaction Layer Errors In some cases, the response returned by the transaction layer will not
be a SIP message, but rather a transaction layer error. When a timeout error is received from the transaction
layer, it MUST be treated as if a 408 (Request Timeout) status code has been received. If a fatal transport

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 30]

1160

1161

1162

1163

1164

1165

1166

1167

1168
1169

1170
1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

error is reported by the transport layer (generally, due to fatal ICMP errors in UDP or connection failures in
TCP), the conditiomusT be treated as a 503 (Service Unavailable) status code.

8.1.3.2 Unrecognized ResponsesA UAC MUST treat any final response it does not recognize as being
equivalent to the x00 response code of that class,MuwslT be able to process the x00 response code for

all classes. For example, if a UAC receives an unrecognized response code of 431, it can safely assume that
there was something wrong with its request and treat the response as if it had received a 400 (Bad Request)
response code. A UARIUST treat any provisional response different than 100 that it does not recognize as
183 (Session Progress). A UA@UST be able to process 100 and 183 responses.

8.1.3.3 Vias If more than oneVia header field value is present in a response, the JAGULD discard
the message.

The presence of addition&lia header field values that precede the originator of the request suggests that the
message was misrouted or possibly corrupted.

8.1.3.4 Processing 3xx ResponsedJpon receipt of a redirection response (for example, a 301 response
status code), clientsHouLD use the URI(s) in th&Contact header field to formulate one or more new
requests based on the redirected request. If the original request had a SIPS URRagtlest-URI, the
clientmusT discard anyContact header fields which do not contain SIPS URISs.

If more than one URI is present @ontact header field within the 3xx response, the MAST determine
an order in which these contact addresses should be processetudAsonsult the §” parameter value
of the Contact header field value (see Section 20.10) if available. Contact addmessasbe ordered from
highest gvalue to lowest. If no qvalue is present, a contact address is considered to have a gvalue of 1.0.
Note that two or more contact addresses might have an equal gvalue - these URIs are eligible to be tried in
parallel.

Once an ordered list has been established, UR@s remove from the list any entry that they do not
want to try. After this, UACSvUST try to contact each URI in the ordered list in turn by sending a request
for a single contact address at a time, continuing down the ordered list only when a final response to the
current request has been received. If there are contact addresses with an equal gvalue,nie d&€ide
randomly on an order in which to process these addressesviay iattempt to process contact addresses of
equal gvalue in parallel.

Note that, for example, the UAC may effectively divide the ordered list into groups, processing the
groups serially and processing the destinations in each group in parallel.

If contacting an address in the list results in a failure, as defined in the next paragraph, the element moves
to the next address in the list, until the list is exhausted. If the list is exhausted, then the request has failed.

FailuressHoOULD be detected through failure response codes (codes greater than 399); for network errors
the client transaction will report any transport layer failures to the transaction user. Note that some response
codes (detailed in 8.1.3.5) indicate that the request can be retried; requests that are reattempted should not
be considered failures.

When a failure for a particular contact address is received, the ddieouLD try the next contact
address. This will involve creating a new client transaction to deliver a new request.

In order to create a request based on a contact address in a 3xx responseMa APy the entire
URI from the Contact header field value into thRequest-URI, except for the thethod-param” and
“header” URI parameters (see Section 19.1.1 for a definition of these parameters). It uséeduer”

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 31]

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

parameters to create header field values for the new request, overwriting header field values associated with
the redirected request in accordance with the guidelines in Section 19.1.5.

Note that in some instances, header fields that have been communicated in the contact address may
instead append to existing request header fields in the original redirected request. As a general rule, if the
header field can accept a comma-separated list of values, then the new header fielthvaheeappended
to any existing values in the original redirected request. If the header field does not accept multiple values,
the value in the original redirected requesty be overwritten by the header field value communicated in
the contact address. For example, if a contact address is returned with the following value:

sip:user@host?Subject=foo&Call-Info=<http://www.foo.com>

Then anySubject header field in the original redirected request is overwritten, but the HTTP URL is
merely appended to any existi@all-Info header field values.

It is RECOMMENDEDthat the UAC reuse the sariie, From, andCall-ID used in the original redirected
request, but the UA®AY also choose to update tlall-1D header field value for new requests, for example.

Finally, once the new request has been constructed, it is sent using a new client transaction, and therefore
MUST have a new branch ID in the tdfia field as discussed in Section 8.1.1.7.

In all other respects, requests sent upon receipt of a redirect respeose D re-use the header fields
and bodies of the original request.

Redirections can result in requests that are in turn redirected. For example, if an initial 3xx response
contains multiple contacts, and the retry of the request to the first of these contacts is in turn redirected,
UACs must reconcile the two resulting sets of URIs. UAS$ST combine the two sets of contact addresses
and recompute the ordering of the elements following the steps described above. However, if any two URIs
in the set are equivalent, the less preferred URI, meaning the URI with the numerically highest “q” value,
MUST be discarded.

In some instancesContact header field values may be cached at UAC temporarily or permanently
depending on the status code received and the presence of an expiration interval, see Sections 21.3.2 and
21.3.3.

8.1.3.5 Processing 4xx Response£ertain 4xx response codes require specific UA processing, indepen-
dent of the method.

If a 401 (Unauthorized) or 407 (Proxy Authentication Required) response is received, theHdAL D
follow the authorization procedures of Section 22.2 and Section 22.3 to retry the request with credentials.

If a 413 (Request Entity Too Large) response is received (Section 21.4.11), the request contained a body
that was longer than the UAS was willing to accept. If possible, the YAGULD retry the request, either
omitting the body or using one of a smaller length.

If a 415 (Unsupported Media Type) response is received (Section 21.4.13), the request contained media
types not supported by the UAS. The UABOULD retry sending the request, this time only using content
with types listed in théAccept header field in the response, with encodings listed inAteept-Encoding
header field in the response, and with languages listed iA¢hept-Language in the response.

If a 416 (Unsupported URI Scheme) response is received (Section 21.4.1Redoest-URI used a
URI scheme not supported by the server. The cl@nbuLD retry the request, this time, using a SIP URI.

If a 420 (Bad Extension) response is received (Section 21.4.15), the request cont&aqdi@ or
Proxy-Require header field listing an option-tag for a feature not supported by a proxy or UAS. The UAC
SHOULD retry the request, this time omitting any extensions listed inthsupported header field in the

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 32]

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

response.
In all of the above cases, the request is retried by creating a new request with the appropriate modifica-
tions. This new requestHouLD have the same value of ti@all-ID, To, andFrom of the previous request,
but theCSeq should contain a new sequence number that is one higher than the previous.
With other 4xx responses, including those yet to be defined, a retry may or may not be possible depend-
ing on the method and the use case.

8.2 UAS Behavior

When a request outside of a dialog is processed by a UAS, there is a set of processing rules that are followed,
independent of the method. Section 12 gives guidance on how a UAS can tell whether a request is inside or
outside of a dialog.

Note that request processing is atomic. If a request is accepted, all state changes associated svith it
be performed. If it is rejected, all state changessT NOT be performed.

UASs SHOULD process the requests in the order of the steps that follow in this section (that is, starting
with authentication, then inspecting the method, the header fields, and so on throughout the remainder of
this section).

8.2.1 Method Inspection

Once a request is authenticated (or authentication is skipped), theMu&$ inspect the method of the
request. If the UAS recognizes but does not support the method of a requesisitgenerate a 405
(Method Not Allowed) response. Procedures for generating responses are described in Section 8.2.6. The
UAS musT also add arAllow header field to the 405 (Method Not Allowed) response. Ahew header
field MmusT list the set of methods supported by the UAS generating the messagélldWwéheader field is
presented in Section 20.5.

If the method is one supported by the server, processing continues.

8.2.2 Header Inspection

If a UAS does not understand a header field in a request (that is, the header field is not defined in this spec-
ification or in any supported extension), the senversT ignore that header field and continue processing

the message. A UASHOULD ignore any malformed header fields that are not necessary for processing
requests.

8.2.2.1 To and Request-URI TheTo header field identifies the original recipient of the request desig-
nated by the user identified in tikeom field. The original recipient may or may not be the UAS processing
the request, due to call forwarding or other proxy operations. A WS apply any policy it wishes to
determine whether to accept requests wherTthieeader field is not the identity of the UAS. However, it is
RECOMMENDED that a UAS accept requests even if they do not recognize the URI scheme (for example, a
tel: URI) in the To header field, or if thdo header field does not address a known or current user of this
UAS. If, on the other hand, the UAS decides to reject the requestduLD generate a response with a 403
(Forbidden) status code and pass it to the server transaction for transmission.

However, theRequest-URI identifies the UAS that is to process the request. IfRleguest-URI uses
a scheme not supported by the UASSHOULD reject the request with a 416 (Unsupported URI Scheme)
response. If th&kequest-URI does not identify an address that the UAS is willing to accept requests for,

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 33]

1282

1283

1284

1285

1286
1287
1288
1289

1290
1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311
1312
1313
1314
1315

1316

1317

1318

1319

1320

1321

1322

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

it SHOULD reject the request with a 404 (Not Found) response. Typically, a UA that us&EBETER
method to bind its address-of-record to a specific contact address will see requestRefasst-URI
equals that contact address. Other potential sources of received Request-URIs inclDdetéot header
fields of requests and responses sent by the UA that establish or refresh dialogs.

8.2.2.2 Merged Requests If the request has no tag in tii® header field, the UAS comausT check
the request against ongoing transactions. Iffinéag, From tag, Call-ID, CSeq exactly match (including
tags) those associated with an ongoing transaction, but the branch-ID in the tdfimdsies not match ,
the UAS coresHOULD generate a482 (Loop Detected) response and pass it to the server transaction.

The same request has arrived at the UAS more than once, following different paths, most likely due to forking.
The UAS processes the first such request received and responds with a 482 (Loop Detected) to the rest of them.

8.2.2.3 Require Assuming the UAS decides that it is the proper element to process the request, it ex-
amines thdRequire header field, if present.

The Require header field is used by a UAC to tell a UAS about SIP extensions that the UAC expects
the UAS to support in order to process the request properly. Its format is described in Section 20.32. If a
UAS does not understand an option-tag listed Remuire header field, iMmusT respond by generating a
response with status code 420 (Bad Extension). The MAST add anUnsupported header field, and list
in it those options it does not understand amongst those iRdlaglire header field of the request.

Note thatRequire and Proxy-Require MUST NOT be used in a SIEANCEL request, or in al\CK
request sent for a non-2xx response. These header firlds be ignored if they are present in these
requests.

An ACK request for a 2xx responsgJsT contain only thos&kequire andProxy-Require values that
were present in the initial request.

Example:

UAC->UAS: INVITE sip:watson@bell-telephone.com SIP/2.0
Require: 100rel

UAS->UAC: SIP/2.0 420 Bad Extension
Unsupported: 100rel

This behavior ensures that the client-server interaction will proceed without delay when all options are under-
stood by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.
In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
features, such as call handling fields, are only of interest to end systems.

8.2.3 Content Processing

Assuming the UAS understands any extensions required by the client, the UAS examines the body of the
message, and the header fields that describe it. If there are any bodies whose type (indicat€o inetite

Type), language (indicated by teéontent-Language) or encoding (indicated by théontent-Encoding)

are not understood, and that body part is not optional (as indicated bgahent-Disposition header

field), the UASMUST reject the request with a 415 (Unsupported Media Type) response. The respsise
contain anAccept header field listing the types of all bodies it understands, in the event the request contained

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 34]

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

bodies of types not supported by the UAS. If the request contained content encodings not understood by the
UAS, the responseiusT contain anAccept-Encoding header field listing the encodings understood by

the UAS. If the request contained content with languages not understood by the UAS, the respsnse
contain anAccept-Language header field indicating the languages understood by the UAS. Beyond these
checks, body handling depends on the method and type. For further information on the processing of
content-specific header fields, see Section 7.4 as well as Section 20.11 through 20.15.

8.2.4 Applying Extensions

A UAS that wishes to apply some extension when generating the resprseNOT do so unless support

for that extension is indicated in tf&upported header field in the request. If the desired extension is not
supported, the serveHoULD rely only on baseline SIP and any other extensions supported by the client. In

rare circumstances, where the server cannot process the request without the extension, thesamed

a 421 (Extension Required) response. This response indicates that the proper response cannot be generated
without support of a specific extension. The needed extensien(sy be included in e&Require header

field in the response. This behaviom®T RECOMMENDED, as it will generally break interoperability.

Any extensions applied to a non-421 respomsssT be listed in @Require header field included in the
response. Of course, the serwayST NOT apply extensions not listed in ti&upported header field in the
request. As a result of this, tliequire header field in a response will only ever contain option tags defined
in standards-track RFCs.

8.2.5 Processing the Request

Assuming all of the checks in the previous subsections are passed, the UAS processing becomes method-
specific. Section 10 covers tREGISTER request, section 11 covers tPTIONS request, section 13
covers thdNVITE request, and section 15 covers B¥E request.

8.2.6 Generating the Response

When a UAS wishes to construct a response to a request, it follows the general procedures detailed in the
following subsections. Additional behaviors specific to the response code in question, which are not detailed
in this section, may also be required.

Once all procedures associated with the creation of a response have been completed, the UAS hands the
response back to the server transaction from which it received the request.

8.2.6.1 Sending a Provisional ResponseOne largely non-method-specific guideline for the generation
of responses is that UASSHOULD NOT issue a provisional response for a AdB/ITE request. Rather,
UASsSHOULD generate a final response to a AbMVITE request as soon as possible.

When a 100 (Trying) response is generated, Einyestamp header field present in the requestsT be
copied into this 100 (Trying) response. If there is a delay in generating the response, tli0ASD add
a delay value into th@imestamp value in the response. This valuesT contain the difference between
time of sending of the response and receipt of the request, measured in seconds.

8.2.6.2 Headers and Tags The From field of the respons&iusT equal theFrom header field of the
request. TheCall-ID header field of the responseusT equal theCall-ID header field of the request. The

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 35]

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

CSeq header field of the responsgisT equal theCSeq field of the request. Th¥ia header field values in
the responselusT equal theVia header field values in the request amdsT maintain the same ordering.

If a request contained ® tag in the request, th€o header field in the responseusT equal that of
the request. However, if theo header field in the request did not contain a tag, the URI inTtheeader
field in the responselusT equal the URI in thdo header field; additionally, the UABUST add a tag to
the To header field in the response (with the exception of the 100 (Trying) response, in whickiavtdge
present). This serves to identify the UAS that is responding, possibly resulting in a component of a dialog
ID. The same tagnusT be used for all responses to that request, both final and provisional (again excepting
the 100 (Trying)). Procedures for generation of tags are defined in Section 19.3.

8.2.7 Stateless UAS Behavior

A stateless UAS is a UAS that does not maintain transaction state. It replies to requests normally, but
discards any state that would ordinarily be retained by a UAS after a response has been sent. If a stateless
UAS receives a retransmission of a request, it regenerates the response and resends it, just as if it were
replying to the first instance of the request. Stateless UASs do not use a transaction layer; they receive
requests directly from the transport layer and send responses directly to the transport layer.

The stateless UAS role is needed primarily to handle unauthenticated requests for which a challenge
response is issued. If unauthenticated requests were handled statefully, then malicious floods of unau-
thenticated requests could create massive amounts of transaction state that might slow or completely halt
call processing in a UAS, effectively creating a denial of service condition; for more information see Sec-
tion 26.1.5.

The most important behaviors of a stateless UAS are the following:

A stateless UAS1UST NOT send provisional (1xx) responses.

A stateless UASAUST NOT retransmit responses.

A stateless UASaUST ignore ACK requests.

A stateless UAS1UST ignore CANCEL requests.

To header tagsUST be generated for responses in a stateless manner - in a manner that will generate
the same tag for the same request consistently. For information on tag construction see Section 19.3.

In all other respects, a stateless UAS behaves in the same manner as a stateful UAS. A UAS can operate
in either a stateful or stateless mode for each new request.

8.3 Redirect Servers

In some architectures it may be desirable to reduce the processing load on proxy servers that are responsible
for routing requests, and improve signaling path robustness, by relying on redirection. Redirection allows
servers to push routing information for a request back in a response to the client, thereby taking themselves
out of the loop of further messaging for this transaction while still aiding in locating the target of the request.
When the originator of the request receives the redirection, it will send a new request based on the URI(S)
it has received. By propagating URIs from the core of the network to its edges, redirection allows for
considerable network scalability.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 36]

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413
1414
1415
1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430
1431

1432

1433

1434

1435

1436

1437

1438

1439

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

A redirect server is logically constituted of a server transaction layer and a transaction user that has
access to a location service of some kind (see Section 10 for more on registrars and location services). This
location service is effectively a database containing mappings between a single URI and a set of one or more
alternative locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After receiving a request otli@hkhan
CEL, the server either refuses the request or gathers the list of alternative locations from the location service
and returns a final response of class 3xx. For well-fort@AMNCEL requests, iSHOULD return a 2xx re-
sponse. This response ends the SIP transaction. The redirect server maintains transaction state for an entire
SIP transaction. It is the responsibility of clients to detect forwarding loops between redirect servers.

When a redirect server returns a 3xx response to a request, it populates the list of (one or more) alter-
native locations into th€ontact header field. An é&xpires” parameter to th&ontact header field values
may also be supplied to indicate the lifetime of (bentact data.

The Contact header field contains URIs giving the new locations or user names to try, or may simply
specify additional transport parameters. A 301 (Moved Permanently) or 302 (Moved Temporarily) response
may also give the same location and username that was targeted by the initial request but specify additional
transport parameters such as a different server or multicast address to try, or a change of SIP transport from

UDP to TCP or vice versa.

However, redirect servemgusT NOT redirect a request to a URI equal to the one inReguest-URI;
instead, provided that the URI does not point to itself, the redirect sereuLD proxy the request to the
destination URI.

If a client is using an outbound proxy, and that proxy actually redirects requests, a potential arises for infinite
redirection loops.

Note that aContact header field valuarAy also refer to a different resource than the one originally
called. For example, a SIP call connected to PSTN gateway may need to deliver a special informational
announcement such as “The number you have dialed has been changed.”

A Contact response header field can contain any suitable URI indicating where the called party can be
reached, not limited to SIP URIs. For example, it could contain URIs for phones, fax, (@rthey were
defined) or anailto: (RFC 2368, [31]) URL. However, if thRequest-URI of the request contained a SIPS
URI, the Contact header fields in the 3xx respong@sT all be SIPS URIs.

The “expires” parameter of &ontact header field value indicates how long the URI is valid. The value
of the parameter is a number indicating seconds. If this parameter is not provided, the valuexgfithe
header field determines how long the URI is valid. Malformed vakiesuLD be treated as equivalent to
3600.

This provides a modest level of backwards compatibility with RFC 2543, which allowed absolute times in this
header field. If an absolute time is received, it will be treated as malformed, and then default to 3600.

Redirect serversiusT ignore features that are not understood (including unrecognized header fields, any
unknown option tags iRequire, or even method names) and proceed with the redirection of the request in
guestion.

9 Canceling a Request

The previous section has discussed general UA behavior for generating requests and processing responses
for requests of all methods. In this section, we discuss a general purpose method;ANIEEL.

The CANCEL request, as the name implies, is used to cancel a previous request sent by a client. Specif-
ically, it asks the UAS to cease processing the request and to generate an error response to that request.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 37]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

1420 CANCEL has no effect on a request to which a UAS has already given a final response. Because of this,
1421 it is most useful taCANCEL requests to which it can take a server long time to respond. For this reason,
1422 CANCEL is best forINVITE requests, which can take a long time to generate a response. In that usage,
123 @ UAS that receives @ANCEL request for aiNVITE, but has not yet sent a final response, would “stop

1244 1inging”, and then respond to thNVITE with a specific error response (a 487).

1445 CANCEL requests can be constructed and sent by both proxies and user agent clients. Section 15
146 discusses under what conditions a UAC woGNCEL anINVITE request, and Section 16.10 discusses

1447 Proxy usage oCANCEL.

1448 A stateful proxy responds to @ANCEL, rather than simply forwarding a response it would receive

129 from a downstream element. For that reasDANCEL is referred to as a “hop-by-hop” request, since it is

1450 responded to at each stateful proxy hop.

ust 9.1 Client Behavior

1452 A CANCEL requestsHOULD NOT be sent to cancel a request other tHeWITE.

1453 Since requests other th&4VITE are responded to immediately, sendinGANCEL for a noniNVITE request

1454 would always create a race condition.

1455 The following procedures are used to constru@ANCEL request. Thdrequest-URI, Call-ID, To,

1ss the numeric part o€Seq, andFrom header fields in th€ ANCEL requestvusT be identical to those in

1457 the request being cancelled, including tagsCANCEL constructed by a clientusT have only a single

14ss Via header field value matching the tdfia value in the request being cancelled. Using the same values
1450 for these header fields allows tRRANCEL to be matched with the request it cancels (Section 9.2 indicates
1e0 how such matching occurs). However, the method part ofQ8eq header fieldvusT have a value of

122 CANCEL. This allows it to be identified and processed as a transaction in its own right (See Section 17).

1462 If the request being cancelled containRaute header field, th&€€ ANCEL requestmusT include that

1463 Route header field’s values.

1464 This is needed so that stateless proxies are able to @AKNCEL requests properly.

1465 The CANCEL requestMusT NOT contain anyRequire or Proxy-Require header fields.

1466 Once theCANCEL is constructed, the clierHouLD check whether it has received any response (pro-
1467 Visional or final) for the request being cancelled (herein referred to as the "original request”).

1468 If no provisional response has been receivedGABICEL requestMusT NOT be sent; rather, the client

1460 MUST wait for the arrival of a provisional response before sending the request. If the original request has
1470 generated a final response, DANCEL sHoOULD NOT be sent, as it is an effective no-op, sif€ANCEL

1471 has no effect on requests that have already generated a final response. When the client decides to send the
1472 CANCEL, it creates a client transaction for tiRANCEL and passes it th€EANCEL request along with

1473 the destination address, port, and transport. The destination address, port, and transpof@ Adt @i

1472 MUST be identical to those used to send the original request.

1475 If it was allowed to send th€ ANCEL before receiving a response for the previous request, the server could
1476 receive theaCANCEL before the original request.
1477 Note that both the transaction corresponding to the original request aftiINEEL transaction will

1478 complete independently. However, a UAC canceling a request cannot rely on receiving a 487 (Request
1479 Terminated) response for the original request, as an RFC 2543-compliant UAS will not generate such a
1480 response. If there is no final response for the original request in 64*T1 seconds (T1 is defined in Section
us1 17.1.1.1), the cliensHOULD then consider the original transaction cancelled sinduLD destroy the client

1482 transaction handling the original request.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiodpires Aug 2002 [Page 38]

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

9.2 Server Behavior

The CANCEL method requests that the TU at the server side cancel a pending transaction. The TU deter-
mines the transaction to be cancelled by taking@ANCEL request, and then assuming that the request
method is anything bllANCEL and applying the transaction matching procedures of Section 17.2.3. The
matching transaction is the one to be cancelled.

The processing of EBANCEL request at a server depends on the type of server. A stateless proxy will
forward it, a stateful proxy might respond to it and generate sGARCEL requests of its own, and a UAS
will respond to it. See Section 16.10 for proxy treatmenCaNCEL.

A UAS first processes th€ ANCEL request according to the general UAS processing described in
Section 8.2. However, sink@ANCEL requests are hop-by-hop and cannot be resubmitted, they cannot be
challenged by the server in order to get proper credentials Awdmorization header field. Note also that
CANCEL requests do not containRequire header field.

If the UAS did not find a matching transaction for tB&ANCEL according to the procedure above, it
SHOULD respond to theCANCEL with a 481 (Call Leg/Transaction Does Not Exist). If the transaction
for the original request still exists, the behavior of the UAS on receivi@AAICEL request depends on
whether it has already sent a final response for the original request. If it haSAtREEL request has no
effect on the processing of the original request, no effect on any session state, and no effect on the responses
generated for the original request. If the UAS has not issued a final response for the original request, its
behavior depends on the method of the original request. If the original request Wd¥Idik, the UAS
sHouLDimmediately respond to tHBIVITE with a 487 (Request Terminated). The behavior upon reception
of aCANCEL request for any other method defined in this specification is effectively no-op.

Regardless of the method of the original request, as long aSAINCEL matched an existing transac-
tion, the UAS answers theANCEL request itself with a 200 (OK) response. This response is constructed
following the procedures described in Section 8.2.6 noting thaldhag of the response to tHeANCEL
and theTo tag in the response to the original requesbuLD be the same. The responseGANCEL is
passed to the server transaction for transmission.

10 Registrations

10.1 Overview

SIP offers a discovery capability. If a user wants to initiate a session with another user, SIP must discover the
current host(s) at which the destination user is reachable. This discovery process is frequently accomplished
by SIP network elements such as proxy servers and redirect servers which are responsible for receiving a
request, determining where to send it based on knowledge of the location of the user, and then sending it
there. To do this, SIP network elements consult @ostract service known asl@cation service which
provides address bindings for a particular domain. These address bindings map an incoming SIP or SIPS
URI, sip:bob@biloxi.com , for example, to one or more URIs that are somehow “closer” to the desired
user,sip:bob@engineering.biloxi.com , for example. Ultimately, a proxy will consult a location
service that maps a received URI to the user agent(s) at which the desired recipient is currently residing.
Registration creates bindings in a location service for a particular domain that associate an address-of-
record URI with one or more contact addresses. Thus, when a proxy for that domain receives a request whose
Request-URI matches the address-of-record, the proxy will forward the request to the contact addresses
registered to that address-of-record. Generally, it only makes sense to register an address-of-record at a

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiodpires Aug 2002 [Page 39]

1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541

1542

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

domain’s location service when requests for that address-of-record would be routed to that domain. In
most cases, this means that the domain of the registration will need to match the domain in the URI of the
address-of-record.

There are many ways by which the contents of the location service can be established. One way is
administratively. In the above example, Bob is known to be a member of the engineering department through
access to a corporate database. However, SIP provides a mechanism for a UA to create a binding explicitly.
This mechanism is known as registration.

Registration entails sendingREGISTER request to a special type of UAS known as a registrar. A
registrar acts as the front end to the location service for a domain, reading and writing mappings based on
the contents 0REGISTER requests. This location service is then typically consulted by a proxy server that
is responsible for routing requests for that domain.

An illustration of the overall registration process is given in 2. Note that the registrar and proxy server
are logical roles that can be played by a single device in a network; for purposes of clarity the two are
separated in this illustration. Also note that UAs may send requests through a proxy server in order to reach
a registrar if the two are separate elements.

SIP does not mandate a particular mechanism for implementing the location service. The only require-
ment is that a registrar for some domaiwsT be able to read and write data to the location service, and
a proxy or redirect server for that domaiusT be capable of reading that same data. A registrar be
co-located with a particular SIP proxy server for the same domain.

bob
+————t
| UA|
|1
+————+
I
[3)INVITE
| carol@chicago.com
chicago.com +—————— + \%
- + 2)Store|Location|4)Query +————— +
|Registrar|=======>| Service|<=======|Proxy|sip.chicago.com
F———————— + +———— +=======>4————— +
A 5)Resp |
| I
| I
1)REGISTER| |
| I
et |
| VA |<-——————————————— +
cube2214a| | 6)INVITE
F————t carol@cube2214a.chicago.com
carol

Figure 2:REGISTER example

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 40]

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567
1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

10.2 Constructing theREGISTER Request

REGISTER requests add, remove, and query bindingsRBGISTER request can add a new binding
between an address-of-record and one or more contact addresses. Registration on behalf of a particular
address-of-record can be performed by a suitably authorized third party. A client can also remove previous
bindings or query to determine which bindings are currently in place for an address-of-record.

Except as noted, the construction of tREGISTER request and the behavior of clients sending a
REGISTER request is identical to the general UAC behavior described in Section 8.1 and Section 17.1.

A REGISTER request doesot establish a dialog. A UAGuAY include aRoute header field in a
REGISTER request based on a pre-existing route set as described in Section 8. Rethel-Route
header field has no meaning REGISTER requests or responses, amdsT be ignored if present. In
particular, the UAQMUST NOT create a nhew route set based on the presence or absenBeodma-Route
header field in any response tRREGISTER request.

The following header fields, excefontact, MUST be included in REGISTER request. AContact
header fieldvAy be included:

Request-URI: The Request-URI names the domain of the location service for which the registration is
meant (for example, “sip:chicago.com”). The “userinfo” and “@” components of the SIPMURT
NOT be present.

To: The To header field contains the address of record whose registration is to be created, queried, or
modified. TheTo header field and thRequest-URI field typically differ, as the former contains a
user name. This address-of-recosdsT be a SIP URI or SIPS URI.

From: TheFrom header field contains the address-of-record of the person responsible for the registration.
The value is the same as tfe header field unless the request is a third-party registration.

Call-ID: All registrations from a UACsHOULD use the same€all-ID header field value for registrations
sent to a particular registrar.

If the same client were to use differeBall-ID values, a registrar could not detect whether a delayed
REGISTER request might have arrived out of order.

CSeq: TheCSeq value guarantees proper orderingREGISTER requests. A UAMUST increment the
CSeq value by one for eacREGISTER request with the sam@all-ID.

Contact : REGISTER requestsvAy contain aContact header field with zero or more values containing
address bindings.

UAs MUST NOT send a new registration (that is, containing r@antact header field values, as opposed
to a retransmission) until they have received a final response from the registrar for the previous one or the
previousREGISTER request has timed out.

The following Contact header parameters have a special meaniiREGISTER requests:

action : The “action” parameter from RFC 2543 has been deprecated. USESULD NOT use the
“action” parameter.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 41]

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

expires : The “expires” parameter indicates how long the UA would like the binding to be valid. The value
is a number indicating seconds. If this parameter is not provided, the valueBxtpires header field
is used instead. Implementatiomay treat values larger than 2**32-1 (4294967295 seconds or 136
years) as equivalent to 2**32-1. Malformed valumsouULD be treated as equivalent to 3600.

10.2.1 Adding Bindings

The REGISTER request sent to a registrar includes the contact address(es) to which SIP requests for the
address-of-record should be forwarded. The address-of-record is included To tieader field of the
REGISTER request.

The Contact header field values of the request typically consist of SIP or SIPS URIs that identify
particular SIP endpoints (for example, “sip:carol@cube2214a.chicago.com”), buvtveyise any URI
scheme. A SIP UA can choose to register telephone numbers (with the tel URL, [9]) or email addresses
(with a mailto URL, [31]) asContacts for an address-of-record, for example.

For example, Carol, with address-of-record “sip:carol@chicago.com”, would register with the SIP reg-
istrar of the domain chicago.com. Her registrations would then be used by a proxy server in the chicago.com
domain to route requests for Carol's address-of-record to her SIP endpoint.

Once a client has established bindings at a registrarat send subsequent registrations containing
new bindings or modifications to existing bindings as necessary. The 2xx responseRE®STER
request will contain, in £ontact header field, a complete list of bindings that have been registered for this
address-of-record at this registrar.

If the address-of-record in tH® header field of REGISTER request is a SIPS URI, then a@pntact
header field values in the requestsT also be a SIPS URIs.

Registrations do not need to update all bindings. Typically, a UA only updates its own contact addresses.

10.2.1.1 Setting the Expiration Interval of Contact Addresses When a client sends REGISTER
request, itMAY suggest an expiration interval that indicates how long the client would like the registration
to be valid. (As described in Section 10.3, the registrar selects the actual time interval based on its local
policy.)

There are two ways in which a client can suggest an expiration interval for a binding: through an
Expires header field or anéxpires” Contact header parameter. The latter allows expiration intervals to
be suggested on a per-binding basis when more than one binding is given in &RE@ISTER request,
whereas the former suggests an expiration interval fo€Calitact header field values that do not contain
the “expires” parameter.

If neither mechanism for expressing a suggested expiration time is preseREGESTER, a default
suggestion of one howwHOULD be assumed.

10.2.1.2 Preferences amon@ontact Addresses If more than oneContact is sent in aREGISTER
request, the registering UA intends to associate all of the URIs in tBestact header field values with the
address-of-record present in the field. This list can be prioritized with theg® parameter in theContact
header field. Thed” parameter indicates a relative preference for the particdDtartact header field value
compared to other bindings present in tREGISTER message or existing within the location service of
the registrar. Section 16.6 describes how a proxy server uses this preference indication.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 42]

1618

1619

1620

1621

1622

1623

1624

1625

1626
1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

10.2.2 Removing Bindings

Registrations are soft state and expire unless refreshed, but can also be explicitly removed. A client can
attempt to influence the expiration interval selected by the registrar as described in Section 10.2.1. A UA
requests the immediate removal of a binding by specifying an expiration interval of “0” for that contact
address in ®ISTER request. UAsSHOULD support this mechanism so that bindings can be removed
before their expiration interval has passed.

TheREGISTER-specificContact header field value of “*” applies to all registrations, butitST NOT
be used unless thHexpires header field is present with a value of “0".

Use of the “*” Contact header field value allows a registering UA to remove all of its bindings without knowing
their precise values.

10.2.3 Fetching Bindings

A success response to aREGISTER request contains the complete list of existing bindings, regardless of
whether the request containe@antact header field. If n@Contact header field is present ilRREGISTER
request, the list of bindings is left unchanged.

10.2.4 Refreshing Bindings

Each UA is responsible for refreshing the bindings that it has previously established. IMOBLD NOT
refresh bindings set up by other UAs.

The 200 (OK) response from the registrar contains a lis€ohtact fields enumerating all current
bindings. The UA compares each contact address to see if it created the contact address, using comparison
rules in Section 19.1.4. If so, it updates the expiration time interval according exfgiles parameter or,
if absent, theexpires field value. The UA then issuesREGISTER request for each of its bindings before
the expiration interval has elapsedmiAy combine several updates into cOREGISTER request.

A UA sHouLD use the same€all-ID for all registrations during a single boot cycle. Registration re-
freshessHOULD be sent to the same network address as the original registration, unless redirected.

10.2.5 Setting the Internal Clock

If the response for REGISTER request contains Rate header field, the cliemiAy use this header field
to learn the current time in order to set any internal clocks.

10.2.6 Discovering a Registrar

UAs can use three ways to determine the address to which to send registrations: by configuration, using the
address-of-record, and multicast. A UA can be configured, in ways beyond the scope of this specification,
with a registrar address. If there is no configured registrar address, tl10BLD use the host part of the
address-of-record as tiequest-URI and address the request there, using the normal SIP server location
mechanisms [4]. For example, the UA for the user “sip:carol@chicago.com” addres®REEETER
request to “sip:chicago.com”.

Finally, a UA can be configured to use multicast. Multicast registrations are addressed to the well-known
“all SIP servers” multicast address “sip.mcast.net” (224.0.1.75 for IPv4). No well-known IPv6 multicast
address has been allocated; such an allocation will be documented separately when needed.M8WP UAs

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 43]

1655

1656

1657
1658

1659

1660

1661
1662
1663

1664
1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680
1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

listen to that address and use it to become aware of the location of other local users (see [32]); however, they
do not respond to the request.

Multicast registration may be inappropriate in some environments, for example, if multiple businesses share the
same local area network.

10.2.7 Transmitting a Request

Once theREGISTER method has been constructed, and the destination of the message identified, UACs

follow the procedures described in Section 8.1.2 to hand ofRIB&ISTER to the transaction layer.
If the transaction layer returns a timeout error becausdrRtB€ISTER yielded no response, the UAC
SHOULD NoTimmediately re-attempt a registration to the same registrar.

An immediate re-attempt is likely to also timeout. Waiting some reasonable time interval for the conditions
causing the timeout to be corrected reduces unnecessary load on the network. No specific interval is mandated.

10.2.8 Error Responses

If a UA receives a 423 (Interval Too Brief) responsevity retry the registration after making the expiration
interval of all contact addresses in tREGISTER request equal to or greater than the expiration interval
within the Min-Expires header field of the 423 (Interval Too Brief) response.

10.3 ProcessiniREGISTER Requests

Aregistrar is a UAS that respondsREGISTER requests and maintains a list of bindings that are accessible

to proxy servers and redirect servers within its administrative domain. A registrar handles requests according
to Section 8.2 and Section 17.2, but it accepts ®RBGISTER requests. A registranusT not generate

6xX responses.

A registrar MAY redirect REGISTER requests as appropriate. One common usage would be for a
registrar listening on a multicast interface to redirect multiREGISTER requests to its own unicast
interface with a 302 (Moved Temporarily) response.

RegistraravusT ignore theRecord-Route header field if it is included in REGISTER request. Reg-
istrarsMusT NOT include aRecord-Route header field in any response tREGISTER request.

A registrar might receive a request that traversed a proxy which fRE®&STER as an unknown request and
which added &ecord-Route header field value.

A registrar has to know (for example, through configuration) the set of domain(s) for which it maintains
bindings.REGISTER requestsvusT be processed by a registrar in the order that they are recdREG-
ISTER requestsiusT also be processed atomically, meaning that a parti®REEBISTER request is either
processed completely or not at all. EREGISTER messagevusT be processed independently of any
other registration or binding changes.

When receiving #EGISTER request, a registrar follows these steps:

1. The registrar inspects thequest-URI to determine whether it has access to bindings for the domain
identified in theRequest-URI. If not, and if the server also acts as a proxy server, the ser@ULD
forward the request to the addressed domain, following the general behavior for proxying messages
described in Section 16.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 44]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

1602 2. To guarantee that the registrar supports any necessary extensions, the nagistrgsrocess the

1693 Require header field values as described for UASs in Section 8.2.2.

1694 3. A registrarsHoULD authenticate the UAC. Mechanisms for the authentication of SIP user agents
1695 are described in Section 22. Registration behavior in no way overrides the generic authentication
1696 framework for SIP. If no authentication mechanism is available, the regigtsar take theFrom

1697 address as the asserted identity of the originator of the request.

1698 4. The registrasHouLD determine if the authenticated user is authorized to modify registrations for
1699 this address-of-record. For example, a registrar might consult a authorization database that maps user
1700 names to a list of addresses-of-record for which that user has authorization to modify bindings. If the
1701 authenticated user is not authorized to modify bindings, the regigtram return a 403 (Forbidden)

1702 and skip the remaining steps.

1703 In architectures that support third-party registration, one entity may be responsible for updating the regis-

1704 trations associated with multiple addresses-of-record.

1705 5. The registrar extracts the address-of-record fronTthieeader field of the request. If the address-of-

1706 record is not valid for the domain in tHRequest-URI, the registramusT send a 404 (Not Found)

1707 response and skip the remaining steps. The MB$T then be converted to a canonical form. To do
1708 that, all URI parametersiusT be removed (including theser-param), and any escaped characters
1709 MUST be converted to their unescaped form. The result serves as an index into the list of bindings.
1710 6. The registrar checks whether the request contain€¢imtact header field. If not, it skips to the last
1711 step. If theContact header field is present, the registrar checks if there isGomact field value

1712 that contains the special value “*” and &mxpires field. If the request has addition@lontact fields

1713 or an expiration time other than zero, the request is invalid, and the sevser return a 400 Invalid

1714 Request and skip the remaining steps. If not, the registrar checks whetl@alth® agrees with the

1715 value stored for each binding. If not,NtusT remove the binding. If it does agree MtUST remove

1716 the binding only if theCSeq in the request is higher than the value stored for that binding. Otherwise
1717 the registramusT leave the binding as is. It then skips to the last step.

1718 7. If the address-of-record in thi® header field of the request represents a SIPS URI, then the registrar
1719 MUST discard anyContact header field values that do not use the SIPS URI scheme before performing
1720 any further processing.

1721 8. The registrar now processes each contact address@uvtitact header field in turn. For each address,
1722 it determines the expiration interval as follows:

1723 ¢ If the field value has angxpires” parameter, that valueusT be used.

1724 e If there is no such parameter, but the request haBxaires header field, that valugusT be

1725 used.

1726 e If there is neither, a locally-configured default valesT be used.

1727 The registramAY shorten the expiration interval. If and only if the expiration interval is greater than
1728 zero AND smaller than one hour AND less than a registrar-configured minimum, the registrar

1729 reject the registration with a response of 423 (Registration Too Brief). This resprarsecontain a

1730 Min-Expires header field that states the minimum expiration interval the registrar is willing to honor.
1731 It then skips the remaining steps.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 45]

1732
1733
1734
1735
1736
1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767
1768

1769

1770

1771

1772

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Allowing the registrar to set the registration interval protects it against excessively frequent registration
refreshes while limiting the state that it needs to maintain and decreasing the likelihood of registrations going
stale. The expiration interval of a registration is frequently used in the creation of services. An example is a
follow-me service, where the user may only be available at a terminal for a brief period. Therefore, registrars
should accept brief registrations; a request should only be rejected if the interval is so short that the refreshes
would degrade registrar performance.

For each address, the registrar then searches the list of current bindings using the URI comparison
rules. If the binding does not exist, it is tentatively added. If the binding does exist, the registrar
checks theCall-ID value. If theCall-ID value in the existing binding differs from ti@all-1D value in

the request, the bindingusT be removed if the expiration time is zero and updated otherwise. If they
are the same, the registrar compares@iseq value. If the value is higher than that of the existing
binding, itMUST update or remove the binding as above. If not, the upsiateT be aborted and the
request fails.

This algorithm ensures that out-of-order requests from the same UA are ignored.

Each binding record records ti@all-ID andCSeq values from the request.

The binding updatesusT be committed (that is, made visible to the proxy or redirect server) if and
only if all binding updates and additions succeed. If any one of them fails (for example, because the
back-end database commit failed), the requessT fail with a 500 (Server Error) response and all
tentative binding updategusT be removed.

9. The registrar returns a 200 (OK) response. The respansa containContact header field values
enumerating all current bindings. EaClontact value MusT feature an &xpires” parameter indi-
cating its expiration interval chosen by the registrar. The respsAsaiLD include aDate header
field.

11 Querying for Capabilities

The SIP metho®PTIONS allows a UA to query another UA or a proxy server as to its capabilities. This
allows a client to discover information about the supported methods, content types, extensions, codecs, etc.
without "ringing” the other party. For example, before a client inseReguire header field into alNVITE
listing an option that it is not certain the destination UAS supports, the client can query the destination UAS
with anOPTIONS to see if this option is returned in@upported header field.
The target of the@OPTIONS request is identified by thRequest-URI, which could identify another
UA or a SIP server. If th©PTIONS is addressed to a proxy server, fRequest-URI is set without a user
part, similar to the way equest-URI is set for BREGISTER request.
Alternatively, a server receiving @OPTIONS request with aviax-Forwards header field value of O
MAY respond to the request regardless ofRegjuest-URI.
This behavior is common with HTTP/1.1. This behavior can be used as a “traceroute” functionality to check the
capabilities of individual hop servers by sending a serie®®TIONS requests with incrementédax-Forwards
values.
As is the case for general UA behavior, the transaction layer can return a timeout errddRPTHONS
yields no response. This may indicate that the target is unreachable and hence unavailable.
An OPTIONS requesiAY be sent as part of an established dialog to query the peer on capabilities that
may be utilized later in the dialog.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 46]

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

11.1 Construction of OPTIONS Request

An OPTIONS request is constructed using the standard rules for a SIP request as discussed Section 8.1.1.

A Contact header fielduay be present in a@PTIONS.

An Accept header fieldsHOULD be included to indicate the type of message body the UAC wishes to
receive in the response. Typically, this is set to a format that is used to describe the media capabilities of a
UA, such as SDP (application/sdp).

The response to a@PTIONS request is assumed to be scoped to Regjuest-URI in the original
request. However, only when @PTIONS is sent as part of an established dialog is it guaranteed that
future requests will be received by the server that generateQRI@¢ONS response.

ExampleOPTIONS request:

OPTIONS sip:carol@chicago.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKhjhs8ass877
Max-Forwards: 70

To: <sip:carol@chicago.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 63104 OPTIONS

Contact: <sip:alice@pc33.atlanta.com>

Accept: application/sdp

Content-Length: 0

11.2 Processing of OPTIONS Request

The response to a@PTIONS is constructed using the standard rules for a SIP response as discussed in
Section 8.2.6. The response code chageisT be the same that would have been chosen had the request
been arINVITE. That is, a 200 (OK) would be returned if the UAS is ready to accept a call, a 486 (Busy
Here) would be returned if the UAS is busy, etc. This allow$dTIONS request to be used to determine

the basic state of a UAS, which can be an indication of whether the UAC will accephAME request.

An OPTIONS request received within a dialog generates a 200 (OK) response that is identical to one
constructed outside a dialog and does not have any impact on the dialog.

This use ofOPTIONS has limitations due the differences in proxy handlingd®TIONS andINVITE
requests. While a forkelNVITE can result in multiple 200 (OK) responses being returned, a fotked
TIONS will only result in a single 200 (OK) response, since it is treated by proxies using thENWITE
handling. See Section 16.7 for the normative details.

If the response to a@PTIONS is generated by a proxy server, the proxy returns a 200 (OK) listing the
capabilities of the server. The response does not contain a message body.

Allow, Accept, Accept-Encoding, Accept-Language, and Supported header fieldssHouLD be
present in a 200 (OK) response to @PTIONS request. If the response is generated by a proxy, the
Allow header fieldsHOULD be omitted as it is ambiguous since a proxy is method agndtintact header
fieldsmAY be present in a 200 (OK) response and have the same semantics as in a 3xx response. That is,
they may list a set of alternative names and methods of reaching the ugéarming header fielduAy be
present.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 47]

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

A message bodwiAY be sent, the type of which is determined by texept header field in th€®OP-
TIONS request (application/sdp is the default if thecept header field is not present). If the types include
one that can describe media capabilities, the WASULD include a body in the response for that purpose.
Details on construction of such a body in the case of application/sdp are described in [13].

ExampleOPTIONS response generated by a UAS (corresponding to the request in Section 11.1):

SIP/2.0 200 OK

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKhjhs8ass877
rreceived=192.0.2.4

To: <sip:carol@chicago.com>;tag=93810874

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 63104 OPTIONS

Contact: <sip:carol@chicago.com>

Contact: <mailto:carol@chicago.com>

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE
Accept: application/sdp

Accept-Encoding: gzip

Accept-Language: en

Supported: foo

Content-Type: application/sdp

Content-Length: 274

(SDP not shown)

12 Dialogs

A key concept for a user agent is that of a dialog. A dialog represents a peer-to-peer SIP relationship between
two user agents that persists for some time. The dialog facilitates sequencing of messages between the user
agents and proper routing of requests between both of them. The dialog represents a context in which to
interpret SIP messages. Section 8 discussed method independent UA processing for requests and responses
outside of a dialog. This section discusses how those requests and responses are used to construct a dialog,
and then how subsequent requests and responses are sent within a dialog.

A dialog is identified at each UA with a dialog ID, which consists @ all-ID value, a local tag and a
remote tag. The dialog ID at each UA involved in the dialog is not the same. Specifically, the local tag at one
UA is identical to the remote tag at the peer UA. The tags are opaque tokens that facilitate the generation of
unique dialog IDs.

A dialog ID is also associated with all responses and with any request that contains a tafpirfidie:
The rules for computing the dialog ID of a message depend on whether the SIP element is a UAC or UAS.
For a UAC, theCall-ID value of the dialog ID is set to th@all-ID of the message, the remote tag is set to
the tag in theTo field of the message, and the local tag is set to the tag ifrtbin field of the message
(these rules apply to both requests and responses). As one would expect, for a UB&lJ-ievalue of
the dialog ID is set to th€all-ID of the message, the remote tag is set to the tag ifrtbin field of the

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 48]

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892
1893
1894

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

message, and the local tag is set to the tag ifmthigeld of the message.

A dialog contains certain pieces of state needed for further message transmissions within the dialog.
This state consists of the dialog ID, a local sequence number (used to order requests from the UA to its
peer), a remote sequence number (used to order requests from its peer to the UA), a local URI, a remote
URI, the Contact URI of the peer, a boolean flag called “secure”, and a route set, which is an ordered list of
URIs. The route set is the list of servers that need to be traversed to send a request to the peer. A dialog can
also be in the “early” state, which occurs when it is created with a provisional response, and then transition
to the “confirmed” state when a 2xx final response arrives. For other responses, or if no response arrives at
all on that dialog, the early dialog terminates.

12.1 Creation of a Dialog

Dialogs are created through the generation of non-failure responses to requests with specific methods.
Within this specification, only 2xx and 101-199 responses wiffodag to INVITE establish a dialog.
A dialog established by a non-final response to a request is in the “early” state and it is called an early dia-
log. Extensions/1AY define other means for creating dialogs. Section 13 gives more details that are specific
to theINVITE method. Here, we describe the process for creation of dialog state that is not dependent on
the method.

UAs MUST assign values to the dialog ID components as described below.

12.1.1 UAS behavior

When a UAS responds to a request with a response that establishes a dialog (such as IBNZKKER
the UASMUST copy all Record-Route header field values from the request into the response (including
the URIs, URI parameters, and aRecord-Route header field parameters, whether they are known or
unknown to the UAS) anéiusT maintain the order of those values. The UM8sT add aContact header
field to the response. THeontact header field contains an address where the UAS would like to be con-
tacted for subsequent requests in the dialog (which includea@efor a 2xx response in the case of an
INVITE). Generally, the host portion of this URI is the IP address or FQDN of the host.The URI provided
in the Contact header fieldvusT be a SIP or SIPS URI. If the request which initiated the dialog contained
a SIPS URI in theRequest-URI, the Contact header fieldnusT be a SIPS URI. In either case, the URI
SHOULD have global scope (that is, the same URI can be used in messages outside this dialog). The same
way, the scope of the URI in théontact header field of théNVITE is not limited to this dialog either. It
can therefore be used in messages to the UAC even outside this dialog.

The UAS then constructs the state of the dialog. This stateT be maintained for the duration of the
dialog.

If the request arrived over TLS, and tRequest-URI contained a SIPS URI, the “secure” flag is set to
TRUE.

The route sekusT be set to the list of URIs in thRecord-Route header field from the request, taken
in order and preserving all URI parameters. IfRecord-Route header field is present in the request, the
route seMuUST be set to the empty set. This route set, even if empty, overrides any pre-existing route set for
future requests in this dialog. The remote tangetsT be set to the URI from th€ontact header field of
the request. If the “secure” flag is true, the WAIST convert any SIP URI in the route set and remote target

to SIPS URI (this is done by just changing the scheme).
The remote sequence numhbassT be set to the value of the sequence number irfCtBeq header field
of the request. The local sequence numbesT be empty. The call identifier component of the dialog ID

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 49]

1895
1896
1897
1898
1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917
1918
1919
1920
1921
1922
1923
1924

1925

1926

1927

1928

1929

1930

1931

1932
1933
1934
1935
1936
1937
1938

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

MUST be set to the value of th€all-ID in the request. The local tag component of the dialogvilbsT be

set to the tag in thao field in the response to the request (which always includes a tag), and the remote tag
component of the dialog IMUST be set to the tag from thierom field in the request. A UAS1UST be
prepared to receive a request without a tag inRram field, in which case the tag is considered to have a
value of null.

This is to maintain backwards compatibility with RFC 2543, which did not maréae tags.

The remote URMUST be set to the URI in thErom field, and the local URMUST be set to the URI in
the To field.

12.1.2 UAC Behavior

When a UAC sends a request that can establish a dialog (sucHMYArE) it MUST provide a SIP or SIPS
URI with global scope (i.e., the same SIP URI can be used in messages outside this dialog)danteme
header field of the request. If the request is sentRegquest-URI with a SIPS URI, theContact header
MUST be a SIPS URI.

When a UAC receives a response that establishes a dialog, it constructs the state of the dialog. This state
MUST be maintained for the duration of the dialog.

If the request was sent over TLS, and ®Request-URI contained a SIPS URI, the “secure” flag is set
to TRUE.

The route semMusT be set to the list of URIs in thRecord-Route header field from the response,
taken in reverse order and preserving all URI parameters. Rexord-Route header field is present in
the response, the route 3et/ST be set to the empty set. This route set, even if empty, overrides any pre-
existing route set for future requests in this dialog. The remote targstr be set to the URI from the
Contact header field of the response. If the “secure” flag is true, theMW&T convert any SIP URI in the

route set and remote target to SIPS URI (this is done by just changing the scheme).

The local sequence numbRUST be set to the value of the sequence number ifd8eq header field
of the request. The remote sequence numhesT be empty (it is established when the remote UA sends
a request within the dialog). The call identifier component of the dialog3T be set to the value of the
Call-ID in the request. The local tag component of the dialogvillsT be set to the tag in therom field
in the request, and the remote tag component of the dialaguBT be set to the tag in th&o field of the
response. A UAQUUST be prepared to receive a response without a tag ifeh@eld, in which case the
tag is considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which did not mantiatags.

The remote URMUST be set to the URI in thé&o field, and the local URMUST be set to the URI in
the From field.

12.2 Requests within a Dialog

Once a dialog has been established between two UAs, either oilagnmitiate new transactions as needed
within the dialog. The UA sending the request will take the UAC role for the transaction. The UA receiving
the request will take the UAS role. Note that these may be different roles than the UAs held during the

transaction that established the dialog.

Requests within a dialogAy containRecord-Route and Contact header fields. However, these re-
guests do not cause the dialog’s route set to be modified, although they may modify the remote target URI.
Specifically, requests that are not target refresh requests do not modify the dialog’s remote target URI, and
requests that are target refresh requests do. For dialogs that have been establishethNWVifhE&rthe only
target refresh request defined isINVITE (see Section 14). Other extensions may define different target
refresh requests for dialogs established in other ways.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 50]

1939
1940
1941
1942

1943

1944

1945

1946

1947

1948

1949

1950

1951
1952
1953
1954

1955

1956

1957

1958

1959

1960

1961

1962
1963
1964
1965
1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Note that arACK is NOT a target refresh request.

Target refresh requests only update the dialog’s remote target URI, and not the route set formeddooda
Route. Updating the latter would introduce severe backwards compatibility problems with RFC 2543-compliant
systems.

12.2.1 UAC Behavior

12.2.1.1 Generating the Request A request within a dialog is constructed by using many of the com-
ponents of the state stored as part of the dialog.

The URI in theTo field of the requesmusT be set to the remote URI from the dialog state. The tag
in the To header field of the requestusT be set to the remote tag of the dialog ID. Tiem URI of the
requestMusT be set to the local URI from the dialog state. The tag inRifam header field of the request
MUST be set to the local tag of the dialog ID. If the value of the remote or local tags is null, the tag parameter
MUST be omitted from thdo or From header fields, respectively.

Usage of the URI from th&o andFrom fields in the original request within subsequent requests is done for
backwards compatibility with RFC 2543, which used the URI for dialog identification. In this specification, only
the tags are used for dialog identification. It is expected that mandatory reflection of the of@aradFrom URI
in mid-dialog requests will be deprecated in a subsequent revision of this specification.

The Call-ID of the requestusT be set to theCall-ID of the dialog. Requests within a dialogusT
contain strictly monotonically increasing and contigu@Seq sequence numbers (increasing-by-one) in
each direction (exceptingCK andCANCEL of course, whose numbers equal the requests being acknowl-
edged or cancelled).Therefore, if the local sequence number is not empty, the value of the local sequence
numberMusT be incremented by one, and this valuesT be placed into th&€Seq header field. If the
local sequence number is empty, an initial valuesT be chosen using the guidelines of Section 8.1.1.5.
The method field in th€Seq header field valugusT match the method of the request.

With a length of 32 bits, a client could generate, within a single call, one request a second for about 136 years
before needing to wrap around. The initial value of the sequence number is chosen so that subsequent requests within
the same call will not wrap around. A non-zero initial value allows clients to use a time-based initial sequence
number. A client could, for example, choose the 31 most significant bits of a 32-bit second clock as an initial
sequence number.

The UAC uses the remote target and route set to buildRéguest-URI andRoute header field of the
request.

If the route set is empty, the UARUST place the remote target URI into tikequest-URI. The UAC
MUST NOT add aRoute header field to the request.

If the route set is not empty, and the first URI in the route set containgr tharameter (see Sec-
tion 19.1.1), the UAQuUST place the remote target URI into tRequest-URI andMusT include aRoute
header field containing the route set values in order, including all parameters.

If the route set is not empty, and its first URI does not containitiparameter, the UAMUST place
the first URI from the route set into tHeequest-URI, stripping any parameters that are not allowed in a
Request-URI. The UACMUST add aRoute header field containing the remainder of the route set values
in order, including all parameters. The UAGJST then place the remote target URI into tReute header
field as the last value.

For example, if the remote target is sip:user@remoteua and the route set contains

<sip:proxyl>,<sip:proxy2>,<sip:proxy3;Ir>,<sip:proxy4>

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 51]

1981

1982

1983

1984
1985
1986
1987
1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998
1999
2000
2001

2002

2003

2004

2005

2006
2007

2008

2009

2010
2011
2012
2013

2014

2015

2016
2017
2018

2019

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The request will be formed with the followingequest-URI andRoute header field:

METHOD sip:proxyl
Route: <sip:proxy2>,<sip:proxy3;Ir>,<sip:proxy4>,<sip:user@remoteua>

If the first URI of the route set does not contain th@arameter, the proxy indicated does not understand the
routing mechanisms described in this document and will act as specified in RFC 2543, repla&equiest-URI
with the firstRoute header field value it receives while forwarding the message. PlacirRafeest-URI at the
end of theRoute header field preserves the information in tRequest-URI across the strict router (it will be
returned to th&Request-URI when the request reaches a loose-router).

A UAC sHouLD include aContact header field in any target refresh requests within a dialog, and unless
there is a need to change it, the URHouLD be the same as used in previous requests within the dialog. If
the “secure” flag is true, that URIUST be a SIPS URI.As discussed in Section 12.2.2Cantact header
field in a target refresh request updates the remote target URI. This allows a UA to provide a new contact
address, should its address change during the duration of the dialog.

However, requests that are not target refresh requests do not affect the remote target URI for the dialog.

The rest of the request is formed as described in Section 8.1.1.

Once the request has been constructed, the address of the server is computed and the request is sent,
using the same procedures for requests outside of a dialog (Section 8.1.2).

The procedures in Section 8.1.2 will normally result in the request being sent to the address indicated by the
topmostRoute header field value or thRequest-URI if no Route header field is present. Subject to certain
restrictions, they allow the request to be sent to an alternate address (such as a default outbound proxy not represented
in the route set).

12.2.1.2 Processing the Response3he UAC will receive responses to the request from the transaction
layer. If the client transaction returns a timeout this is treated as a 408 (Request Timeout) response.

The behavior of a UAC that receives a 3xx response for a request sent within a dialog is the same as if
the request had been sent outside a dialog. This behavior is described in Section 8.1.3.4.

Note, however, that when the UAC tries alternative locations, it still uses the route set for the dialog to build the
Route header of the request.

When a UAC receives a 2xx response to a target refresh requesisit replace the dialog’s remote
target URI with the URI from th&Contact header field in that response, if present. If the “secure” flag is

true, the UACMUST convert the URI to a SIPS URI if it is not one already.

If the response for a request within a dialog is a 481 (Call/Transaction Does Not Exist) or a 408 (Request
Timeout), the UACsHOULD terminate the dialog. A UAGHOULD also terminate a dialog if no response
at all is received for the request (the client transaction would inform the TU about the timeout.)

For INVITE initiated dialogs, terminating the dialog consists of sendiBY &.

12.2.2 UAS Behavior

Requests sent within a dialog, as any other requests, are atomic. If a particular request is accepted by the
UAS, all the state changes associated with it are performed. If the request is rejemtedf the state
changes is performed.

Note that some requests such¥ITEs affect several pieces of state.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 52]

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036
2037
2038
2039
2040
2041
2042
2043
2044
2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The UAS will receive the request from the transaction layer. If the request has a tagTio tleader
field, the UAS core computes the dialog identifier corresponding to the request and compares it with existing
dialogs. If there is a match, this is a mid-dialog request. In that case, the UAS first applies the same
processing rules for requests outside of a dialog, discussed in Section 8.2.

If the request has a tag in tf@ header field, but the dialog identifier does not match any existing di-
alogs, the UAS may have crashed and restarted, or it may have received a request for a different (possibly
failed) UAS (the UASs can construct tiie tags so that a UAS can identify that the tag was for a UAS
for which it is providing recovery). Another possibility is that the incoming request has been simply mis-
routed. Based on th& tag, the UASMAY either accept or reject the request. Accepting the request for
acceptabl€elo tags provides robustness, so that dialogs can persist even through crashes. UAs wishing to
support this capability must take into consideration some issues such as choosing monotonically increasing
CSeq sequence numbers even across reboots, reconstructing the route set, and accepting out-of-range RTP
timestamps and sequence numbers.

If the UAS wishes to reject the request, because it does not wish to recreate the dialogft itespond
to the request with a 481 (Call/Transaction Does Not Exist) status code and pass that to the server transaction.

Requests that do not change in any way the state of a dialog may be received within a dialog (for

example, atDPTIONS request). They are processed as if they had been received outside the dialog.

If the remote sequence number is emptyWtST be set to the value of the sequence number ilCBeq
header field value in the request. If the remote sequence number was not empty, but the sequence number of
the request is lower than the remote sequence number, the request is out of ondesatet rejected with
a 500 (Server Internal Error) response. If the remote sequence number was not empty, and the sequence
number of the request is greater than the remote sequence number, the request is in order. It is possible for
the CSeq sequence number to be higher than the remote sequence number by more than one. This is not
an error condition, and a UASHOULD be prepared to receive and process requests@8ig values more
than one higher than the previous received request. TheNdAsS then set the remote sequence number to
the value of the sequence number in @®eq header field value in the request.

If a proxy challenges a request generated by the UAC, the UAC has to resubmit the request with credentials. The
resubmitted request will have a n&@&eq number. The UAS will never see the first request, and thus, it will notice
a gap in theCSeq number space. Such a gap does not represent any error condition.
When a UAS receives a target refresh requestuis T replace the dialog’s remote target URI with the
URI from the Contact header field in that request, if present. If the “secure” flag is true, the MAET
convert the URI to a SIPS URI if it is not one already.

12.3 Termination of a Dialog

Independent of the method, if a request outside of a dialog generates a non-2xx final response, any early
dialogs created through provisional responses to that request are terminated. The mechanism for terminating
confirmed dialogs is method specific. In this specification,BN& method terminates a session and the
dialog associated with it. See Section 15 for details.

13 Initiating a Session

13.1 Overview

When a user agent client desires to initiate a session (for example, audio, video, or a game), it formulates an
INVITE request. ThéNVITE request asks a server to establish a session. This request may be forwarded by
proxies, eventually arriving at one or more UAS that can potentially accept the invitation. These UASs will

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 53]

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

frequently need to query the user about whether to accept the invitation. After some time, those UAS can

accept the invitation (meaning the session is to be established) by sending a 2xx response. If the invitation
is not accepted, a 3xx, 4xx, 5xx or 6xx response is sent, depending on the reason for the rejection. Before
sending a final response, the UAS can also send provisional responses (1xx) to advise the UAC of progress
in contacting the called user.

After possibly receiving one or more provisional responses, the UAC will get one or more 2xx responses
or one non-2xx final response. Because of the protracted amount of time it can take to receive final responses
to INVITE, the reliability mechanisms faiNVITE transactions differ from those of other requests (like
OPTIONS). Once it receives a final response, the UAC needs to serAlCéhfor every final response
it receives. The procedure for sending tAi€K depends on the type of response. For final responses
between 300 and 699, tH«CK processing is done in the transaction layer and follows one set of rules (See
Section 17). For 2xx responses, #EK is generated by the UAC core.

A 2xx response to aiNVITE establishes a session, and it also creates a dialog between the UA that
issued théNVITE and the UA that generated the 2xx response. Therefore, when multiple 2xx responses are
received from different remote UAs (because WIN¥ITE forked), each 2xx establishes a different dialog.

All these dialogs are part of the same call.

This section provides details on the establishment of a session INfIFE. A UA that supportdN-

VITE muUsT also supporACK, CANCEL andBYE.

13.2 UAC Processing
13.2.1 Creating the Initial INVITE

Since the initialNVITE represents a request outside of a dialog, its construction follows the procedures of
Section 8.1.1. Additional processing is required for the specific caB¢\aTE.

An Allow header field (Section 20.5H0ULD be present in th&éNVITE. It indicates what methods can
be invoked within a dialog, on the UA sending tiNVITE, for the duration of the dialog. For example, a
UA capable of receivingNFO requests within a dialog [33HouLD include anAllow header field listing
the INFO method.

A Supported header field (Section 20.3BH0OULD be present in théNVITE. It enumerates all the
extensions understood by the UAC.

An Accept (Section 20.1) header fielday be present in theNVITE. It indicates which Content-Types
are acceptable to the UA, in both the response received by it, and in any subsequent requests sent to it within
dialogs established by tHBIVITE. The Accept header field is especially useful for indicating support of
various session description formats.

The UACMAY add anExpires header field (Section 20.19) to limit the validity of the invitation. If the
time indicated in théxpires header field is reached and no final answer forlléITE has been received
the UAC coresHOULD generate £ANCEL request for théNVITE, as per Section 9.

A UAC MmAY also find it useful to add, among othe&ubject (Section 20.36)0Organization (Sec-
tion 20.25) andUser-Agent (Section 20.41) header fields. They all contain information related to the
INVITE.

The UACMAY choose to add a message body toltH¥ITE. Section 8.1.1.10 deals with how to con-
struct the header fieldsGontent-Type among others — needed to describe the message body.

There are special rules for message bodies that contain a session description - their corresponding
Content-Disposition is “session”. SIP uses an offer/answer model where one UA sends a session de-
scription, called the offer, which contains a proposed description of the session. The offer indicates the

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 54]

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130
2131
2132
2133
2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

desired communications means (audio, video, games), parameters of those means (such as codec types) and
addresses for receiving media from the answerer. The other UA responds with another session description,
called the answer, which indicates which communications means are accepted, the parameters that apply to
those means, and addresses for receiving media from the offerer. The offer/answer model defines restric-
tions on when offers and answers can be made. This results in restrictions on where the offers and answers
can appear in SIP messages. In this specification, offers and answers can only apfge#rEhrequests

and responses, ardlCK. The usage of offers and answers is further restricted. For the ifitMITE
transaction, the rules are:

e The initial offermusT be in either aNVITE or, if not there, in the first reliable non-failure message
from the UAS back to the UAC. In this specification, that is the final 2xx response.

e If the initial offer is in anINVITE, the answemUsT be in a reliable non-failure message from UAS
back to UAC which is correlated to th&éillVITE. For this specification, that is only the final 2xx
response to thaNVITE.

e If the initial offer is in the first reliable non-failure message from the UAS back to UAC, the answer
MUST be in the acknowledgement for that message (in this specific#®©l,for a 2xx response).

e After having sent or received an answer to the first offer, the WAR generate subsequent offers
in requests, but only if it has received answers to any previous offers, and has not sent any offers to
which it hasn't gotten an answer.

e Once the UAS has sent or received an answer to the initial offeny#T NOT generate subsequent
offers in any responses to the initidVITE. This means that a UAS based on this specification alone
can never generate subsequent offers until completion of the initial transaction.

Concretely, the above rules specify two exchanges - the offer is itNMETE, and the answer in the
2xx, or the offer is in the 2xx, and the answer is in EK. All user agents that suppdMlVITE MUST
support these two exchanges.

The Session Description Protocol (SDP) jAdsT be supported by all user agents as a means to describe

sessions, and its usage for constructing offers and ansness follow the procedures defined in [13].

The restrictions of the offer-answer model just described only apply to bodies Whhosent-Disposition
header field value is “session”. Therefore, it is possible that bothiNK&TE and theACK contain a body
message (for example, thRVITE carries a photoGontent-Disposition: render) and th&CK a session
description Content-Disposition: session)).

If the Content-Disposition header field is missing, bodies 6bntent-Type application/sdp imply the
disposition “session”, while other content types imply “render”.

Once thdNVITE has been created, the UAC follows the procedures defined for sending requests outside
of a dialog (Section 8). This results in the construction of a client transaction that will ultimately send the
request and deliver responses to the UAC.

13.2.2 ProcessingNVITE Responses

Once theINVITE has been passed to theVITE client transaction, the UAC waits for responses for the
INVITE. If the INVITE client transaction returns a timeout rather than a response the TU acts as if a 408
(Request Timeout) response had been received, as described in Section 8.1.3.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 55]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

224 13.2.2.1 1xx responses Zero, one or multiple provisional responses may arrive before one or more
215 final responses are received. Provisional responses fiM\AITE request can create “early dialogs”. If a

2146 provisional response has atag in feefield, and if the dialog ID of the response does not match an existing
2147 dialog, one is constructed using the procedures defined in Section 12.1.2.

2148 The early dialog will only be needed if the UAC needs to send a request to its peer within the dialog
2120 before the initialNVITE transaction completes. Header fields present in a provisional response are appli-
a0 cable as long as the dialog is in the early state (for exampléJlaw header field in a provisional response

2151 contains the methods that can be used in the dialog while this is in the early state).

us2 13.2.2.2 3xxresponses A 3xx response may contain one or m@entact header field values provid-
253 ing new addresses where the callee might be reachable. Depending on the status code of the 3xx response
2154 (See Section 21.3) the UAGAY choose to try those new addresses.

a5 13.2.2.3 4xx, 5xx and 6xx responses A single non-2xx final response may be received forlte

as6 VITE. 4xx, 5xx and 6xx responses may contai@@ntact header field value indicating the location where

2157 - additional information about the error can be found.

2158 All early dialogs are considered terminated upon reception of the non-2xx final response.

2159 After having received the non-2xx final response the UAC core considers the INVITE transaction com-
260 pleted. ThANVITE client transaction handles generationA@Ks for the response (see Section 17).

ae1 13.2.2.4 2xx responses Multiple 2xx responses may arrive at the UAC for a sindl&/ITE request
262 due to a forking proxy. Each response is distinguished byaearameter in thdo header field, and each

2163 represents a distinct dialog, with a distinct dialog identifier.

2164 If the dialog identifier in the 2xx response matches the dialog identifier of an existing dialog, the dialog
2165 MUST be transitioned to the “confirmed” state, and the route set for the dialsy be recomputed based

2166 ON the 2xx response using the procedures of Section 12.2.1.2. Otherwise, a new dialog in the “confirmed”
2167 StateMUsT be constructed using the procedures of Section 12.1.2.

2168 Note that the only piece of state that is recomputed is the route set. Other pieces of state such as the highest
2169 sequence numbers (remote and local) sent within the dialog are not recomputed. The route set only is recomputed
2170 for backwards compatibility. RFC 2543 did not mandate mirroring oReeord-Route header field in a 1xx, only

2171 2xx. However, we cannot update the entire state of the dialog, since mid-dialog requests may have been sent within
2172 the early dialog, modifying the sequence numbers, for example.

2173 The UAC coremusT generate a\CK request for each 2xx received from the transaction layer. The

z74 header fields of théACK are constructed in the same way as for any request sent within a dialog (see
2175 Section 12) with the exception of ti@Seq and the header fields related to authentication. The sequence
2a176 - humber of theCSeq header fieldvusT be the same as tH&IVITE being acknowledged, but thHeSeq

2a77 - methodmusT be ACK. The ACK MUST contain the same credentials as tN&/ITE. If the 2xx contains

a7s - an offer (based on the rules above), €K MUST carry an answer in its body. If the offer in the 2xx

2179 response is not acceptable, the UAC criesT generate a valid answer in t#e€K and then send BYE

2180 immediately.

2181 Once theACK has been constructed, the procedures of [4] are used to determine the destination address,
2182 port and transport. However, the request is passed to the transport layer directly for transmission, rather than
2183 A client transaction. This is because the UAC core handles retransmissionsA@fKhaot the transaction

2184 layer. TheACK MUST be passed to the client transport every time a retransmission of the 2xx final response
2185 that triggered th&\CK arrives.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 56]

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The UAC core considers th&VITE transaction completed 64*T1 seconds after the reception of the
first 2xx response. At this point all the early dialogs that have not transitioned to established dialogs are
terminated. Once theNVITE transaction is considered completed by the UAC core, no more new 2xx
responses are expected to arrive.

If, after acknowledging any 2xx response tol&lVITE, the UAC does not want to continue with that
dialog, then the UAGA1UST terminate the dialog by sending®E request as described in Section 15.

13.3 UAS Processing
13.3.1 Processing of théNVITE

The UAS core will receivéNVITE requests from the transaction layer. It first performs the request process-
ing procedures of Section 8.2, which are applied for both requests inside and outside of a dialog.

Assuming these processing states complete without generating a response, the UAS core performs the
additional processing steps:

1. If the request is atNVITE that contains arExpires header field the UAS core sets a timer for
the number of seconds indicated in the header field value. When the timer fires, the invitation is
considered to be expired. If the invitation expires before the UAS has generated a final response, a
487 (Request Terminated) resporsseOULD be generated.

2. If the request is a mid-dialog request, the method-independent processing described in Section 12.2.2
is first applied. It might also modify the session; Section 14 provides details.

3. If the request has a tag in tiA® header field but the dialog identifier does not match any of the
existing dialogs, the UAS may have crashed and restarted, or may have received a request for a
different (possibly failed) UAS. Section 12.2.2 provides guidelines to achieve a robust behavior under
such a situation.

Processing from here forward assumes thatRNETE is outside of a dialog, and is thus for the purposes
of establishing a new session.

ThelNVITE may contain a session description, in which case the UAS is being presented with an offer
for that session. It is possible that the user is already a participant in that session, even thaNyhTEe
is outside of a dialog. This can happen when a user is invited to the same multicast conference by multiple
other participants. If desired, the UA®AY use identifiers within the session description to detect this
duplication. For example, SDP contains a session id and version number in the oyifield. If the user
is already a member of the session, and the session parameters contained in the session description have
not changed, the UABIAY silently accept théNVITE (that is, send a 2xx response without prompting the
user).

If the INVITE does not contain a session description, the UAS is being asked to participate in a session,
and the UAC has asked that the UAS provide the offer of the sessistudt provide the offer in its first
non-failure reliable message back to the UAC. In this specification, that is a 2xx responséNV RE.

The UAS can indicate progress, accept, redirect, or reject the invitation. In all of these cases, it formu-
lates a response using the procedures described in Section 8.2.6.

13.3.1.1 Progress If the UAS is not able to answer the invitation immediately, it can choose to indicate
some kind of progress to the UAC (for example, an indication that a phone is ringing). This is accomplished

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 57]

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234
2235
2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264
2265

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

with a provisional response between 101 and 199. These provisional responses establish early dialogs and
therefore follow the procedures of Section 12.1.1 in addition to those of Section 8.2.6. AMASend
as many provisional responses as it likes. Each of thesgr indicate the same dialog ID. However, these
will not be delivered reliably.

If the UAS desires an extended period of time to answerM\TE, it will need to ask for an “ex-
tension” in order to prevent proxies from canceling the transaction. A proxy has the option of canceling a
transaction when there is a gap of 3 minutes between messages in a transaction. To prevent cancellation, the
UAS MusT send a hon-100 provisional response at every minute, to handle the possibility of lost provisional
responses.

An INVITE transaction can go on for extended durations when the user is placed on hold, or when interworking
with PSTN systems which allow communications to take place without answering the call. The latter is common in
Interactive Voice Response (IVR) systems.

13.3.1.2 The INVITE is redirected If the UAS decides to redirect the call, a 3xx response is sent. A
300 (Multiple Choices), 301 (Moved Permanently) or 302 (Moved Temporarily) resmHiseLD contain
aContact header field containing one or more URIs of new addresses to be tried. The response is passed to
the INVITE server transaction, which will deal with its retransmissions.

13.3.1.3 The INVITE is rejected A common scenario occurs when the callee is currently not willing
or able to take additional calls at this end system. A 486 (Busy Here)uLD be returned in such scenario.
If the UAS knows that no other end system will be able to accept this call a 600 (Busy Everywhere) response
SHOULD be sent instead. However, it is unlikely that a UAS will be able to know this in general, and thus
this response will not usually be used. The response is passedIMMHIEE server transaction, which will
deal with its retransmissions.

A UAS rejecting an offer contained in dNVITE sHouLD return a 488 (Not Acceptable Here) response.
Such a responseHouLD include awarning header field value explaining why the offer was rejected.

13.3.1.4 The INVITE is accepted The UAS core generates a 2xx response. This response establishes
a dialog, and therefore follows the procedures of Section 12.1.1 in addition to those of Section 8.2.6.

A 2xx response to alNVITE sHoULD contain theAllow header field and th8upported header field,
andMAY contain theAccept header field. Including these header fields allows the UAC to determine the
features and extensions supported by the UAS for the duration of the call, without probing.

If the INVITE request contained an offer, and the UAS had not yet sent an answer, thi&y2x>contain
an answer. If théNVITE did not contain an offer, the 2xMmusT contain an offer if the UAS had not yet
sent an offer.

Once the response has been constructed it is passed HOMHEE server transaction. Note, however,
that thelNVITE server transaction will be destroyed as soon as it receives this final response and passes it
to the transport. Therefore, it is necessary to pass periodically the response directly to the transport until
the ACK arrives. The 2xx response is passed to the transport with an interval that starts at T1 seconds and
doubles for each retransmission until it reaches T2 seconds (T1 and T2 are defined in Section 17). Response
retransmissions cease when/&@K request for the response is received. This is independent of whatever
transport protocols are used to send the response.

Since 2xx is retransmitted end-to-end, there may be hops between UAS and UAC that are UDP. To ensure reliable
delivery across these hops, the response is retransmitted periodically even if the transport at the UAS is reliable.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 58]

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278
2279
2280
2281
2282

2283
2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

If the server retransmits the 2xx response for 64*T1 seconds without receiviA€ldnthe dialog is
confirmed, but the sessi@HoOuULD be terminated. This is accomplished witB¥E as described in Section
15.

14 Modifying an Existing Session

A successfullNVITE request (see Section 13) establishes both a dialog between two user agents and a
session using the offer-answer model. Section 12 explains how to modify an existing dialog using a target
refresh request (for example, changing the remote target URI of the dialog). This section describes how
to modify the actual session. This modification can involve changing addresses or ports, adding a media
stream, deleting a media stream, and so on. This is accomplished by sendindgNMi€&t request within

the same dialog that established the sessionINMITE request sent within an existing dialog is known as
areiNVITE.

Note that a single rédNVITE can modify the dialog and the parameters of the session at the same time.

Either the caller or callee can modify an existing session.

The behavior of a UA on detection of media failure is a matter of local policy. However, automated
generation of rdNVITE or BYE is NOT RECOMMENDED to avoid flooding the network with traffic when
there is congestion. In any case, if these messages are sent automaticaltydhey be sent after some
randomized interval.

Note that the paragraph above refers to automatically geneBatéd and relNVITEs. If the user hangs up
upon media failure the UA would send3¥ E request as usual.

14.1 UAC Behavior

The same offer-answer model that applies to session descriptidh8/IWEs (Section 13.2.1) applies to
re-INVITEs. As a result, a UAC that wants to add a media stream, for example, will create a new offer that
contains this media stream, and send that ilNAATE request to its peer. It is important to note that the full
description of the session, not just the change, is sent. This supports stateless session processing in various
elements, and supports failover and recovery capabilities. Of course, aldAGend a rdNVITE with no
session description, in which case the first reliable non-failure response to K¥IfeE will contain the
offer (in this specification, that is a 2xx response).

If the session description format has the capability for version numbers, the dffecerLD indicate
that the version of the session description has changed.

TheTo, From, Call-ID, CSeq, andRequest-URI of a reINVITE are set following the same rules as
for regular requests within an existing dialog, described in Section 12.

A UAC MAY choose not to add afdlert-Info header field or a body witEontent-Disposition "alert”
to reANVITESs because UASs do not typically alert the user upon reception ofNME-E.

Unlike anINVITE, which can fork, a rdNVITE will never fork, and therfore, only ever generate a
single final response. The reason dM8HTE will never fork is that theRequest-URI identifies the target
as the UA instance it established the dialog with, rather than identifying an address-of-record for the user.

Note that a UACMUST NOT initiate a newINVITE transaction within a dialog while anothBMVITE
transaction is in progress in either direction.

1. If there is an ongoing\VITE client transaction, the T@husT wait until the transaction reaches the
completedbr terminatedstate before initiating the nelNVITE.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 59]

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331
2332
2333
2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2. If there is an ongoing\NVITE server transaction, the TMUST wait until the transaction reaches the
confirmedor terminatedstate before initiating the neiNVITE.

However, a UAMAY initiate a regular transaction while dNVITE transaction is in progress. A UA
MAY also initiate adNVITE transaction while a regular transaction is in progress.

If a UA receives a non-2xx final response to alK/TE, the session parametewsJST remain un-
changed, as if no rtNVITE had been issued. Note that, as stated in Section 12.2.1.2, if the non-2xx final
response is a 481 (Call/Transaction Does Not Exist), or a 408 (Request Timeout), or no response at all is
received for the réNVITE (that is, a timeout is returned by thEVITE client transaction), the UAC will
terminate the dialog.

The rules for transmitting a rlNVITE and for generating aACK for a 2xx response to riNVITE are
the same as for the initidNVITE (Section 13.2.1).

14.2 UAS Behavior

Section 13.3.1 describes the procedure for distinguishing incomifigWEFEs from incoming initiallN-
VITEs and handling a réNVITE for an existing dialog.

A UAS that receives a seconVITE before it sends the final response to a filé¢ITE with a lower
CSeq sequence number on the same dialags T return a 500 (Server Internal Error) response to the second
INVITE andmusT include aRetry-After header field with a randomly chosen value of between 0 and 10
seconds.

A UAS that receives atNVITE on a dialog while anNVITE it had sent on that dialog is in progress
MUST return a 491 (Request Pending) response to the rectidE andMuUsT include aRetry-After
header field with a value chosen as follows:

1. If the UAS is the owner of th€all-ID of the dialog ID (meaning it generated the value), Redry-
After header field has a randomly chosen value of between 2.1 and 4 seconds in units of 10 ms.

2. If the UAS isnot the owner of theCall-ID of the dialog ID, theRetry-After header field has a ran-
domly chosen value of between 0 and 2 seconds in units of 10 ms.

If a UA receives a rdNVITE for an existing dialog, iMusT check any version identifiers in the session
description or, if there are no version identifiers, the content of the session description to see if it has changed.
If the session description has changed, the WAST adjust the session parameters accordingly, possibly
after asking the user for confirmation.

Versioning of the session description can be used to accommodate the capabilities of new arrivals to a conference,
add or delete media, or change from a unicast to a multicast conference.

If the new session description is not acceptable, the UAS can reject it by returning a 488 (Not Acceptable
Here) response for the tBNVITE. This responssHoOULD include aWarning header field.

If a UAS generates a 2xx response and never receive&h it SHOULD generate 8YE to terminate
the dialog.

A UAS MAY choose not to generate 180 (Ringing) responses forlVEFE because UACs do not
typically render this information to the user. For the same reason, WASschoose not to use ahlert-
Info header field or a body wit@ontent-Disposition "alert” in responses to a riNVITE.

A UAS providing an offer in a 2xx (because th&VITE did not contain an offersHOULD construct
the offer as if the UAS were making a brand new call, subject to the constraints of sending an offer that
updates an existing session, as described in [13] in the case of SDP. Specifically, this meassithait it

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 60]

2347

2348

2349

2350

2351

2352

2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380

2381
2382

2383

2384

2385

2386

2387

2388

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

include as many media formats and media types that the UA is willing to support. ThevUAS ensure

that the session description overlaps with its previous session description in media formats, transports, or
other parameters that require support from the peer. This is to avoid the need for the peer to reject the session
description. If, however, it is unacceptable to the UAC, the UBMOULD generate an answer with a valid
session description, and then serB¥E to terminate the session.

15 Terminating a Session

This section describes the procedures for terminating a session established by SIP. The state of the session
and the state of the dialog are very closely related. When a session is initiated W\ IdiE, each 1xx or
2xx response from a distinct UAS creates a dialog, and if that response completes the offer/answer exchange,
it also creates a session. As aresult, each session is “associated” with a single dialog - the one which resulted
in its creation. If an initialNVITE generates a non-2xx final response, that terminates all sessions (if any)
and all dialogs (if any) that were created through responses to the request. By virtue of completing the
transaction, a non-2xx final response also prevents further sessions from being created as a result of the
INVITE. The BYE request is used to terminate a specific session or attempted session. In this case, the
specific session is the one with the peer UA on the other side of the dialog. WB¢R & received on a
dialog, any session associated with that diagdeguLD terminate. A UAMUST NOT send éBYE outside of
a dialog. The caller's UAvAY send aBYE for either confirmed or early dialogs, and the callee’s WWAY
send aBYE on confirmed dialogs, buwiusT NOT send aBYE on early dialogs. However, the callee’s UA
MUST NOT send aBYE on a confirmed dialog until it has received AGK for its 2xx response or until the
server transaction times out. If no SIP extensions have defined other application layer state associated with
the dialog, theBYE also terminates the dialog.
The impact of a non-2xx final responsellVITE on dialogs and sessions makes the use ANCEL
attractive. TheCANCEL attempts to force a non-2xx response tolR¥ITE (in particular, a 487). There-
fore, if a UAC wishes to give up on its call attempt entirely, it can se@AMCEL. If the INVITE results in
2xx final response(s) to tHAIVITE, this means that a UAS accepted the invitation whileGAdNCEL was
in progress. The UAMAY continue with the sessions established by any 2xx responsegyoterminate
them withBYE.
The notion of “hanging up” is not well defined within SIP. It is specific to a particular, albeit common, user
interface. Typically, when the user hangs up, it indicates a desire to terminate the attempt to establish a session, and
to terminate any sessions already created. For the caller's UA, this would inpANEEL request if the initial
INVITE has not generated a final response, aBY & to all confirmed dialogs after a final response. For the callee’s
UA, it would typically imply aBYE; presumably, when the user picked up the phone, a 2xx was generated, and so
hanging up would result in BYE after theACK is received. This does not mean a user cannot hang up before
receipt of theACK, it just means that the software in his phone needs to maintain state for a short while in order to

clean up properly. If the particular Ul allows for the user to reject a call before its answered, a 403 (Forbidden) is a
good way to express that. As per the rules abo\YE can't be sent.

15.1 Terminating a Session with @8YE Request
15.1.1 UAC Behavior

A BYE request is constructed as would any other request within a dialog, as described in Section 12.
Once theBYE is constructed, the UAC core creates a new HWITE client transaction, and passes it
the BYE request. The UAG1UST consider the session terminated (and therefore stop sending or listening

for media) as soon as tH&YE request is passed to the client transaction. If the response fé&'1hads a

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 61]

2389

2390

2391

2392

2393

2394

2395

2396

2397
2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

481 (Call/Transaction Does Not Exist) or a 408 (Request Timeout) or no response at all is received for the
BYE (that is, a timeout is returned by the client transaction), the WAGT consider the session and the
dialog terminated.

15.1.2 UAS Behavior

A UAS first processes thBYE request according to the general UAS processing described in Section 8.2.
A UAS core receiving 8YE request checks if it matches an existing dialog. IfB¥E does not match an
existing dialog, the UAS corsHoOULD generate a 481 (Call/Transaction Does Not Exist) response and pass
that to the server transaction.

This rule means thatBYE sent without tags by a UAC will be rejected. This is a change from RFC 2543, which
allowedBYE without tags.

A UAS core receiving aBYE request for an existing dialogiusT follow the procedures of Sec-
tion 12.2.2 to process the request. Once done, the 8A&ULD terminate the session (and therefore stop
sending and listening for media). The only case where it can elect not to are multicast sessions, where par-
ticipation is possible even if the other participant in the dialog has terminated its involvement in the session.
Whether or not it ends its participation on the session, the UAS @OIET generate a 2xx response to the
BYE, andMusT pass that to the server transaction for transmission.

The UASMuUST still respond to any pending requests received for that dialogRE@SOMMENDED that
a 487 (Request Terminated) response is generated to those pending requests.

16 Proxy Behavior

16.1 Overview

SIP proxies are elements that route SIP requests to user agent servers and SIP responses to user agent clients.
A request may traverse several proxies on its way to a UAS. Each will make routing decisions, modifying
the request before forwarding it to the next element. Responses will route through the same set of proxies
traversed by the request in the reverse order.

Being a proxy is a logical role for a SIP element. When a request arrives, an element that can play the
role of a proxy first decides if it needs to respond to the request on its own. For instance, the request may be
malformed or the element may need credentials from the client before acting as a proxy. The slement
respond with any appropriate error code. When responding directly to a request, the element is playing the
role of a UAS andvusT behave as described in Section 8.2.

A proxy can operate in either a stateful or stateless mode for each new request. When stateless, a proxy
acts as a simple forwarding element. It forwards each request downstream to a single element determined by
making a targeting and routing decision based on the request. It simply forwards every response it receives
upstream. A stateless proxy discards information about a message once the message has been forwarded.
A stateful proxy remembers information (specifically, transaction state) about each incoming request and
any requests it sends as a result of processing the incoming request. It uses this information to affect the
processing of future messages associated with that request. A statefuMaroxshoose to “fork” a request,
routing it to multiple destinations. Any request that is forwarded to more than one losati®nbe handled
statefully.

In some circumstances, a proxay forward requests using stateful transports (such as TCP) without
being transaction-stateful. For instance, a prexgy forward a request from one TCP connection to another

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioiipires Aug 2002 [Page 62]

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

transaction statelessly as long as it places enough information in the message to be able to forward the
response down the same connection the request arrived on. Requests forwarded between different types of
transports where the proxy’s TU must take an active role in ensuring reliable delivery on one of the transports
MUST be forwarded transaction statefully.

A stateful proxymAy transition to stateless operation at any time during the processing of a request,
so long as it did not do anything that would otherwise prevent it from being stateless initially (forking, for
example, or generation of a 100 response). When performing such a transition, all state is simply discarded.
The proxysHouLD NOT initiate aCANCEL request.

Much of the processing involved when acting statelessly or statefully for a request is identical. The next
several subsections are written from the point of view of a stateful proxy. The last section calls out those
places where a stateless proxy behaves differently.

16.2 Stateful Proxy

When stateful, a proxy is purely a SIP transaction processing engine. Its behavior is modeled here in terms of
the server and client transactions defined in Section 17. A stateful proxy has a server transaction associated
with one or more client transactions by a higher layer proxy processing component (see figure 3), known as
a proxy core. Anincoming request is processed by a server transaction. Requests from the server transaction
are passed to a proxy core. The proxy core determines where to route the request, choosing one or more
next-hop locations. An outgoing request for each next-hop location is processed by its own associated
client transaction. The proxy core collects the responses from the client transactions and uses them to send
responses to the server transaction.

A stateful proxy creates a new server transaction for each new request received. Any retransmissions
of the request will then be handled by that server transaction per Section 17. The proxyusarbéehave
as a UAS with respect to sending an immediate provisional on that server transaction (such as 100 Trying)
as described in Section 8.2.6. Thus, a stateful piss®uULD NOT generate 100 Trying responses to non-
INVITE requests.

This is a model of proxy behavior, not of software. An implementation is free to take any approach that
replicates the external behavior this model defines.

For all new requests, including any with unknown methods, an element intending to proxy the request
MUST:

. Validate the request (Section 16.3)

. Preprocess routing information (Section 16.4)

1
2
3. Determine target(s) for the request (Section 16.5)
4. Forward the request to each target (Section 16.6)
5

. Process all responses (Section 16.7)

16.3 Request Validation

Before an element can proxy a requesimiitsT verify the message’s validity. A valid message must pass
the following checks:

1. Reasonable Syntax

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 63]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

c
S
I=33]
(R
T2
©
5 c
7 o proxy "higher" ‘E'%
85 layer 28
S oc
> ©
c
k)
€0
[OX
S
i
Figure 3: Stateful Proxy Model
2467 2. URI scheme
2468 3. Max-Forwards
2469 4. (Optional) Loop Detection
2470 5. Proxy-Require
2471 6. Proxy-Authorization
2472 If any of these checks fail, the elememtsT behave as a user agent server (see Section 8.2) and respond

2473 With an error code.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 64]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2474 Notice that a proxy is not required to detect merged requestsiad NOT treat merged requests as an
2475 error condition. The endpoints receiving the requests will resolve the merge as described in Section 8.2.2.2.

2476 1. Reasonable syntax check

2477 The requesmusT be well-formed enough to be handled with a server transaction. Any components

2478 involved in the remainder of these Request Validation steps or the Request Forwardinggestion

2479 be well-formed. Any other components, well-formed or n&0ULD be ignored and remain un-

2480 changed when the message is forwarded. For instance, an element would not reject a request because
2481 of a malformedDate header field. Likewise, a proxy would not remove a malfornidte header

2482 field before forwarding a request.

2483 This protocol is designed to be extended. Future extensions may define new methods and header fields
2484 at any time. An elememniusT NOT refuse to proxy a request because it contains a method or header

2485 field it does not know about.

2486 2. URI scheme check

2487 If the Request-URI has a URI whose scheme is not understood by the proxy, the megwLD
2488 reject the request with a 416 (Unsupported URI Scheme) response.

2489 3. Max-Forwards check

2490 TheMax-Forwards header field (Section 20.22) is used to limit the number of elements a SIP request
2491 can traverse.

2492 If the request does not contairviax-Forwards header field, this check is passed.

2493 If the request contains Max-Forwards header field with a field value greater than zero, the check is
2494 passed.

2495 If the request containsax-Forwards header field with a field value of zero (0), the elemeoisT

2496 NoOT forward the request. If the request was@PTIONS, the elemenmAy act as the final recipient

2497 and respond per Section 11. Otherwise, the elemerstr return a 483 (Too many hops) response.

2498 4. Optional Loop Detection check

2499 An elementmAY check for forwarding loops before forwarding a request. If the request contains a
2500 Via header field with a sent-by value that equals a value placed into previous requests by the proxy,
2501 the request has been forwarded by this element before. The request has either looped or is legitimately
2502 spiraling through the element. To determine if the request has looped, the elemeperform the

2503 branch parameter calculation described in Step 8 of Section 16.6 on this message and compare it to
2504 the parameter received in thdita header field. If the parameters match, the request has looped. If
2505 they differ, the request is spiraling, and processing continues. If a loop is detected, the element

2506 return a 482 (Loop Detected) response.

2507 5. Proxy-Require check

2508 Future extensions to this protocol may introduce features that require special handling by proxies.
2509 Endpoints will include &Proxy-Require header field in requests that use these features, telling the
2510 proxy not to process the request unless the feature is understood.

2511 If the request containsRroxy-Require header field (Section 20.29) with one or more option-tags this
2512 element does not understand, the elemens T return a 420 (Bad Extension) response. The response

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiodpires Aug 2002 [Page 65]

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523
2524
2525
2526

2527
2528
2529

2530

2531

2532

2533

2534

2535
2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547
2548
2549
2550

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

MUST include anUnsupported (Section 20.40) header field listing those option-tags the element did
not understand.

6. Proxy-Authorization check

If an element requires credentials before forwarding a request, the requestbe inspected as
described in Section 22.3. That section also defines what the element must do if the inspection fails.

16.4 Route Information Preprocessing

The proxymusT inspect theRequest-URI of the request. If thé&kequest-URI of the request contains a
value this proxy previously placed intoRecord-Route header field (see Section 16.6 item 4), the proxy
MUST replace th&Request-URI in the request with the last value from tReute header field, and remove
that value from th&oute header field. The proxyiusT then proceed as if it received this modified request.

This will only happen when the element sending the request to the proxy (which may have been an endpoint)
is a strict router. This rewrite on receive is necessary to enable backwards compatibility with those elements. It
also allows elements following this specification to preserveRbguest-URI through strict-routing proxies (see
Section 12.2.1.1).

This requirement does not obligate a proxy to keep state in order to detect URIs it previously plaeedrid-
Route header fields. Instead, a proxy need only place enough information in those URIs to recognize them as values
it provided when they later appear.

If the Request-URI contains ammaddr parameter, the proxyusT check to see if its value is in the set
of addresses or domains the proxy is configured to be responsible for. Reitpgest-URI has an maddr
parameter with a value the proxy is responsible for, and the request was received using the port and transport
indicated (explicitly or by default) in thRequest-URI, the proxymusT strip the maddr and any non-default
port or transport parameter and continue processing as if those values had not been present in the request.

A request may arrive with amaddr matching the proxy, but on a port or transport different from that indicated
in the URI. Such a request needs to be forwarded to the proxy using the indicated port and transport.

If the first value in theRoute header field indicates this proxy, the proxysT remove that value from
the request.

16.5 Determining request targets

Next, the proxy calculates the target(s) of the request. The set of targets will either be predetermined
by the contents of the request or will be obtained from an abstract location service. Each target in the set is
represented as a URI.

If the Request-URI of the request contains anaddr parameter, th&equest-URI MusT be placed
into the target set as the only target URI, and the praxgT proceed to Section 16.6.

If the domain of theRequest-URI indicates a domain this element is not responsible forRibguest-

URI MUsT be placed into the target set as the only target, and the elemesit proceed to the task of

Request Forwarding (Section 16.6).
There are many circumstances in which a proxy might receive a request for a domain it is not responsible for.
A firewall proxy handling outgoing calls (the way HTTP proxies handle outgoing requests) is an example of where
this is likely to occur.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 66]

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574
2575

2576

2577

2578

2579

2580

2581

2582

2583
2584

2585

2586

2587

2588

2589

2590

2591

2592

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

If the target set for the request has not been predetermined as described above, this implies that the
element is responsible for the domain in RRequest-URI, and the elememiiAy use whatever mechanism
it desires to determine where to send the request. Any of these mechanisms can be modeled as accessing an
abstract Location Service. This may consist of obtaining information from a location service created by a SIP
Registrar, reading a database, consulting a presence server, utilizing other protocols, or simply performing
an algorithmic substitution on thRequest-URI. When accessing the location service constructed by a
registrar, theRequest-URI MUST first be canonicalized as described in Section 10.3 before being used as
an index. The output of these mechanisms is used to construct the target seRefjinest-URI contains
a SIPS URI, all elements in the target seisT be SIPS URIs.

If the Request-URI does not provide sufficient information for the proxy to determine the target set,
it SHOULD return a 485 (Ambiguous) response. This respasiseuLD contain aContact header field
containing URIs of new addresses to be tried. For exampl&N®IHTE to sip:John.Smith@company.com
may be ambiguous at a proxy whose location service has multiple John Smiths listed. See Section 21.4.23
for details.

Any information in or about the request or the current environment of the elewrente used in the
construction of the target set. For instance, different sets may be constructed depending on contents or the
presence of header fields and bodies, the time of day of the request’s arrival, the interface on which the
request arrived, failure of previous requests, or even the element’s current level of utilization.

As potential targets are located through these services, their URIs are added to the target set. Targets can
only be placed in the target set once. If a target URI is already present in the set (based on the definition of
equality for the URI type), iMmusT NOT be added again.

A proxy MUST NOT add additional targets to the target set if tRequest-URI of the original request
does not indicate a resource this proxy is responsible for.

A proxy can only change thRequest-URI of a request during forwarding if it is responsible for that URI. If
the proxy is not responsible for that URI, it will not recurse on 3xx or 416 responses as described below.

If the Request-URI of the original request indicates a resource this proxy is responsible for, the proxy
MAY continue to add targets to the set after beginning Request Forwardinpy luse any information
obtained during thaprocessing to determine new targets. For instance, a proxy may choose to incorporate
contacts obtained in a redirect response (3xx) into the target set. If a proxy uses a dynamic source of
information while building the target set (for instance, if it consults a SIP RegistrasatuLD monitor
that source for the duration of processing the request. New locatisas LD be added to the target set as
they become available. As above, any given WRIST NOT be added to the set more than once.

Allowing a URI to be added to the set only once reduces unnecessary network traffic, and in the case of incor-
porating contacts from redirect requests prevents infinite recursion.

For example, a trivial location service is a "no-op”, where the target URI is equal to the incoming request
URI. The request is sent to a specific next hop proxy for further processing. During request forwarding of
Section 16.6, Item 6, the identity of that next hop, expressed as a SIP or SIPS URI, is inserted as the top-most
Route header field value into the request.

If the Request-URI indicates a resource at this proxy that does not exist, the pnagr return a 404
(Not Found) response.

If the target set remains empty after applying all of the above, the pnasr return an error response,
which sHouLD be the 480 (Temporarily Unavailable) response.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 67]

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624
2625

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

16.6 Request Forwarding

As soon as the target set is non-empty, a praxy begin forwarding the request. A stateful proxMay

process the set in any order. Miay process multiple targets serially, allowing each client transaction to
complete before starting the next.Miay start client transactions with every target in parallel. It algy
arbitrarily divide the set into groups, processing the groups serially and processing the targets in each group
in parallel.

A common ordering mechanism is to use the qvalue parameter of targets obtained from Contact header
fields (see Section 20.10). Targets are processed from highest gvalue to lowest. Targets with equal gvalues
may be processed in parallel.

A stateful proxy must have a mechanism to maintain the target set as responses are received and associate
the responses to each forwarded request with the original request. For the purposes of this model, this
mechanism is a “response context” created by the proxy layer before forwarding the first request.

For each target, the proxy forwards the request following these steps:

Make a copy of the received request

Update the Request-URI

Update the Max-Forwards header field

Optionally add a Record-route header field value
Optionally add additional header fields

Postprocess routing information

Determine the next-hop address, port, and transport

Add a Via header field value

© © N o 0o M 0 NP

Add a Content-Length header field if necessary

=
©

Forward the new request

11. Settimer C
Each of these steps is detailed below:

1. Copy request

The proxy starts with a copy of the received request. The sopgT initially contain all of the header
fields from the received request. Fields not detailed in the processing describedvhebownoT be
removed. The copgHOULD maintain the ordering of the header fields as in the received request.
The proxymusT NOT reorder field values with a common field name (See Section 7.3.1). The proxy
MUST NOT add to, modify, or remove the message body.

An actual implementation need not perform a copy; the primary requirement is that the processing for each
next hop begin with the same request.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 68]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2626 2. Request-URI

2627 The Request-URI in the copy’s start linemusT be replaced with the URI for this target. If the URI

2628 contains any parameters not allowed in a Request-URI, vheyT be removed.

2629 This is the essence of a proxy’s role. This is the mechanism through which a proxy routes a request
2630 toward its destination.

2631 In some circumstances, the receirelquest-URI is placed into the target set without being modified.

2632 For that target, the replacement above is effectively a no-op.

2633 3. Max-Forwards

2634 If the copy contains Max-Forwards header field, the proxyiusT decrement its value by one (1).
2635 If the copy does not contain a Max-Forwards header field, the pvmgT add one with a field value
2636 which sHouLD be 70.

2637 Some existing UAs will not provide Blax-Forwards header field in a request.

2638 4. Record-Route

2639 If this proxy wishes to remain on the path of future requests in a dialog created by this request (as-
2640 suming the request creates a dialogMitsT insert aRecord-Route header field value into the copy

2641 before any existingRecord-Route header field values, even iRoute header field is already present.

2642 Requests establishing a dialog may contain a preloaded Route header field.

2643 If this request is already part of a dialog, the preyyouLD insert aRecord-Route header field value

2644 if it wishes to remain on the path of future requests in the dialog. In normal endpoint operation as
2645 described in Section 12 theBecord-Route header field values will not have any effect on the route

2646 sets used by the endpoints.

2647 The proxy will remain on the path if it chooses to not insefR@cord-Route header field value into

2648 requests that are already part of a dialog. However, it would be removed from the path when an endpoint that

2649 has failed reconstitutes the dialog.

2650 A proxy MAY insert aRecord-Route header field value into any request. If the request does not
2651 initiate a dialog, the endpoints will ignore the value. See Section 12 for details on how endpoints use
2652 the Record-Route header field values to construgbute header fields.

2653 Each proxy in the path of a request chooses whether to dddcard-Route header field value

2654 independently - the presence dRacord-Route header field in a request does not obligate this proxy
2655 to add a value.

2656 The URI placed in th&ecord-Route header field valuetusT be a SIP URI. This URMUST contain

2657 anlr parameter (see Section 19.1.1). This WRly be different for each destination the request is

2658 forwarded to. The URSHOULD NOT contain the transport parameter unless the proxy has knowledge
2659 (such as in a private network) that the next downstream element that will be in the path of subsequent
2660 requests supports that transport.

2661 The URI this proxy provides will be used by some other element to make a routing decision. This proxy, in

2662 general, has no way to know what the capabilities of that element are, so it must restrict itself to the mandatory

2663 elements of a SIP implementation: SIP URIs and either the TCP or UDP transports.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 69]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2664 The URI placed in th&Record-Route header fieldwusT resolve to the element inserting it (or a

2665 suitable stand-in) when the server location procedures of [4] are applied to it, so that subsequent
2666 requests reach the same SIP element. IRbquest-URI contains a SIPS URI, the URI placed into

2667 theRecord-Route header fieldnusT be a SIPS URI.

2668 If the URI placed in thdrecord-Route header field needs to be rewritten when it passes back through
2669 in a response, the URIUST be distinct enough to locate at that time. (The request may spiral through
2670 this proxy, resulting in more than oriRecord-Route header field value being added). Item 8 of

2671 Section 16.7 recommends a mechanism to make the URI sufficiently distinct.

2672 The proxyMAY include parameters in tHRecord-Route header field value. These will be echoed in

2673 some responses to the request such as the 200 (OK) responBR4T&. Such parameters may be

2674 useful for keeping state in the message rather than the proxy.

2675 If a proxy needs to be in the path of any type of dialog (such as one straddling a firewsiq LD

2676 add aRecord-Route header field value to every request with a method it does not understand since
2677 that method may have dialog semantics.

2678 The URI a proxy places into Becord-Route header field is only valid for the lifetime of any dialog

2679 created by the transaction in which it occurs. A dialog-stateful proxy, for examiple, refuse to

2680 accept future requests with that value in fRequest-URI after the dialog has terminated. Non-

2681 dialog-stateful proxies, of course, have no concept of when the dialog has terminated, butthey

2682 encode enough information in the value to compare it against the dialog identifier of future requests
2683 andMAY reject requests not matching that information. EndpoimtsT NOT use a URI obtained

2684 from aRecord-Route header field outside the dialog in which it was provided. See Section 12 for
2685 more information on an endpoint’s useR&cord-Route header fields.

2686 Record-routing may be required by certain services where the proxy needs to observe all messages
2687 in a dialog. However, it slows down processing and impairs scalability and thus proxies should only
2688 record-route if required for a particular service.

2689 TheRecord-Route process is designed to work for any SIP request that initiates a dINMITE is

2690 the only such request in this specification, but extensions to the protecobefine others.

2601 5. Add Additional Header Fields
2602 The proxymAY add any other appropriate header fields to the copy at this point.

2693 6. Postprocess routing information

2604 A proxy MAY have a local policy that mandates that a request visit a specific set of proxies before being
2695 delivered to the destination. A proxyusT ensure that all such proxies are loose routers. Generally,
2696 this can only be known with certainty if the proxies are within the same administrative domain. This
2697 set of proxies is represented by a set of URIs (each of which contailrsgpti@meter). This setusT

2698 be pushed into th&®oute header field of the copy ahead of any existing values, if present. If the
2699 Route header field is absent, itusT be added, containing that list of URIs. If tiRequest-URI

2700 specifies a SIPS URI, the set of URIwST all be converted to SIPS URI, if they were not already

2701 SIPS URI.

2702 If the proxy has a local policy that mandates that the request visit one specific proxy, an alternative to
2703 pushing &Route value into theRoute header field is to bypass the forwarding logic of item 10 below,

2704 and instead just send the request to the address, port, and transport for that specific proxy. If the

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 70]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2705 request has Route header field, this alternativeusT NOT be used unless it is known that next hop
2706 proxy is a loose router. Otherwise, this approanty be used, but th&®oute insertion mechanism
2707 above is preferred for its robustness, flexibility, generality and consistency of operation. Furthermore,
2708 if the Request-URI contains a SIPS URI, TLBUST be used to communicate with that proxy.

2709 If the copy contains &oute header field, the proxyiusT inspect the URI in its first value. If that
2710 URI does not contain & parameter, the proxyusT modify the copy as follows:

2711 e The proxymusT place theRequest-URI into theRoute header field as the last value.

2712 e The proxymusT then place the firdRoute header field value into tiRequest-URI and remove
2713 that value from th&koute header field.

2714 Appending theRequest-URI to theRoute header field is part of a mechanism used to pass the information

2715 in that Request-URI through strict-routing elements. "Popping” the fibute header field value into the

2716 Request-URI formats the message the way a strict-routing element expects to receive it (with its own URI in
2717 theRequest-URI and the next location to visit in the firRoute header field value).

2718 7. Determine Next-Hop Address, Port, and Transport

2719 The proxyMAY have a local policy to send the request to a specific IP address, port, and transport,
2720 independent of the values of tikoute and Request-URI. Such a policymusT NOT be used if the

2721 proxy is not certain that the IP address, port, and transport correspond to a server that is a loose router.
2722 However, this mechanism for sending the request through a specific nextNop RECOMMENDED,

2723 instead &Route header field should be used for that purpose as described above.

2724 In the absence of such an overriding mechanism, the proxy applies the procedures listed in [4] as
2725 follows to determine where to send the request. If the proxy has reformatted the request to send to
2726 a strict-routing element as described in step 6 above, the pnagr apply those procedures to the

2727 Request-URI of the request. Otherwise, the proxusT apply the procedures to the first value in

2728 theRoute header field, if present, else tRequest-URI. The procedures will produce an ordered set

2729 of (address, port, transport) tuples.

2730 As described in [4], the proxyusT attempt to deliver the message to the first tuple in that set, and

2731 proceed through the set in order until the delivery attempt succeeds.

2732 For each tuple attempted, the promysT format the message as appropriate for the tuple and send

2733 the request using a new client transaction as detailed in steps 8 through 10. Since each attempt uses a
2734 new client transaction, it represents a new branch. Thus, the branch parameter provided Midéh the

2735 header field inserted in stepMBJST be different for each attempt.

2736 If the client transaction reports failure to send the request or a timeout from its state machine, the
2737 proxy continues to the next address in that ordered set. If the ordered set is exhausted, the request
2738 cannot be forwarded to this element in the target set. The proxy does not need to place anything in
2739 the response context, but otherwise acts as if this element of the target set returned a 408 (Request
2740 Timeout) final response.

2741 8. Add a Via header field value

2742 The proxyMUST insert aVia header field value into the copy before the existifig header field
2743 values. The construction of this value follows the same guidelines of Section 8.1.1.7. This implies

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 71]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2744 that the proxy will compute its own branch parameter, which will be globally unique for that branch,
2745 and contain the requisite magic cookie.

2746 Proxies choosing to detect loops have an additional constraint in the value they use for construction of
2747 the branch parameter. A proxy choosing to detect I@pSULD create a branch parameter separable

2748 into two parts by the implementation. The first pasT satisfy the constraints of Section 8.1.1.7 as

2749 described above. The second is used to perform loop detection and distinguish loops from spirals.
2750 Loop detection is performed by verifying that, when a request returns to a proxy, those fields hav-
2751 ing an impact on the processing of the request have not changed. The value placed in this part of
2752 the branch parametesHouLD reflect all of those fields (including ariyoute, Proxy-Require and

2753 Proxy-Authorization header fields). This is to ensure that if the request is routed back to the proxy
2754 and one of those fields changes, it is treated as a spiral and not a loop (Section 16.3 A common
2755 way to create this value is to compute a cryptographic hash ofdheg, From tag, Call-ID header

2756 field, the Request-URI of the request received (before translation) and the sequence number from
2757 the CSeq header field, in addition to arfroxy-Require andProxy-Authorization header fields that

2758 may be present. The algorithm used to compute the hash is implementation-dependent, but MD5
2759 [34], expressed in hexadecimal, is a reasonable choice. (Base64 is not permissilitekéor. a

2760 If a proxy wishes to detect loops, théranch” parameter it suppliemusT depend on all information

2761 affecting processing of a request, including the inconfRegjuest-URI and any header fields affecting the

2762 request’s admission or routing. This is necessary to distinguish looped requests from requests whose routing

2763 parameters have changed before returning to this server.

2764 The request methodusT NOT be included in the calculation of theanch parameter. In particular,

2765 CANCEL andACK requests (for non-2xx responses)sT have the sambranch value as the cor-

2766 responding request they cancel or acknowledge. brhach parameter is used in correlating those

2767 requests at the server handling them (see Sections 17.2.3 and 9.2).

2768 9. Add a Content-Length header field if necessary

2769 If the request will be sent to the next hop using a stream-based transport and the copy contains no
2770 Content-Length header field, the proxyusT insert one with the correct value for the body of the
2771 request (see Section 20.14).

2722 10. Forward Request

2773 A stateful proxymusT create a new client transaction for this request as described in Section 17.1 and
2774 instructs the transaction to send the request using the address, port and transport determined in step 7.

2775

2776 11. Settimer C

2777 In order to handle the case where I[BWITE request never generates a final response, the TU uses
2778 a timer which is called timer C. Timer @UST be set for each client transaction whenlBVITE

2779 request is proxied. The timerusT be larger than 3 minutes. Section 16.7 bullet 2 discusses how this
2780 timer is updated with provisional responses, and Section 16.8 discusses processing when it fires.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sciospires Aug 2002 [Page 72]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

o 16.7 Response Processing

2782 When a response is received by an element, it first tries to locate a client transaction (Section 17.1.3) match-
273 ing the response. If none is found, the elemenisT process the response (even if it is an informational

2784 response) as a stateless proxy (described below). If a match is found, the response is handed to the client
2785 transaction.

2786 Forwarding responses for which a client transaction (or more generally any knowledge of having sent an associ-
2787 ated request) is not found improves robustness. In particular, it ensures that “late” 2xx resptS¢SExequests

2788 are forwarded properly.

2789 As client transactions pass responses to the proxy layer, the following processitgake place:

2790 . Find the appropriate response context

2791 . Update timer C for provisional responses

2792 . Remove the topmost Via

. Check to see if this response should be forwarded immediately

1
2
3

2793 4. Add the response to the response context
2794 5
6

2795 . When necessary, choose the best final response from the response context

2796 If no final response has been forwarded after every client transaction associated with the response
2797 context has been terminated, the proxy must choose and forward the “best” response from those it has
2798 seen so far.

2799 The following processing/usT be performed on each response that is forwarded. It is likely that

2800 more than one response to each request will be forwarded: at least each provisional and one final
2801 response.

2802 7. Aggregate authorization header field values if necessary
2803 8. Optionally rewrite Record-Route header field values
2804 9. Forward the response

205 10. Generate any necess&RNCEL requests
2806 Each of the above steps are detailed below:

2807 1. Find Context

2808 The proxy locates the “response context” it created before forwarding the original request using the
2809 key described in Section 16.6. The remaining processing steps take place in this context.

2810 2. Update timer C for provisional responses

2811 For anINVITE transaction, if the response is a provisional response with status codes 101 to 199
2812 inclusive (i.e., anything but 100), the proxyusT reset timer C for that client transaction. The timer
2813 MAY be reset to a different value, but this valuesT be greater than 3 minutes.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 73]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2814 3. Via

2815 The proxy removes the topmadgta header field value from the response.

2816 If no Via header field values remain in the response, the response was meant for this element and
2817 MUST NOT be forwarded. The remainder of the processing described in this section is not performed
2818 on this message, the UAC processing rules described in Section 8.1.3 are followed instead (transport
2819 layer processing has already occurred).

2820 This will happen, for instance, when the element gener@®NCEL requests as described in Sec-

2821 tion 10.

2822 4. Add response to context

2823 Final responses received are stored in the response context until a final response is generated on the
2824 server transaction associated with this context. The response may be a candidate for the best final
2825 response to be returned on that server transaction. Information from this response may be needed in
2826 forming the best response even if this response is not chosen.

2827 If the proxy chooses to recurse on any contacts in a 3xx response by adding them to the target set, it
2828 MUST remove them from the response before adding the response to the response context. However,
2829 a proxyMUST NOT recurse to a non-SIPS URI if tieequest-URI of the original request was a SIPS

2830 URI. If the proxy recurses on all of the contacts in a 3xx response, the [megyLD NOT add the

2831 resulting contactless response to the response context.

2832 Removing the contact before adding the response to the response context prevents the next element up-

2833 stream from retrying a location this proxy has already attempted.

2834 3xx responses may contain a mixture of SIP, SIPS, and non-SIP URIs. A proxy may choose to recurse on

2835 the SIP and SIPS URIs and place the remainder into the response context to be returned potentially in the final

2836 response.

2837 If a proxy receives a 416 (Unsupported URI Scheme) response to a request Rdupsest-URI

2838 scheme was not SIP, but the scheme in the original received request was SIP or SIPS (that is, the
2839 proxy changed the scheme from SIP or SIPS to something else when it proxied a request), the proxy
2840 SHOULD add a new URI to the target set. This UslouLD be a SIP URI version of the non-SIP URI

2841 that was just tried. In the case of the tel URL, this is accomplished by placing the telephone-subscriber
2842 part of the tel URL into the user part of the SIP URI, and setting the hostpart to the domain where the
2843 prior request was sent. See Section 19.1.6 for more detail on forming SIP URIs from tel URLSs.

2844 As with a 3xx response, if a proxy “recurses” on the 416 by trying a SIP or SIPS URI instead, the 416
2845 responsesHOULD NOT be added to the response context.

2846 5. Check response for forwarding

2847 Until a final response has been sent on the server transaction, the following respoisgedse for-
2848 warded immediately:

2849 e Any provisional response other than 100 (Trying)

2850 e Any 2xx response

2851 If a 6xx response is received, it is not immediately forwarded, but the stateful progyLD cancel
2852 all client pending transactions as described in Section 10, amdstr NOT create any new branches
2853 in this context.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 74]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2854 This is a change from RFC 2543, which mandated that the proxy was to forward the 6xx response imme-

2855 diately. For anNVITE transaction, this approach had the problem that a 2xx response could arrive on another

2856 branch, in which case the proxy would have to forward the 2xx. The result was that the UAC could receive

2857 a 6xx response followed by a 2xx response, which should never be allowed to happen. Under the new rules,

2858 upon receiving a 6xx, a proxy will issueGANCEL request, which will generally result in 487 responses from

2859 all outstanding client transactions, and then at that point the 6xx is forwarded upstream.

2860 After a final response has been sent on the server transaction, the following respossese for-

2861 warded immediately:

2862 e Any 2xx response to aiNVITE request

2863 A stateful proxyMmUusT NOT immediately forward any other responses. In particular, a stateful proxy
2864 MUST NOT forward any 100 (Trying) response. Those responses that are candidates for forwarding
2865 later as the “best” response have been gathered as described in step “Add Response to Context”.
2866 Any response chosen for immediate forwardimgsT be processed as described in steps “Aggregate
2867 Authorization Header Field Values” through “Record-Route”.

2868 This step, combined with the next, ensures that a stateful proxy will forward exactly one final response
2869 to a nonNVITE request, and either exactly one non-2xx response or one or more 2xx responses to
2870 anINVITE request.

2871 6. Choosing the best response

2872 A stateful proxyMusT send a final response to a response context’s server transaction if no final
2873 responses have been immediately forwarded by the above rules and all client transactions in this
2874 response context have been terminated.

2875 The stateful proxymusT choose the “best” final response among those received and stored in the
2876 response context.

2877 If there are no final responses in the context, the proxgT send a 408 (Request Timeout) response

2878 to the server transaction.

2879 Otherwise, the proxyusT forward a response from the responses stored in the response context.
2880 It MuSsT choose from the 6xx class responses if any exist in the context. If no 6xx class responses
2881 are present, the proxgHouLD choose from the lowest response class stored in the response context.
2882 The proxyMAY select any response within that chosen class. The pgelxyULD give preference to

2883 responses that provide information affecting resubmission of this request, such as 401, 407, 415, 420,
2884 and 484 if the 4xx class is chosen.

2885 A proxy which receives a 503 (Service Unavailable) respasiseuLd NOT forward it upstream

2886 unless it can determine that any subsequent requests it might proxy will also generate a 503. In other
2887 words, forwarding a 503 means that the proxy knows it cannot service any requests, not just the one
2888 for theRequest-URI in the request which generated the 503.

2889 The forwarded respongeusT be processed as described in steps “Aggregate Authorization Header
2890 Field Values” through “Record-Route”.

2801 For example, if a proxy forwarded a request to 4 locations, and received 503, 407, 501, and 404
2892 responses, it may choose to forward the 407 (Proxy Authentication Required) response.

2893 1xx and 2xx responses may be involved in the establishment of dialogs. When a request does not
2894 contain a To tag, the To tag in the response is used by the UAC to distinguish multiple responses to

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 75]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2895 a dialog creating request. A proxyusT NOT insert a tag into thdo header field of a 1xx or 2xx

2896 response if the request did not contain one. A prexysT NOT modify the tag in thelo header field

2897 of a 1xx or 2xx response.

2898 Since a proxy may not insert a tag into the header field of a 1xx response to a request that did not

2899 contain one, it cannot issue non-100 provisional responses on its own. However, it can branch the
2900 request to a UAS sharing the same element as the proxy. This UAS can return its own provisional
2001 responses, entering into an early dialog with the initiator of the request. The UAS does not have to be
2902 a discreet process from the proxy. It could be a virtual UAS implemented in the same code space as
2903 the proxy.

2004 3-6xx responses are delivered hop-hop. When issuing a 3-6xx response, the element is effectively
2905 acting as a UAS, issuing its own response, usually based on the responses received from downstream
2006 elements. An elemergHOULD preserve the To tag when simply forwarding a 3-6xx response to a
2907 request that did not contain a To tag.

2908 A proxy MusT NOT modify the To tag in any forwarded response to a request that contains a To tag.
2909 While it makes no difference to the upstream elements if the proxy replaced the To tag in a forwarded

2910 3-6xx response, preserving the original tag may assist with debugging.

2911 When the proxy is aggregating information from several responses, choosing a To tag from among them

2912 is arbitrary, and generating a new To tag may make debugging easier. This happens, for instance, when

2913 combining 401 (Unauthorized) and 407 (Proxy Authentication Required) challenges, or combining Contact

2914 values from unencrypted and unauthenticated 3xx responses.

2015 7. Aggregate Authorization Header Field Values

2016 If the selected response is a 401 (Unauthorized) or 407 (Proxy Authentication Required), the proxy
2917 MUST collect anyWWW-Authenticate and Proxy-Authenticate header field values from all other

2018 401 (Unauthorized) and 407 (Proxy Authentication Required) responses received so far in this re-
2919 sponse context and add them to this response without modification before forwarding. The resulting
2920 401 (Unauthorized) or 407 (Proxy Authentication Required) response could have S&W&hat

2021 Authenticate AND Proxy-Authenticate header field values.

2022 This is necessary because any or all of the destinations the request was forwarded to may have re-
2023 quested credentials. The client needs to receive all of those challenges and supply credentials for each
2024 of them when it retries the request. Motivation for this behavior is provided in Section 26.

2025 8. Record-Route

2026 If the selected response contairRecord-Route header field value originally provided by this proxy,

2027 the proxymAY choose to rewrite the value before forwarding the response. This allows the proxy to
2028 provide different URISs for itself to the next upstream and downstream elements. A proxy may choose
2929 to use this mechanism for any reason. For instance, it is useful for multi-homed hosts.

2930 The new URI provided by the proxyusT satisfy the same constraints on URIs place®atord-

2031 Route header fields in requests (see Step 4 of Section 16.6) with the following modifications:

2032 The URISHOULD NOT contain the transport parameter unless the proxy has knowledge that the next
2933 upstream (as opposed to downstream) element that will be in the path of subsequent requests supports
2034 that transport.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 76]

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948
2949
2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

10.

When a proxy does decide to modify tRecord-Route header field in the response, one of the
operations it performs is locating tikecord-Route value that it had inserted. If the request spiraled,
and the proxy insertedRecord-Route value in each iteration of the spiral, locating the correct value

in the response (which must be the proper iteration in the reverse direction) is tricky. The rules above
recommend that a proxy wishing to rewriiecord-Route header field values insert sufficiently
distinct URIs into theRecord-Route header field so that the right one may be selected for rewriting.

A RECOMMENDED mechanism to achieve this is for the proxy to append a unique identifier for the
proxy instance to the user portion of the URI.

When the response arrives, the proxy modifies the Restord-Route whose identifier matches the
proxy instance. The modification results in a URI without this piece of data appended to the user
portion of the URI. Upon the next iteration, the same algorithm (find the topResbrd-Route
header field value with the parameter) will correctly extract the fedtord-Route header field

value inserted by that proxy.

Not every response to a request to which a proxy adBeeord-Route header field value will contain
aRecord-Route header field. If the response does contaRezord-Route header field, it will contain the
value the proxy added.

. Forward response

After performing the processing described in steps “Aggregate Authorization Header Field Values”
through “Record-Route”, the proxyAy perform any feature specific manipulations on the selected
response. The proxyiusT NOT add to, modify, or remove the message body. Unless otherwise
specified, the proxyusT NOT remove any header field values other than\fieeheader field value
discussed in Section 16.7 Item 3In particular, the proxymusT NOT remove any “received” pa-
rameter it may have added to the n®&%h header field value while processing the request associated
with this response. The proxyusT pass the response to the server transaction associated with the
response context. This will result in the response being sent to the location now indicated in the top-
mostVia header field value. If the server transaction is no longer available to handle the transmission,
the elemenMusT forward the response statelessly by sending it to the server transport. The server
transaction might indicate failure to send the response or signal a timeout in its state machine. These
errors would be logged for diagnostic purposes as appropriate, but the protocol requires no remedial
action from the proxy.

The proxyMUsST maintain the response context until all of its associated transactions have been ter-
minated, even after forwarding a final response.

Generat€ ANCELSs

If the forwarded response was a final response, the pvaxgT generate £ ANCEL request for all

pending client transactions associated with this response context. A pHDXYLD also generate a
CANCEL request for all pending client transactions associated with this response context when it
receives a 6xx response. A pending client transaction is one that has received a provisional response,
but no final response (it is in the proceeding state) and has not had an assCG&MEEL generated

for it. GeneratingCANCEL requests is described in Section 9.1.

The requirement t&€ ANCEL pending client transactions upon forwarding a final response does not
guarantee that an endpoint will not receive multiple 200 (OK) responses &\ARE. 200 (OK)

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 77]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

2076 responses on more than one branch may be generated bef@AMNEEL requests can be sent and
2077 processed. Further, it is reasonable to expect that a future extension may override this requirement to
2978 issueCANCEL requests.

279 16.8 Processing Timer C

2080 If timer C should fire, the proxyusT either reset the timer with any value it chooses, or terminate the
2081 Client transaction. If the client transaction has received a provisional response, thevusxygenerate a

2022 CANCEL request matching that transaction. If the client transaction has not received a provisional response,
2083 the proxyMusT behave as if the transaction received a 408 (Request Timeout) response.

2084 Allowing the proxy to reset the timer allows the proxy to dynamically extend the transaction’s lifetime
2085 based on current conditions (such as utilization) when the timer fires.

286 16.9 Handling Transport Errors

2087 If the transport layer notifies a proxy of an error when it tries to forward a request (see Section 18.4), the
2088 Proxy MUST behave as if the forwarded request received a 400 (Bad Request) response.

2989 If the proxy is notified of an error when forwarding a response, it drops the response. ThepaxyD

2000 NOT cancel any outstanding client transactions associated with this response context due to this notification.

2991 If a proxy cancels its outstanding client transactions, a single malicious or misbehaving client can cause all
2992 transactions to fail through its Via header field.

2003 16.10 CANCEL Processing

2004 A stateful proxyMAY generate £ ANCEL to any other request it has generated at any time (subject to re-
2005 Ceiving a provisional response to that request as described in section 9.1). Ayurexycancel any pending

2006 Client transactions associated with a response context when it receives a maahNQEL request.

2097 A stateful proxymAy generateCANCEL requests for pendindNVITE client transactions based on the

2008 period specified in théNVITE's Expires header field elapsing. However, this is generally unnecessary
2000 Since the endpoints involved will take care of signaling the end of the transaction.

3000 While aCANCEL request is handled in a stateful proxy by its own server transaction, a hew response
3001 context is not created for it. Instead, the proxy layer searches its existing response contexts for the server
3002 transaction handling the request associated withGWBICEL. If a matching response context is found, the

3003 elementMusT immediately return a 200 (OK) response to @&NCEL request. In this case, the element is

3004 acting as a user agent server as defined in Section 8.2. Furthermore, the elerseigenerateCANCEL

3005 requests for all pending client transactions in the context as described in Section 16.7 step 10.

3006 If a response context is not found, the element does not have any knowledge of the request to apply
3007 the CANCEL to. It musT statelessly forward thEANCEL request (it may have statelessly forwarded the

3008 associated request previously).

00 16.11 Stateless Proxy

so0 When acting statelessly, a proxy is a simple message forwarder. Much of the processing performed when
so11 acting statelessly is the same as when behaving statefully. The differences are detailed here.

3012 A stateless proxy does not have any notion of a transaction, or of the response context used to describe
sz Stateful proxy behavior. Instead, the stateless proxy takes messages, both requests and responses, directly

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 78]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

s014 from the transport layer (See section 18). As a result, stateless proxies do not retransmit messages on their
3015 own. They do, however, forward all retransmission they receive (they do not have the ability to distinguish
so16 @ retransmission from the original message). Furthermore, when handling a request statelessly, an element
3017 MUST NOT generate its own 100 (Trying) or any other provisional response.

3018 A stateless proxyusT validate a request as described in Section 16.3

3019 A stateless proxyusT follow the request processing steps described in Sections 16.4 through 16.5 with
s20 the following exception:

3021 e A stateless proxyusT choose one and only one target from the target set. This chaisg only

3022 rely on fields in the message and time-invariant properties of the server. In particular, a retransmitted
3023 requesMusT be forwarded to the same destination each time it is processed. FurtheGANEEL

3024 and non-RoutedCK requestsvusT generate the same choice as their associatedITE.

3025 A stateless proxyusT follow the request processing steps described in Section 16.6 with the following
3026 exceptions:

3027 e The requirement for unique branch IDs across space and time applies to stateless proxies as well.
3028 However, a stateless proxy cannot simply use a random number generator to compute the first com-
3029 ponent of the branch ID, as described in Section 16.6 bullet 8. This is because retransmissions of
3030 a request need to have the same value, and a stateless proxy cannot tell a retransmission from the
3031 original request. Therefore, the component of the branch parameter that makes it moguee

3032 the same each time a retransmitted request is forwarded. Thus for a stateless prbranchepa-

3033 rametemMuUsT be computed as a combinatoric function of message parameters which are invariant on
3034 retransmission.

3035 The stateless proxyAY use any technique it likes to guarantee uniqueness of its branch IDs across
3036 transactions. However, the following procedur&sCOMMENDED. The proxy examines the branch

3037 ID in the topmosWVia header field of the received request. If it begins with the magic cookie, the first
3038 component of the branch ID of the outgoing request is computed as a hash of the received branch ID.
3039 Otherwise, the first component of the branch ID is computed as a hash of the tofimdsie tag in

3040 theTo header field, the tag in tHerom header field,the Call-ID header field, th€Seq number (but

3041 not method), and thRequest-URI from the received request. One of these fields will always vary

3042 across two different transactions.

3043 e All other message transformations specified in Section M&.8T result in the same transformation

3044 of a retransmitted request. In particular, if the proxy inserf&eaord-Route value or pushes URIs

3045 into the Route header field, itmusT place the same values in retransmissions of the request. As
3046 for the Via branch parameter, this implies that the transformatiensT be based on time-invariant

3047 configuration or retransmission-invariant properties of the request.

3048 e A stateless proxy determines where to forward the request as described for stateful proxies in Sec-
3049 tion 16.6 Item 10. The request is sent directly to the transport layer instead of through a client trans-
3050 action.

3051 Since a stateless proxy must forward retransmitted requests to the same destination and add identical branch

3052 parameters to each of them, it can only use information from the message itself and time-invariant configuration

3053 data for those calculations. If the configuration state is not time-invariant (for example, if a routing table is updated)

3054 any requests that could be affected by the change may not be forwarded statelessly during an interval equal to the

3055 transaction timeout window before or after the change. The method of processing the affected requests in that

3056 interval is an implementation decision. A common solution is to forward them transaction statefully.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 79]

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Stateless proxiesusT NOT perform special processing fQVANCEL requests. They are processed by
the above rules as any other requests. In particular, a stateless proxy applies thiosdenigeader field
processing t&€ANCEL requests that it applies to any other request.

Response processing as described in Section 16.7 does not apply to a proxy behaving statelessly. When
a response arrives at a stateless proxy, the proxgT inspect the sent-by value in the first (topmogix
header field value. If that address matches the proxy (it equals a value this proxy has inserted into previous
requests) the proxyiusT remove that header field value from the response and forward the result to the
location indicated in the neXtia header field value. The proxyusT NOT add to, modify, or remove the
message body. Unless specified otherwise, the proxsyT NOT remove any other header field values. If
the address does not match the proxy, the mesgaga be silently discarded.

16.12 Summary of Proxy Route Processing

In the absence of local policy to the contrary, the processing a proxy performs on a request containing a
Route header field can be summarized in the following steps.

1. The proxy will inspect th&Request-URI. If it indicates a resource owned by this proxy, the proxy
will replace it with the results of running a location service. Otherwise, the proxy will not change the
Request-URI.

2. The proxy will inspect the URI in the topmadRbute header field value. If it indicates this proxy, the
proxy removes it from th&®oute header field (this route node has been reached).

3. The proxy will forward the request to the resource indicated by the URI in the toRoose header
field value or in theRequest-URI if no Route header field is present. The proxy determines the
address, port and transport to use when forwarding the request by applying the procedures in [4] to
that URI.

If no strict-routing elements are encountered on the path of the requeðeest-URI will always
indicate the target of the request.

16.12.1 Examples

16.12.1.1 Basic SIP Trapezoid This scenario is the basic SIP trapezoid, 31R1 - P2 > U2, with
both proxies record-routing. Here is the flow.
U1 sends:

INVITE sip:callee@domain.com SIP/2.0
Contact: sip:caller@ul.example.com

to P1. P1 is an outbound proxy. P1 is not responsible for domain.com, so it looks it up in DNS and
sends it there. It also adds€Reecord-Route header field value:

INVITE sip:callee@domain.com SIP/2.0

Contact: sip:caller@ul.example.com
Record-Route: <sip:pl.example.com;lr>

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 80]

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

P2 gets this. It is responsible for domain.com so it runs a location service and rewritReghest-
URI. It also adds &ecord-Route header field value. There is foute header field, so it resolves the new
Request-URI to determine where to send the request:

INVITE sip:callee@u2.domain.com SIP/2.0
Contact: sip:caller@ul.example.com
Record-Route: <sip:p2.domain.com;lr>
Record-Route: <sip:pl.example.com;lr>

The callee at u2.domain.com gets this and responds with a 200 OK:

SIP/2.0 200 OK

Contact: sip:callee@u2.domain.com
Record-Route: <sip:p2.domain.com;lr>
Record-Route: <sip:pl.example.com;lr>

The callee at u2 also sets its dialog state’s remote target URI to sip:caller@ul.example.com and its route
set to

(<sip:p2.domain.com;Ir>,<sip:pl.example.com;lr>)

This is forwarded by P2 to P1 to Ul as normal. Now, U1 sets its dialog state’s remote target URI to
sip:callee@u2.domain.com and its route set to

(<sip:pl.example.com;lr>,<sip:p2.domain.com;lr>)

Since all the route set elements containlthgarameter, U1 constructs the followiBy E request:

BYE sip:callee@u2.domain.com SIP/2.0
Route: <sip:pl.example.com;lr>,<sip:p2.domain.com;lr>

As any other element (including proxies) would do, it resolves the URI in the topRmste header
field value using DNS to determine where to send the request. This goes to P1. P1 notices that it is not
responsible for the resource indicated in Bequest-URI so it doesn’t change it. It does see that it is the
first value in theRoute header field, so it removes that value, and forwards the request to P2:

BYE sip:callee@u2.domain.com SIP/2.0
Route: <sip:p2.domain.com;ir>

P2 also notices it is not responsible for the resource indicated yaheest-URI (it is responsible for
domain.com, not u2.domain.com), so it doesn’t change it. It does see itself in tHedurtst header field
value, so it removes it and forwards the following to u2.domain.com based on a DNS lookup against the
Request-URI:

BYE sip:callee@u2.domain.com SIP/2.0

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 81]

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

16.12.1.2 Traversing a strict-routing proxy In this scenario, a dialog is established across four prox-
ies, each of which addRecord-Route header field values. The third proxy implements the strict-routing
procedures specified in RFC 2543 and the bis drafts up to bis-05.

Ul->P1->P2->P3->P4->U2

The INVITE arriving at U2 contains

INVITE sip:callee@u2.domain.com SIP/2.0
Contact: sip:caller@ul.example.com
Record-Route: <sip:p4.domain.com;lr>
Record-Route: <sip:p3.middle.com>
Record-Route: <sip:p2.example.com;lr>
Record-Route: <sip:pl.example.com;lr>

Which U2 responds to with a 200 OK. Later, U2 sends the follovBME request to P4 based on the
first Route header field value.

BYE sip:caller@ul.example.com SIP/2.0
Route: <sip:p4.domain.com;ir>

Route: <sip:p3.middle.com>

Route: <sip:p2.example.com;lr>

Route: <sip:pl.example.com;ir>

P4 is not responsible for the resource indicated inRRbguest-URI so it will leave it alone. It notices
that it is the element in the firRoute header field value so it removes it. It then prepares to send the request
based on the now firgtoute header field value of sip:p3.middle.com, but it notices that this URI does not
contain thdr parameter, so before sending, it reformats the request to be:

BYE sip:p3.middle.com SIP/2.0
Route: <sip:p2.example.com;lr>
Route: <sip:pl.example.com;ir>
Route: <sip:caller@ul.example.com>

P3 is a strict router, so it forwards the following to P2:
BYE sip:p2.example.com;lr SIP/2.0
Route: <sip:pl.example.com;lr>

Route: <sip:caller@ul.example.com>

P2 sees the request-URI is a value it placed inReaord-Route header field, so before further pro-
cessing, it rewrites the request to be

BYE sip:caller@ul.example.com SIP/2.0
Route: <sip:pl.example.com;lr>

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiodpires Aug 2002 [Page 82]

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

P2 is not responsible for ul.example.com so it sends the request to P1 based on the resolution of the
Route header field value.
P1 notices itself in the topmoRoute header field value, so it removes it, resulting in:

BYE sip:caller@ul.example.com SIP/2.0

Since P1 is not responsible for ul.example.com and thereRonte header field, P1 will forward the
request to ul.example.com based onRleguest-URI.

16.12.1.3 RewritingRecord-Route header field values In this scenario, U1 and U2 are in different
private namespaces and they enter a dialog through a proxy P1, which acts as a gateway between the names-
paces.
Ul->P1->U2
U1 sends:

INVITE sip:callee@gateway.leftprivatespace.com SIP/2.0
Contact: <sip:caller@ul.leftprivatespace.com>

P1 uses its location service and sends the following to U2:
INVITE sip:callee@rightprivatespace.com SIP/2.0
Contact: <sip:caller@ul.leftprivatespace.com>
Record-Route: <sip:gateway.rightprivatespace.com;lr>

U2 sends this 200 (OK) back to PI:

SIP/2.0 200 OK
Contact: <sip:callee@u2.rightprivatespace.com>

Record-Route: <sip:gateway.rightprivatespace.com;lr>

P1 rewrites itRecord-Route header parameter to provide a value that U1 will find useful, and sends
the following to U1:

SIP/2.0 200 OK
Contact: <sip:callee@uZ2.rightprivatespace.com>
Record-Route: <sip:gateway.leftprivatespace.com;ir>

Later, U1 sends the followinBYE request to P1:

BYE sip:callee@u2.rightprivatespace.com SIP/2.0
Route: <sip:gateway.leftprivatespace.com;lr>

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 83]

3187

3188

3189

3190
3191
3192
3193
3194
3195

3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206

3207

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

which P1 forwards to U2 as

BYE sip:callee@u?2.rightprivatespace.com SIP/2.0

17 Transactions

SIP is a transactional protocol: interactions between components take place in a series of independent
message exchanges. Specifically, a SIP transaction consists of a single request and any responses to that
request, which include zero or more provisional responses and one or more final responses. In the case
of a transaction where the request wadM¥ITE (known as ariNVITE transaction), the transaction also
includes theACK only if the final response was not a 2xx response. If the response was a 2RCkhis

not considered part of the transaction.

The reason for this separation is rooted in the importance of delivering all 200 (OK) response&id BB
to the UAC. To deliver them all to the UAC, the UAS alone takes responsibility for retransmitting them (see Sec-
tion 13.3.1.4), and the UAC alone takes responsibility for acknowledging themA@t (see Section 13.2.2.4).
Since thisACK is retransmitted only by the UAC, it is effectively considered its own transaction.

Transactions have a client side and a server side. The client side is known as a client transaction and the
server side as a server transaction. The client transaction sends the request, and the server transaction sends
the response. The client and server transactions are logical functions that are embedded in any number of
elements. Specifically, they exist within user agents and stateful proxy servers. Consider the example in
Section 4. In this example, the UAC executes the client transaction, and its outbound proxy executes the
server transaction. The outbound proxy also executes a client transaction, which sends the request to a
server transaction in the inbound proxy. That proxy also executes a client transaction, which in turn sends
the request to a server transaction in the UAS. This is shown in Figure 4.

F———————— + Fm———————— + Fm———————— + Fm———————— +
| +-+|Request |+—+ +-+|Request |[+—-+ +-+|Request|+-+ |
| IC[l====——= >[|S| |C||===———~ >[|S| [C||==—=——~ >[IS] |
[] llef] llel [l llel |
[ill [Irl1il] Il 1ill il |
[lell vl lell vl lell vl |
| Inll llel|nl] llel | llel |
(] Il 1] [Irf 1] lIrf |
|1l 111l (11l 1
[1Tl 1Tl [Tl [T 1] L
[Il [IrlIrl] [Irl Il Il |
[lall llal [all llal [all llal |
| Inll [Inf |nl] lInf | Il |
| [s||Responsel|s| |s||Responsel|s| |s||Response||s| |
| < [+—+ +—+|<—————- [+—+ +—+|<—————— [+—+
+—— + +——— + +——— + +——— +
UAC Outbound Inbound UAS
Proxy Proxy

Figure 4: Transaction relationships

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Scioxpires Aug 2002 [Page 84]

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

A stateless proxy does not contain a client or server transaction. The transaction exists between the UA
or stateful proxy on one side, and the UA or stateful proxy on the other side. As far as SIP transactions are
concerned, stateless proxies are effectively transparent. The purpose of the client transaction is to receive
a request from the element in which the client is embedded (call this element the “Transaction User” or
TU; it can be a UA or a stateful proxy), and reliably deliver the request to a server transaction. The client
transaction is also responsible for receiving responses and delivering them to the TU, filtering out any re-
sponse retransmissions or disallowed responses (such as a resp&@#g.tddditionally, in the case of an
INVITE request, the client transaction is responsible for generating@erequest for any final response
excepting a 2xx response.

Similarly, the purpose of the server transaction is to receive requests from the transport layer and deliver
them to the TU. The server transaction filters any request retransmissions from the network. The server
transaction accepts responses from the TU and delivers them to the transport layer for transmission over the
network. In the case of dlNVITE transaction, it absorbs tHeCK request for any final response excepting
a 2xx response.

The 2xx response and ilSCK receive special treatment. This response is retransmitted only by a UAS,
and itsACK generated only by the UAC. This end-to-end treatment is needed so that a caller knows the
entire set of users that have accepted the call. Because of this special handling, retransmissions of the 2xx
response are handled by the UA core, not the transaction layer. Similarly, generatiod\Gittier the 2xx
is handled by the UA core. Each proxy along the path merely forwards each 2xx respdNs&Ti& and
its correspondin@\CK.

17.1 Client Transaction

The client transaction provides its functionality through the maintenance of a state machine.

The TU communicates with the client transaction through a simple interface. When the TU wishes to
initiate a new transaction, it creates a client transaction and passes it the SIP request to send and an IP
address, port, and transport to which to send it. The client transaction begins execution of its state machine.
Valid responses are passed up to the TU from the client transaction.

There are two types of client transaction state machines, depending on the method of the request passed
by the TU. One handles client transactions fNVITE requests. This type of machine is referred to as
anINVITE client transaction. Another type handles client transactions for all requests &XSH#PE and
ACK. This is referred to as a ndNVITE client transaction. There is no client transaction A@K. If the
TU wishes to send aACK, it passes one directly to the transport layer for transmission.

TheINVITE transaction is different from those of other methods because of its extended duration. Nor-
mally, human input is required in order to respond tdldNITE. The long delays expected for sending a
response argue for a three-way handshake. On the other hand, requests of other methods are expected to
complete rapidly. Because of the ntVITE transaction’s reliance on a two-way handshake, $HsuULD
respond immediately to nOMNVITE requests.

17.1.1 INVITE Client Transaction

17.1.1.1 Overview ofNVITE Transaction ThelINVITE transaction consists of a three-way handshake.

The client transaction sends 84VITE, the server transaction sends responses, and the client transaction
sends amACK. For unreliable transports (such as UDP), the client transaction retransmits requests at an
interval that starts at T1 seconds and doubles after every retransmission. T1 is an estimate of the round-
trip time (RTT), and it defaults to 500 ms. Nearly all of the transaction timers described here scale with

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 85]

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3201

3292

3293

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

T1, and changing T1 adjusts their values. The request is not retransmitted over reliable transports. After
receiving a 1xx response, any retransmissions cease altogether, and the client waits for further responses.
The server transaction can send additional 1xx responses, which are not transmitted reliably by the server
transaction. Eventually, the server transaction decides to send a final response. For unreliable transports,
that response is retransmitted periodically, and for reliable transports, it is sent once. For each final response
that is received at the client transaction, the client transaction send€ldnthe purpose of which is to

guench retransmissions of the response.

17.1.1.2 Formal Description The state machine for tHBIVITE client transaction is shown in Figure 5.
The initial state, “calling”MUsT be entered when the TU initiates a nhew client transaction wittNafiTE
request. The client transactiorusT pass the request to the transport layer for transmission (see Section 18).
If an unreliable transport is being used, the client transactiosT start timer A with a value of T1. If a
reliable transport is being used, the client transactispuLD NOT start timer A (Timer A controls request
retransmissions). For any transport, the client transastiosT start timer B with a value of 64*T1 seconds
(Timer B controls transaction timeouts).

When timer A fires, the client transactionusT retransmit the request by passing it to the transport
layer, andvusT reset the timer with a value of 2*T1. The formal definitionrefransmitwithin the context
of the transaction layer is to take the message previously sent to the transport layer and pass it to the transport
layer once more.

When timer A fires 2*T1 seconds later, the requesisT be retransmitted again (assuming the client
transaction is still in this state). This processsT continue so that the request is retransmitted with intervals
that double after each transmission. These retransmissiansLD only be done while the client transaction
is in the “calling” state.

The default value for T1 is 500 ms. T1 is an estimate of the RTT between the client and server trans-
actions. ElementsiAy (though it iSNOT RECOMMENDED) use smaller values of T1 within closed, private
networks that do not permit general Internet connection.MR¥ be chosen larger, and this RECOM-
MENDED if it is known in advance (such as on high latency access links) that the RTT is larger. Whatever
the value of T1, the exponential backoffs on retransmissions described in this seg8orbe used.

If the client transaction is still in the “calling” state when timer B fires, the client transastianuLD
inform the TU that a timeout has occurred. The client transastioaT NOT generate alCK. The value of
64*T1 is equal to the amount of time required to send seven requests in the case of an unreliable transport.

If the client transaction receives a provisional response while in the "Calling” state, it transitions to the
“proceeding” state. In the “proceeding” state, the client transastioduLD NOT retransmit the request any
longer. Furthermore, the provisional responsesT be passed to the TU. Any further provisional responses
MUST be passed up to the TU while in the “proceeding” state.

When in either the "Calling” or “Proceeding” states, reception of a response with status code from
300-699muUST cause the client transaction to transition to “Completed”. The client transaetisit pass
the received response up to the TU, and the client transaitisT generate a\CK request, even if the
transport is reliable (guidelines for constructing @K from the response are given in Section 17.1.1.3)
and then pass th&CK to the transport layer for transmission. TREK MUST be sent to the same address,
port, and transport to which the original request was sent. The client transaetmoLD start timer D
when it enters the “Completed” state, with a value of at least 32 seconds for unreliable transports, and a
value of zero seconds for reliable transports. Timer D reflects the amount of time that the server transaction
can remain in the “Completed” state when unreliable transports are used. This is equal to Timer H in the
INVITE server transaction, whose default is 64*T1. However, the client transaction does not know the value

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 86]

3294

3295

3296

3297

3298

3299

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

[INVITE from TU
Timer A fires |INVITE sent

Reset A, \Y Timer B fires
INVITE sent +——————————— + or Transport Err.
- | |-——————— +inform TU
| | Calling | |
= >| |- >|
= + 2xX |
| | 2xxto TU |
| 1xx |
300-699 +——————————————— + |1xxto TU
ACK sent | | |
resp.to TU | 1xx \% |
| Ixxto TU ——————————— + |
R | |
| | |Proceeding |-———————————— >
|+ 5 l2x |
| = +2xxtoTU |
| 300-699 | |
| ACK sent, | |
| resp. to TU| |
| | | NOTE:
| 300-699 Vv |
| ACK sent +—————————— +Transport Err. | transitions
| +———————- | [Infform TU | labeled with
|] | Completed |-————————————~ >| the event
| +———— >| | | over the action
| F————— = + | to take
I o |
| | | Timer D fires |
+—— + |- |
| |
v I
- + |
I | I
| Terminated|<—————————————- +
I |
+——— +

Figure 5:INVITE client transaction

of T1 in use by the server transaction, so an absolute minimum of 32s is used instead of basing Timer D on
T1.

Any retransmissions of the final response that are received while in the “Completed¥stsitecause
the ACK to be re-passed to the transport layer for retransmission, but the newly received ragpsmse
NOT be passed up to the TU. A retransmission of the response is defined as any response which would match
the same client transaction based on the rules of Section 17.1.3.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 87]

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

If timer D fires while the client transaction is in the “Completed” state, the client transaetisT move
to the terminated state, anoMtusT inform the TU of the timeout.

When in either the “Calling” or “Proceeding” states, reception of a 2xx respapsa cause the client
transaction to enter the "Terminated” state, and the respansa be passed up to the TU. The handling of
this response depends on whether the TU is a proxy core or a UAC core. A UAC core will handle generation
of the ACK for this response, while a proxy core will always forward the 200 (OK) upstream. The differing
treatment of 200 (OK) between proxy and UAC is the reason that handling of it does not take place in the
transaction layer.

The client transactiomusT be destroyed the instant it enters the "Terminated” state. This is actually
necessary to guarantee correct operation. The reason is that 2xx responsié$Mbr&nare treated differ-
ently; each one is forwarded by proxies, and A@K handling in a UAC is different. Thus, each 2xx needs
to be passed to a proxy core (so that it can be forwarded) and to a UAC core (so it can be acknowledged). No
transaction layer processing takes place. Whenever a response is received by the transport, if the transport
layer finds no matching client transaction (using the rules of Section 17.1.3), the response is passed directly
to the core. Since the matching client transaction is destroyed by the first 2xx, subsequent 2xx will find no
match and therefore be passed to the core.

17.1.1.3 Construction of theACK Request This section specifies the construction ALK requests
sent within the client transaction. A UAC core that generate8@K for 2xx MUsT instead follow the rules
described in Section 13.

The ACK request constructed by the client transactiorsT contain values for th€all-ID, From, and
Request-URI that are equal to the values of those header fields in the request passed to the transport by
the client transaction (call this the “original request”). Treeheader field in th&CK MusT equal theTo
header field in the response being acknowledged, and therefore will usually differ frofo tieader field
in the original request by the addition of the tag parameter. AGK MUST contain a singlé/ia header
field, and thismusT be equal to the tolia header field of the original request. T@&Seq header field in
the ACK MUST contain the same value for the sequence number as was present in the original request, but
the method parameterusT be equal to ACK”.

If the INVITE request whose response is being acknowledgedRuade header fields, those header
fieldsmusT appear in théACK. This is to ensure that th&CK can be routed properly through any down-
stream stateless proxies.

Although any request1AY contain a body, a body in aACK is special since the request cannot be
rejected if the body is not understood. Therefore, placement of bodA&SKnfor non-2xx iISNOT RECOM-
MENDED, but if done, the body types are restricted to any that appeared INYH&E, assuming that the
response to thiNVITE was not 415. If it was, the body in thH&CK MAY be any type listed in thAccept
header field in the 415.

For example, consider the following request:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKkjshdyff
To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Max-Forwards: 70

Call-ID: 987asjd97y7atg

CSeq: 986759 INVITE

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiodpires Aug 2002 [Page 88]

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The ACK request for a non-2xx final response to this request would look like this:

ACK sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKkjshdyff
To: Bob <sip:bob@biloxi.com>;tag=99sa0xk

From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Max-Forwards: 70

Call-ID: 987asjd97y7atg

CSeq: 986759 ACK

17.1.2 NoniNVITE Client Transaction

17.1.2.1 Overview of the nonNNVITE Transaction Non{NVITE transactions do not make useAEK.
They are simple request-response interactions. For unreliable transports, requests are retransmitted at an in-
terval which starts at T1 and doubles until it hits T2. If a provisional response is received, retransmissions
continue for unreliable transports, but at an interval of T2. The server transaction retransmits the last re-
sponse it sent, which can be a provisional or final response, only when a retransmission of the request is
received. This is why request retransmissions need to continue even after a provisional response, they are to
ensure reliable delivery of the final response.

Unlike anINVITE transaction, a notNVITE transaction has no special handling for the 2xx response.
The result is that only a single 2xx response to a MWITE is ever delivered to a UAC.

17.1.2.2 Formal Description The state machine for the ndRVITE client transaction is shown in Fig-
ure 6. Itis very similar to the state machine fsWITE.

The “Trying” state is entered when the TU initiates a new client transaction with a request. When
entering this state, the client transactemouLD set timer F to fire in 64*T1 seconds. The requesisT be
passed to the transport layer for transmission. If an unreliable transport is in use, the client tramgastion
set timer E to fire in T1 seconds. If timer E fires while still in this state, the timer is reset, but this time with a
value of MIN(2*T1, T2). When the timer fires again, it is reset to a MIN(4*T1, T2). This process continues
so that retransmissions occur with an exponentially increasing interval that caps at T2. The default value
of T2 is 4s, and it represents the amount of time a MWITE server transaction will take to respond to a
request, if it does not respond immediately. For the default values of T1 and T2, this results in intervals of
500ms, 15s,2s,4s,4s,4s, etc.

If Timer F fires while the client transaction is still in the “Trying” state, the client transaionuLD
inform the TU about the timeout, and thersiouLD enter the “Terminated” state. If a provisional response
is received while in the “Trying” state, the respongesT be passed to the TU, and then the client transaction
SHOULD move to the “Proceeding” state. If a final response (status codes 200-699) is received while in the
“Trying” state, the responsRUST be passed to the TU, and the client transactirsT transition to the
“Completed” state.

If Timer E fires while in the “Proceeding” state, the requestsT be passed to the transport layer
for retransmission, and Timer BUST be reset with a value of T2 seconds. If timer F fires while in the
“Proceeding” state, the TMUST be informed of a timeout, and the client transactiomsT transition to the
terminated state. If a final response (status codes 200-699) is received while in the “Proceeding” state, the
responsevMusT be passed to the TU, and the client transactiarsT transition to the “Completed” state.

Once the client transaction enters the “Completed” stateUgT set Timer K to fire in T4 seconds for

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiodpires Aug 2002 [Page 89]

3384

3385

3386

3387

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

|Request from app
[send request

Timer E Vv
send request +-——————————- +
Fm———————— | |- +
| | Trying | TimerF |
= >| | or Transport Err.|
o + inform TU |
200-699 | | |
resp.to TU | |1xx |
o + |resp. to TU |

I I
Timer E \% Timer F |

| -
I
| sendreq +-——————————- + or Transport Err. |
| +——————— | | inform TU |
| | |Proceeding |-———————————————- >|
| === >| |-———- + I
- +	1xx
	N [respto TU
200-699	+—— +
resp.to TU	
I I I	
I \Y I	
- +	
I I I I	
	Completed
I I I I	
- +	
I N I	
+—————————————— + |- |
I I
\Y I
NOTE: +——— + |
I I I
transitions | Terminated|<————————————————~ +
labeled with | [
the event e ———— +
over the action
to take

Figure 6: nonNVITE client transaction

unreliable transports, and zero seconds for reliable transports. The “Completed” state exists to buffer any
additional response retransmissions that may be received (which is why the client transaction remains there
only for unreliable transports). T4 represents the amount of time the network will take to clear messages

between client and server transactions. The default value of T4 is 5s. A response is a retransmission when it

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioiipires Aug 2002 [Page 90]

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

matches the same transaction, using the rules specified in Section 17.1.3. If Timer K fires while in this state,
the client transactiomusT transition to the “Terminated” state.
Once the transaction is in the terminated stateusT be destroyed.

17.1.3 Matching Responses to Client Transactions

When the transport layer in the client receives a response, it has to determine which client transaction
will handle the response, so that the processing of Sections 17.1.1 and 17.1.2 can take place. The branch
parameter in the toglia header field is used for this purpose. A response matches a client transaction under
two conditions:

1. If the response has the same value of the branch parameter in tathpader field as the branch
parameter in the tolia header field of the request that created the transaction.

2. If the method parameter in tli&Seq header field matches the method of the request that created the
transaction. The method is needed sind@fANCEL request constitutes a different transaction, but
shares the same value of the branch parameter.

A response that matches a transaction matched by a previous response is considered a retransmission of
that response.

If a request is sent via multicast, it is possible that it will generate multiple responses from different
servers. These responses will all have the same branch parameter in the tg@anbst vary in theTo
tag. The first response received, based on the rules above, will be used, and others will be viewed as
retransmissions. That is not an error; multicast SIP provides only a rudimentary “single-hop-discovery-
like” service that is limited to processing a single response. See Section 18.1.1 for details.

17.1.4 Handling Transport Errors

When the client transaction sends a request to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

The client transactiosHoULD inform the TU that a transport failure has occurred, and the client trans-
action SHoOULD transition directly to the "Terminated” state. The TU will handle the failover mechanisms
described in [4].

17.2 Server Transaction

The server transaction is responsible for the delivery of requests to the TU and the reliable transmission of
responses. It accomplishes this through a state machine. Server transactions are created by the core when a
request is received, and transaction handling is desired for that request (this is not always the case).

As with the client transactions, the state machine depends on whether the received reqUeB iSEN
request.

17.2.1 INVITE Server Transaction

The state diagram for tH&lVITE server transaction is shown in Figure 7.
When a server transaction is constructed with a request, it enters the “Proceeding” state. The server
transactiormusT generate a 100 (Trying) response unless it knows that the TU will generate a provisional

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 91]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

[INVITE
|[pass INV to TU
INVITE V send 100 if TU won't in 200ms
send response+——————————-— +
F———— | |-—————— +101-199 from TU
| | Proceeding| |send response
F————— >| |[<=—————— +
| | Transport Err.
| | Inform TU
| |- >+
Fm—————————e— + [
300-699 from TU | |2xx from TU |
send response | |send response |
| +~-—— >+
| I
INVITE \% Timer G fires |
send response+——————————— + send response |
A I |==—=—~ +
| | Completed | | |
- >| |[<=—————— + |
+—— + [
|| I
ACK| | |
- +-—— >+

| Timer H fires |
\Y; or Transport Err.|
PR + InformTU |

|[Timer | fires |

J. Rosenberg,H. Schulzrinne,G. Camarillo, ARiguiseJ| R En Besvekiransadtinn scioxpires Aug 2002 [Page 92]

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

or final response within 200 ms, in which caseiity generate a 100 (Trying) response. This provisional
response is needed to quench request retransmissions rapidly in order to avoid network congestion. The 100
(Trying) response is constructed according to the procedures in Section 8.2.6, except that the insertion of
tags in theTo header field of the response (when none was present in the request) is downgradedyrom

to SHOULD NOT. The requeskusT be passed to the TU.

The TU passes any number of provisional responses to the server transaction. So long as the server
transaction is in the “Proceeding” state, each of thegsT be passed to the transport layer for transmission.
They are not sent reliably by the transaction layer (they are not retransmitted by it) and do not cause a change
in the state of the server transaction. If a request retransmission is received while in the “Proceeding” state,
the most recent provisional response that was received from theUdJ be passed to the transport layer
for retransmission. A request is a retransmission if it matches the same server transaction based on the rules
of Section 17.2.3.

If, while in the “Proceeding” state, the TU passes a 2xx response to the server transaction, the server
transactionMusT pass this response to the transport layer for transmission. It is not retransmitted by the
server transaction; retransmissions of 2xx responses are handled by the TU. The server tramsaation
then transition to the “Terminated” state.

While in the “Proceeding” state, if the TU passes a response with status code from 300 to 699 to the
server transaction, the responsesT be passed to the transport layer for transmission, and the state machine
MUST enter the “Completed” state. For unreliable transports, timer G is set to fire in T1 seconds, and is not
set to fire for reliable transports.

This is a change from RFC 2543, where responses were always retransmitted, even over reliable transports.

When the “Completed” state is entered, timemMdsT be set to fire in 64*T1 seconds for all transports.
Timer H determines when the server transaction abandons retransmitting the response. Its value is chosen
to equal Timer B, the amount of time a client transaction will continue to retry sending a request. If timer G
fires, the response is passed to the transport layer once more for retransmission, and timer G is set to fire in
MIN(2*T1, T2) seconds. From then on, when timer G fires, the response is passed to the transport again for
transmission, and timer G is reset with a value that doubles, unless that value exceeds T2, in which case it
is reset with the value of T2. This is identical to the retransmit behavior for requests in the “Trying” state of
the noniNVITE client transaction. Furthermore, while in the “Completed” state, if a request retransmission
is received, the serveyHOULD pass the response to the transport for retransmission.

If an ACK is received while the server transaction is in the “Completed” state, the server transaction
MUST transition to the “Confirmed” state. As Timer G is ignored in this state, any retransmissions of the
response will cease.

If timer H fires while in the “Completed” state, it implies that tR&€K was never received. In this
case, the server transactiosT transition to the "Terminated” state, amUsT indicate to the TU that a
transaction failure has occurred.

The purpose of the “Confirmed” state is to absorb any additidd@X messages that arrive, triggered
from retransmissions of the final response. When this state is entered, timer | is set to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. Once timer | fires, thevseyvéransition
to the “Terminated” state.

Once the transaction is in the "Terminated” statejuitsT be destroyed. As with client transactions, this
is needed to ensure reliability of the 2xx responsd®dWITE.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 93]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

|Request received

|[passto TU
\Y
+——— +
I I
| Trying |-——————————- +
I I I
Fm———————— + |200-699 from TU
| |send response
|1xx from TU |
|send response |
I |
Request \Y 1xx from TU |
send response+——————————-— +send response|
o I — +
| | Proceeding| | |
+———— >| |[<=—————— + |
B I | I
|Trnsprt Err +—————————— + |
|Inform TU | |

I I |
| |200-699 from TU |

| |send response |

| Request vV |
| send response+-—————————— +
| | | |
| | | Completed |-————-——--——- .
| +——— >| |
+l———— | |
|Trnsprt Err +——————————- +
|Inform TU |
I |Timer J fires
I |-
| |
I \Y;
| F—————— +
| I I
N >| Terminated|
I I
e ——————— +

J. Rosenberg,H. Schulzrinne,G. CamarilldAguteBiniortiddT B seamkeminamsegtosciogpires Aug 2002 [Page 94]

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499
3500

3501

3502

3503

3504

3505

3506

3507

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

17.2.2 NoniINVITE Server Transaction

The state machine for the ndNVITE server transaction is shown in Figure 8.

The state machine is initialized in the “Trying” state and is passed a request otheiNMEATE or
ACK when initialized. This request is passed up to the TU. Once in the “Trying” state, any further request
retransmissions are discarded. A request is a retransmission if it matches the same server transaction, using
the rules specified in Section 17.2.3.

While in the “Trying” state, if the TU passes a provisional response to the server transaction, the server
transactionMusT enter the “Proceeding” state. The resporsesT be passed to the transport layer for
transmission. Any further provisional responses that are received from the TU while in the “Proceeding”
stateMUST be passed to the transport layer for transmission. If a retransmission of the request is received
while in the “Proceeding” state, the most recently sent provisional response be passed to the transport
layer for retransmission. If the TU passes a final response (status codes 200-699) to the server while in the
“Proceeding” state, the transacti®usT enter the “Completed” state, and the responsesT be passed to
the transport layer for transmission.

When the server transaction enters the “Completed” state)$tr set Timer J to fire in 64*T1 seconds
for unreliable transports, and zero seconds for reliable transports. While in the “Completed” state, the server
transactiormusT pass the final response to the transport layer for retransmission whenever a retransmission
of the request is received. Any other final responses passed by the TU to the server tramsastidore
discarded while in the “Completed” state. The server transaction remains in this state until Timer J fires, at
which point itMUST transition to the “Terminated” state.

The server transactionusT be destroyed the instant it enters the “Terminated” state.

17.2.3 Matching Requests to Server Transactions

When a request is received from the network by the server, it has to be matched to an existing transaction.
This is accomplished in the following manner.

The branch parameter in the topm&8a header field of the request is examined. If it is present and
begins with the magic cookie “zZ9hG4bK”, the request was generated by a client transaction compliant to this
specification. Therefore, the branch parameter will be unique across all transactions sent by that client. The
request matches a transaction if the branch parameter in the request is equal to the one iithiecager
field of the request that created the transaction,sdm@-by value in the topVia of the request is equal to
the one in the request that created the transaction, and in the caseAM@EL request, the method of
the request that created the transaction was@SNHCEL. This matching rule applies to botNVITE and
nondNVITE transactions alike.

Thesent-by value is used as part of the matching process because there could be duplication of branch param-
eters from different clients; uniqueness in time is mandated for construction of the parameter, but not uniqueness in
space.

If the branch parameter in the tafia header field is not present, or does not contain the magic cookie,
the following procedures are used. These exist to handle backwards compatibility with RFC 2543 compliant
implementations.

TheINVITE request matches a transaction if Request-URI, To tag, From tag, Call-ID, CSeq, and
top Via header field match those of theVITE request which created the transaction. In this case, the
INVITE is a retransmission of the original one that created the transaction ACKerequest matches a
transaction if theRequest-URI, From tag, Call-ID, CSeq number (not the method), and t&fia header

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 95]

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

field match those of thtNVITE request which created the transaction, andTthéag of theACK matches
the To tag of the response sent by the server transaction. Matching is done based on the matching rules
defined for each of those header fields. The usage of the tag o theader field helps disambiguaA€K
for 2xx from ACK for other responses at a proxy, which may have forwarded both responses (which can
occur in unusual conditions). AACK request that matches 84VITE transaction matched by a previous
ACK is considered a retransmission of that previe@K.

For all other request methods, a request is matched to a transactiorRiétheest-URI, To tag, From
tag, Call-ID Cseq (including the method), and tdgia header field match those of the request that created
the transaction. Matching is done based on the matching rules defined for each of those header fields. When
a noniNVITE request matches an existing transaction, it is a retransmission of the request that created that
transaction.

Because the matching rules include Request-URI, the server cannot match a response to a transac-
tion. When the TU passes a response to the server transaction, it must pass it to the specific server transaction
for which the response is targeted.

17.2.4 Handling Transport Errors

When the server transaction sends a response to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

First, the procedures in [4] are followed, which attempt to deliver the response to a backup. If those
should all fail, based on the definition of failure in [4he server transactiosHOULD inform the TU that a
failure has occurred, argHOULD transition to the terminated state.

18 Transport

The transport layer is responsible for the actual transmission of requests and responses over network trans-
ports. This includes determination of the connection to use for a request or response in the case of connection-
oriented transports.

The transport layer is responsible for managing persistent connections for transport protocols like TCP
and SCTP, or TLS over those, including ones opened to the transport layer. This includes connections
opened by the client or server transports, so that connections are shared between client and server transport
functions. These connections are indexed by the tuple formed from the address, port, and transport protocol
at the far end of the connection. When a connection is opened by the transport layer, this index is set to the
destination IP, port and transport. When the connection is accepted by the transport layer, this index is set to
the source IP address, port number, and transport. Note that, because the source port is often ephemeral, but
it cannot be known whether it is ephemeral or selected through procedures gofjections accepted by
the transport layer will frequently not be reused. The result is that two proxies in a “peering” relationship
using a connection-oriented transport frequently will have two connections in use, one for transactions
initiated in each direction.

It is RECOMMENDEDthat connections be kept open for some implementation-defined duration after the
last message was sent or received over that connection. This dusattom D at least equal the longest
amount of time the element would need in order to bring a transaction from instantiation to the terminated
state. This is to make it likely that transactions complete over the same connection on which they are
initiated (for example, request, response, and in the casi§\GTE, ACK for non-2xx responses). This
usually means at least 64*T1 (see Section 17.1.1.1 for a definition of T1). However, it could be larger in an

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 96]

3549

3550

3551
3552
3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564
3565
3566
3567
3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

element that has a TU using a large value for timer C (bullet 11 of Section 16.6), for example.
All SIP elementsvwusT implement UDP and TCP. SIP elememsy implement other protocols.

Making TCP mandatory for the UA is a substantial change from RFC 2543. It has arisen out of the need to
handle larger messages, whigtusT use TCP, as discussed below. Thus, even if an element never sends large
messages, it may receive one and needs to be able to handle them.

18.1 Clients
18.1.1 Sending Requests

The client side of the transport layer is responsible for sending the request and receiving responses. The
user of the transport layer passes the client transport the request, an IP address, port, transport, and possibly
TTL for multicast destinations.

If a request is within 200 bytes of the path MTU, or if it is larger than 1300 bytes and the path MTU
is unknown, the requestusT be sent using TCP. This prevents fragmentation of messages over UDP
and provides congestion control for larger messages. However, implementaticrisbe able to handle
messages up to the maximum datagram packet size. For UDP, this size is 65,535 bytes, including IP and
UDP headers.

The 200 byte “buffer” between the message size and the MTU accommodates the fact that the response in
SIP can be larger than the request. This happens due to the addifRecofd-Route header field values to the
responses ttNVITE, for example. With the extra buffer, the response can be about 170 bytes larger than the request,
and still not be fragmented on IPv4 (about 30 bytes is consumed by IP/UDP, assuming no IPSec). 1300 is chosen
when path MTU is not known, based on the assumption of a 1500 byte Ethernet MTU.

If an element sends a request over TCP because of these message size constraints, and that request
would have otherwise been sent over UDP, if the attempt to establish the connection generates either an
ICMP Protocol Not Supported, or results in a TCP reset, the element/LD retry the request, using UDP.

This is only to provide backwards compatibility with RFC 2543 compliant implementations that do not
support UDP. It is anticipated that this behavior will be deprecated in a future revision of this specification.

A client that sends a request to a multicast addressT add the maddr” parameter to itd/ia header
field value containing the destination multicast address, and for BdyuLD add the ftl” parameter with
a value of 1. Usage of IPv6 multicast is not defined in this specification, and will be a subject of future
standardization when the need arises.

These rules result in a purposeful limitation of multicast in SIP. Its primary function is to provide an
“single-hop-discovery-like” service, delivering a request to a group of homogeneous servers, where itis only
required to process the response from any one of them. This functionality is most useful for registrations.
In fact, based on the transaction processing rules in Section 17.1.3, the client transaction will accept the first
response, and view any others as retransmissions because they all contain théadaraech identifier.

Before arequest is sent, the client transpaysT insert a value of thesent-by” field into theVia header
field. This field contains an IP address or host name, and port. The usage of an FQBEMNIBMENDED.

This field is used for sending responses under certain conditions, described below. If the port is absent, the
default value depends on the transport. It is 5060 for UDP, TCP and SCTP, 5061 for TLS.

For reliable transports, the response is normally sent on the connection on which the request was re-
ceived. Therefore, the client transpettysT be prepared to receive the response on the same connection
used to send the request. Under error conditions, the server may attempt to open a new connection to send
the response. To handle this case, the transport hayer also be prepared to receive an incoming con-
nection on the source IP address from which the request was sent and port numbesantHzy” field. It

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 97]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

3592 alSOMUST be prepared to receive incoming connections on any address and port that would be selected by
3503 @ server based on the procedures described in Section 5 of [4].

3504 For unreliable unicast transports, the client transpassT be prepared to receive responses on the

3505 source IP address from which the request is sent (as responses are sent back to the source address) and the
sse6 port number in the Sent-by” field. Furthermore, as with reliable transports, in certain cases the response
ss07 Will be sent elsewhere. The cliemusT be prepared to receive responses on any address and port that would
ss0s be selected by a server based on the procedures described in Section 5 of [4].

3599 For multicast, the client transpavtusT be prepared to receive responses on the same multicast group
ss00 and port to which the request is sent (that is, it needs to be a member of the multicast group it sent the request
301 10.)

3602 If a request is destined to an IP address, port, and transport to which an existing connection is open, it
3603 IS RECOMMENDEDthat this connection be used to send the request, but another connestidme opened

ss04 and used.

3605 If a request is sent using multicast, it is sent to the group address, port, and TTL provided by the transport
ss06 User. If a request is sent using unicast unreliable transports, it is sent to the IP address and port provided by
se07 the transport user.

e 18.1.2 Receiving Responses

ss00 When a response is received, the client transport examines théddpeader field value. If the value of

ss10 the "sent-by” parameter in that header field value does not correspond to a value that the client transport is
se11 configured to insert into requests, the respanssT be silently discarded.

3612 If there are any client transactions in existence, the client transport uses the matching procedures of Sec-
se13 tion 17.1.3 to attempt to match the response to an existing transaction. If there is a match, the response

614 be passed to that transaction. Otherwise, the respouse be passed to the core (whether it be stateless

se15 proxy, stateful proxy, or UA) for further processing. Handling of these “stray” responses is dependent on
ss16 the core (a proxy will forward them, while a UA will discard, for example).

w7 18.2 Servers
se1is 18.2.1 Receiving Requests

619 A serversHoULD be prepared to received requests on any IP address, port and transport combination that can
ss20 be the result of a DNS lookup on a SIP or SIPS URI [4] that is handed out for the purposes of communicating
se21 With that server. In this context, “handing out” includes placing a URI i@antact header field in a

622 REGISTER request or a any redirect response, or Regord-Route header field in a request or response.

623 A URI can also be “handed out” by placing it on a web page or business card. It BEtsMMENDED that

3624 @ server listen for requests on the default SIP ports on all public interfaces. The typical exception would be
3625 private networks, or when multiple server instances are running on the same host. For any port and interface
ss26 that a server listens on for UDP, NtuST listen on that same port and interface for TCP. This is because

627 @ message may need to be sent using TCP, rather than UDP, if it is too large. As a result, the converse is
ss28 ot true. A server need not, and indegdouLD NOT listen for UDP on a particular address and port just

3629 because it is listening on that same address and port for UDP. There may, of course, be other reasons why a
se30 Server needs to listen for UDP on a particular address and port.

3631 When the server transport receives a request over any transpassitexamine the value of thesént-

32 by” parameter in the toWia header field value. If the host portion of theeht-by” parameter contains a

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctioipires Aug 2002 [Page 98]

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

domain name, or if it contains an IP address that differs from the packet source address, thasgrver
add a feceived” parameter to tha¥ia header field value. This parameteusT contain the source address
from which the packet was received. This is to assist the server transport layer in sending the response, since
it must be sent to the source IP address from which the request came.
Consider a request received by the server transport which looks like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060

The request is received with a source IP address of 1.2.3.4. Before passing the request up, the transport
adds a feceived” parameter, so that the request would look like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060;received=1.2.3.4

Next, the server transport attempts to match the request to a server transaction. It does so using the
matching rules described in Section 17.2.3. If a matching server transaction is found, the request is passed
to that transaction for processing. If no match is found, the request is passed to the core, which may
decide to construct a new server transaction for that request. Note that when a UAS core sends a 2xx
response tdNVITE, the server transaction is destroyed. This means that whekGHearrives, there will
be no matching server transaction, and based on this rul&Gleis passed to the UAS core, where it is
processed.

18.2.2 Sending Responses

The server transport uses the value of theM@pheader field in order to determine where to send a response.
It MmusT follow the following process:

¢ If the “sent-protocol” is a reliable transport protocol such as TCP or SCTP, or TLS over those,
the responseiusT be sent using the existing connection to the source of the original request that
created the transaction, if that connection is still open. This requires the server transport to maintain
an association between server transactions and transport connections. If that connection is no longer
open, the servesHOULD open a connection to the IP address in trecéived” parameter, if present,
using the port in the Sent-by” value, or the default port for that transport, if no port is specified.
If that connection attempt fails, the sen&nouLD use the procedures in [4] for servers in order to
determine the IP address and port to open the connection and send the response to.

e Otherwise, if theVia header field value contains anaddr” parameter, the responseusT be for-
warded to the address listed there, using the port indicatedsignt-by”, or port 5060 if none is
present. If the address is a multicast address, the resgermseLD be sent using the TTL indicated
in the “ttl” parameter, or with a TTL of 1 if that parameter is not present.

e Otherwise (for unreliable unicast transports), if the Yoa has a teceived” parameter, the response
MUST be sentto the address in theéceived” parameter, using the port indicated in treeht-by”
value, or using port 5060 if none is specified explicitly. If this fails, for example, elicits an ICMP

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sctiopires Aug 2002 [Page 99]

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

“port unreachable” response, the procedures of Section 5 sfH{duLD be used to determine where
to send the response.

e Otherwise, if it is not receiver-tagged, the respomsesT be sent to the address indicated by the
“sent-by” value, using the procedures in Section 5 of [4].

18.3 Framing

In the case of message-oriented transports (such as UDP), if the messag€dvaera-Length header
field, the message body is assumed to contain that many bytes. If there are additional bytes in the transport
packet beyond the end of the body, theysT be discarded. If the transport packet ends before the end
of the message body, this is considered an error. If the message is a respuanss, ite discarded. If its
a request, the elemestHouULD generate a 400 (Bad Request) responsiethe message has réontent-
Length header field, the message body is assumed to end at the end of the transport packet.
In the case of stream-oriented transports such as TCE;dhéent-Length header field indicates the
size of the body. Th€ontent-Length header fieldvusT be used with stream oriented transports.

18.4 Error Handling

Error handling is independent of whether the message was a request or response.

If the transport user asks for a message to be sent over an unreliable transport, and the result is an ICMP
error, the behavior depends on the type of ICMP error. Host, network, port or protocol unreachable errors,
or parameter problem erros10ULD cause the transport layer to inform the transport user of a failure in
sending. Source quench and TTL exceeded ICMP egersuLD be ignored.

If the transport user asks for a request to be sent over a reliable transport, and the result is a connection
failure, the transport layesHouLD inform the transport user of a failure in sending.

19 Common Message Components

There are certain components of SIP messages that appear in various places within SIP messages (and
sometimes, outside of them) that merit separate discussion.

19.1 SIP and SIPS Uniform Resource Indicators

A SIP or SIPS URI identifies a communications resource. Like all URIs, SIP and SIPS URIs may be placed
in web pages, email messages, or printed literature. They contain sufficient information to initiate and
maintain a communication session with the resource.

Examples of communications resources include the following:

a user of an online service

an appearance on a multi-line phone

a mailbox on a messaging system

a PSTN number at a gateway service

a group (such as “sales” or “helpdesk”) in an organization

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 100]

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

A SIPS URI specifies that the resource be contacted securely. This means, in particular, that TLS is to
be used between all elements, starting from the UAC, and ending at the UAS. Any resource described by a
SIP URI can be “upgraded” to a SIPS URI by just changing the scheme, if it is desired to communicate with
that resource securely.

19.1.1 SIP and SIPS URI Components

The “sip:” and “sips:” schemes follow the guidelines in RFC 2396 [5]. They use a form similar todhi®

URL, allowing the specification of SIRRquest-header fields and the SifPhessage-body. This makes it
possible to specify the subject, media type, or urgency of sessions initiated by using a URI on a web page or
in an email message. The formal syntax for a SIP or SIPS URI is presented in Section 25. Its general form,
in the case of a SIP URI, is

sip:user:password@host:port;uri-parameters?headers

The format for a SIPS URI is the same, except that the scheme is “sips” instead of sip. These tokens, and
some of the tokens in their expansions, have the following meanings:

user: The identifier of a particular resource at the host being addressed. The term “host” in this context
frequently refers to a domain. The “userinfo” of a URI consists of this user field, the password field,
and the @ sign following them. Theserinfo part of a URI is optional anéhAY be absent when the
destination host does not have a notion of users or when the host itself is the resource being identified.
If the @ sign is present in a SIP or SIPS URI, the user fielssT NOT be empty.

If the host being addressed can process telephone numbers, for instance, an Internet telephony gate-
way, atelephone-subscriber field defined in RFC 2806 [9y1AY be used to populate theser field.

There are special escaping rules for encodi&lgphone-subscriber fields in SIP and SIPS URIs
described in Section 19.1.2.

password : A password associated with the user. While the SIP and SIPS URI syntax allows this field to
be present, its use i8OT RECOMMENDED because the passing of authentication information in clear
text (such as URIs) has proven to be a security risk in almost every case where it has been used. For
instance, transporting a PIN number in this field exposes the PIN.

Note that the password field is just an extension of user portion. Implementations not wishing to give
special significance to the password portion of the fiedd simply treat “user:password” as a single
string.

host: The host providing the SIP resource. Tiast part contains either a fully-qualified domain name
or numeric IPv4 or IPv6 address. Using the fully-qualified domain name forRE{SOMMENDED
whenever possible.

port: The port number where the request is to be sent.

URI parameters: Parameters affecting a request constructed from the URI.
URI parameters are added after timstport component and are separated by semi-colons.
URI parameters take the form:

parameter-name "=" parameter-value

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 101]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

3740 Even though an arbitrary number of URI parameters may be included in a URI, any given parameter-
3741 namemMusT NOT appear more than once.

3742 This extensible mechanism includes trensport, maddr, ttl, user, method andIr parameters.

3743 The transport parameter determines the transport mechanism to be used for sending SIP messages,
3744 as specified in [4]. SIP can use any network transport protocol. Parameter names are defined for
3745 UDP [14], TCP [15], and SCTP [17]. For a SIPS URI, thansport parametemusT indicate a

3746 reliable transport.

3747 Themaddr parameter indicates the server address to be contacted for this user, overriding any address
3748 derived from thénost field. When aimmaddr parameter is present, tpert andtransport components

3749 of the URI apply to the address indicated in tmaddr parameter value. [4] describes the proper

3750 interpretation of théransport, maddr, andhostport in order to obtain the destination address, port,

3751 and transport for sending a request.

3752 Themaddr field has been used as a simple form of loose source routing. It allows a URI to specify a proxy

3753 that must be traversed en-route to the destination. Continuing to useatidr parameter this way is strongly

3754 discouraged (the mechanisms that enable it are deprecated). Implementations should instea@aige the

3755 mechanism described in this document, establishing a pre-existing route set if necessary (see Section 8.1.1.1).

3756 This provides a full URI to describe the node to be traversed.

3757 Thettl parameter determines the time-to-live value of the UDP multicast packeviasd only be

3758 used ifmaddr is a multicast address and the transport protocol is UDP. For example, to specify to call
3759 alice@atlanta.com using multicast to 239.255.255.1 with a ttl of 15, the following URI would

3760 be used:

3761 sip:alice@atlanta.com;maddr=239.255.255.1;ttI=15

3762 The set of validtelephone-subscriber strings is a subset of validser strings. Theuser URI pa-

3763 rameter exists to distinguish telephone numbers from user names that happen to look like telephone
3764 numbers. If the user string contains a telephone number formattetetephone-subscriber, the

3765 user parameter valuephone” sHoOULD be present. Even without this parameter, recipients of SIP

3766 and SIPS URIs1AY interpret the pre-@ part as a telephone number if local restrictions on the name
3767 space for user name allow it.

3768 The method of the SIP request constructed from the URI can be specified witlethed parameter.

3769 Thelr parameter, when present, indicates that the element responsible for this resource implements
3770 the routing mechanisms specified in this document. This parameter will be used in the URIs proxies
3771 place intoRecord-Route header field values, and may appear in the URIs in a pre-existing route set.
3772 This parameter is used to achieve backwards compatibility with systems implementing the strict-routing

3773 mechanisms of RFC 2543 and the rfc2543bis drafts up to bis-05. An element preparing to send a request

3774 based on a URI not containing this parameter can assume the receiving element implements strict-routing and

3775 reformat the message to preserve the information ifibguest-URI.

3776 Since the uri-parameter mechanism is extensible, SIP elemestssilently ignore any uri-parameters

3777 that they do not understand.

s77s Headers: Header fields to be included in a request constructed from the URI.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 102]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

3779 Headers fields in the SIP request can be specified with the “?” mechanism within a URI. The header
3780 names and values are encoded in ampersand separaeatke = hvalue pairs. The specidiname

3781 “body” indicates that the associatbdalue is themessage-body of the SIP request.

3782 Table 1 summarizes the use of SIP and SIPS URI components based on the context in which the URI

s7s3 appears. The external column describes URIs appearing anywhere outside of a SIP message, for instance on
s7ea @ web page or business card. Entries marked “m” are mandatory, those marked “0” are optional, and those
s7es marked “-” are not allowed. Elements processing UR®ULD ignore any disallowed components if they
s7s are present. The second column indicates the default value of an optional element if it is not present.
s77 indicates that the element is either not optional, or has no default value.

3788 URIs in Contact header fields have different restrictions depending on the context in which the header
s7s0 field appears. One set applies to messages that establish and maintain dNVAgE @nd its 200 (OK)

a0 response). The other applies to registration and redirection mes$Ige4ITER, its 200 (OK) response,

s7o1 and 3xx class responses to any method).

dialog
reg./redir. Contact/
default Req.-URI To From Contact R-R/Route external

user - 0 o] 0 o} o] 0
password - 0 o] 0 o] o] 0
host - m m m m m m
port D) 0 - - o] o] 0
user-param ip o] 0 o} 0 0 o]
method INVITE - - - - - o]

maddr-param — 0 - - o] o] o]
ttl-param 1 0 - - o] - o]

transp.-param (2) 0 - - o] o] o]
Ir-param - 0 - - - o] o]
other-param - 0 o] 0 o] o] 0
headers - - - - 0 - o]

(1): The default port value is transport and scheme dependent. The default is 5060 for sip: using UDP, TCP,
or SCTP. The default is 5061 for sip: using TLS over TCP and sips: over TCP.
(2): The default transport is scheme dependent. For sip:, it is UDP. For sips:, itis TCP.

Table 1. Use and default values of URI components for SIP header field vRagsgest-URI and refer-
ences

92 19.1.2 Character Escaping Requirements

s793 SIP follows the requirements and guidelines of RFC 2396 [5] when defining the set of characters that must
s7rea be escaped in a SIP URI, and uses its “"%” HEX HEX” mechanism for escaping. From RFC 2396:

3795 The set of characters actually reserved within any given URI component is defined by that com-
3796 ponent. In general, a character is reserved if the semantics of the URI changes if the character
3797 is replaced with its escaped US-ASCII encoding. [5].

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 103]

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Excluded US-ASCII characters [5], such as space and control characters and characters used as URI delim-
iters, alsovusT be escaped. URIMIUST NOT contain unescaped space and control characters.

For each component, the set of valid BNF expansions defines exactly which characters may appear
unescaped. All other charactens/ST be escaped.

For example, “@” is not in the set of characters in the user component, so the user “j@s0n” must have
at least the @ sign encoded, as in “j%40s0n”.

Expanding théiname andhvalue tokens in Section 25 show that all URI reserved characters in header
field names and valuesusT be escaped.

Thetelephone-subscriber subset of thaiser component has special escaping considerations. The set
of characters not reserved in the RFC 2806 [9] descriptiotelefphone-subscriber contains a number
of characters in various syntax elements that need to be escaped when used in SIP URIs. Any characters
occurring in a@elephone-subscriber that do not appear in an expansion of the BNF foruker rule MusT
be escaped.

Note that character escaping is not allowed in the host component of a SIP or SIPS URI (the % character
is not valid in its expansion). This is likely to change in the future as requirements for Internationalized
Domain Names are finalized. Current implementatiansT NOT attempt to improve robustness by treating
received escaped characters in the host component as literally equivalent to their unescaped counterpart. The
behavior required to meet the requirements of IDN may be significantly different.

19.1.3 Example SIP and SIPS URIs

sip:alice@atlanta.com
sip:alice:secretword@atlanta.com;transport=tcp
sips:alice@atlanta.com?subject=project%20x&priority=urgent
sip:+1-212-555-1212:1234@gateway.com;user=phone
sips:1212@gateway.com

sip:alice@192.0.2.4
sip:atlanta.com;method=REGISTER?to=alice%40atlanta.com
sip:alice;day=tuesday@atlanta.com

The last sample URI above hasuser field value of “alice;day=tuesday”. The escaping rules defined
above allow a semicolon to appear unescaped in this field. For the purposes of this protocol, the field is
opaque. The structure of that value is only useful to the SIP element responsible for the resource.

19.1.4 URI Comparison

Some operations in this specification require determining whether two SIP or SIPS URIs are equivalent.
In this specification, registrars need to compare bindingSantact URIs in REGISTER requests (see
Section 10.3.) SIP and SIPS URIs are compared for equality according to the following rules:

e A SIP and SIPS URI are not equivalent, even if the rest of the URIs are equivalent.

e Comparison of theserinfo of SIP and SIPS URIs is case-sensitive. This inclugssinfo containing
passwords or formatted #aslephone-subscribers. Comparison of all other components of the URI
is case-insensitive unless explicitly defined otherwise.

e The ordering of parameters and header fields is not significant in comparing SIP and SIPS URIs.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 104]

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847
3848
3849
3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

e Characters other than those in the “reserved” and “unsafe” sets (see RFC 2396 [5]) are equivalent to
their “"%" HEX HEX” encoding.

e An IP address that is the result of a DNS lookup of a host namemmasatch that host name.

e Fortwo URIs to be equal, theser, password, host, andport components must match.

A URI omitting the user component witilot match a URI that includes one. A URI omitting the
password component witiot match a URI that includes one.

A URI omitting any component with a default value wilbt match a URI explicitly containing that
component with its default value. For instance, a URI omitting the optional port component will
not match a URI explicitly declaring port 5060. The same is true fortthasport-parameter, ttl-
parameter, user-parameter, andmethod components.

Defining sip:user@host twot be equivalent to sip:user@host:5060 is a change from RFC 2543. When de-
riving addresses from URIs, equivalent addresses are expected from equivalent URIs. The URI sip:user@host:5060
will always resolve to port 5060. The URI sip:user@host may resolve to other ports through the DNS SRV
mechanisms detailed in [4].

e URI uri-parameter components are compared as follows

— Any uri-parameter appearing in both URIs must match.

— A user, ttl, or method uri-parameter appearing in only one URI never matches, even if it
contains the default value.

— A URI that includes amaddr parameter willhot match a URI that contains noaddr param-
eter.

— All other uri-parameters appearing in only one URI are ignored when comparing the URIs.

¢ URI header components are never ignored. Any predesader componentMusT be present in
both URIs and match for the URIs to match. The matching rules are defined for each header field in
Section 20.

The URIs within each of the following sets are equivalent:
sip:%61lice@atlanta.com;transport=TCP

sip:alice@AtLanTa.CoM;Transport=tcp

sip:carol@chicago.com
sip:carol@chicago.com;newparam=5
sip:carol@chicago.com;security=on

sip:biloxi.com;transport=tcp;method=REGISTER?to=sip:bob%40biloxi.com
sip:biloxi.com;method=REGISTER;transport=tcp?to=sip:bob%40biloxi.com

sip:alice@atlanta.com?subject=project%20x&priority=urgent
sip:alice@atlanta.com?priority=urgent&subject=project%20x

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. sdmgaires Aug 2002 [Page 105]

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The URIs within each of the following sets amet equivalent:

SIP:ALICE@AtLanTa.CoM;Transport=udp (different usernames)
sip:alice@AtLanTa.CoM;Transport=UDP

sip:bob@biloxi.com (can resolve to different ports)
sip:bob@biloxi.com:5060

sip:bob@biloxi.com (can resolve to different transports)
sip:bob@biloxi.com;transport=udp

sip:bob@biloxi.com (can resolve to different port and transports)
sip:bob@biloxi.com:6000;transport=tcp

sip:carol@chicago.com (different header component)
sip:carol@chicago.com?Subject=next%20meeting

sip:bob@phone21.boxesbybob.com (even though that's what
sip:bob@192.0.2.4 phone21.boxesbybob.com resolves to)

Note that equality is not transitive:

sip:carol@chicago.com and sip:carol@chicago.com;security=on are equivalent
and sip:carol@chicago.com and sip:carol@chicago.com;security=off are equivalent

But sip:carol@chicago.com;security=on and sip:carol@chicago.com;security=ofbtagquivalent

19.1.5 Forming Requests from a URI

An implementation needs to take care when forming requests directly from a URI. URIs from business cards,
web pages, and even from sources inside the protocol such as registered contacts may contain inappropriate
header fields or body parts.

AnimplementatiomusT include any providetransport, maddr, ttl, oruser parameter in th®equest-
URI of the formed request. If the URI containsreethod parameter, its valumusT be used as the method
of the request. Thmethod parametemusT NOT be placed in th&®equest-URI. Unknown URI parameters
MUST be placed in the messag&equest-URI.

An implementationsHOULD treat the presence of any headers or body parts in the URI as a desire to
include them in the message, and choose to honor the request on a per-component basis.

An implementatiorsHOULD NOThonor these obviously dangerous header fidkdsm, Call-1D, CSeq,
Via, andRecord-Route.

An implementatiorsHOULD NOThonor any requestddoute header field values in order to not be used
as an unwitting agent in malicious attacks.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. sdm¢aires Aug 2002 [Page 106]

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911
3912

3913

3914

3915

3916

3917
3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

An implementatiorsHOULD NOT honor requests to include header fields that may cause it to falsely ad-
vertise its location or capabilities. These includecept, Accept-Encoding, Accept-Language, Allow,
Contact (in its dialog usage)Qrganization, Supported, andUser-Agent.

An implementationsHOULD verify the accuracy of any requested descriptive header fields, including:
Content-Disposition, Content-Encoding, Content-Language, Content-Length, Content-Type, Date,
Mime-Version, andTimestamp.

If the request formed from constructing a message from a given URI is not a valid SIP request, the URI
is invalid. An implementatioMusT NOT proceed with transmitting the request. It should instead pursue
the course of action due an invalid URI in the context it occurs.

The constructed request can be invalid in many ways. These include, but are not limited to, syntax error in
header fields, invalid combinations of URI parameters, or an incorrect description of the message body.

Sending a request formed from a given URI may require capabilities unavailable to the implementation.
The URI might indicate use of an unimplemented transport or extension, for example. An implementation

SHOULD refuse to send these requests rather than modifying them to match their capabilities. An imple-
mentationMUST NOT send a request requiring an extension that it does not support.

For example, such a request can be formed through the presendRegfuire header parameter or a method
URI parameter with an unknown or explicitly unsupported value.

19.1.6 Relating SIP URIs and tel URLs

When a tel URL [9] is converted to a SIP or SIPS URI, the entire telephone-subscriber portion of the tel
URL, including any parameters, is placed into tleerinfo part of the SIP or SIPS URI.
Thus, tel:+358-555-1234567;postd=pp22 becomes

sip:+358-555-1234567;postd=pp22 @foo.com;user=phone

or
sips:+358-555-1234567;postd=pp22 @foo.com;user=phone
not
Sip:+358-555-1234567 @foo.com;postd=pp22;user=phone
or

Sips:+358-555-1234567 @foo.com;postd=pp22;user=phone

In general, equivalent “tel” URLs converted to SIP or SIPS URIs in this fashion may not produce equiv-
alent SIP or SIPS URIs. Theserinfo of SIP and SIPS URIs are compared as a case-sensitive string.
Variance in case-insensitive portions of tel URLs and reordering of tel URL parameters does not affect tel
URL equivalence, but does affect the equivalence of SIP URIs formed from them.

For example,

tel:+358-555-1234567;postd=pp22
tel:+358-555-1234567;POSTD=PP22

are equivalent, while

Sip:+358-555-1234567;postd=pp22@foo.com;user=phone

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmaires Aug 2002 [Page 107]

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Sip:+358-555-1234567;POSTD=PP22@foo.com;user=phone

are not.
Likewise,

tel:+358-555-1234567;postd=pp22;isub=1411
tel:+358-555-1234567;isub=1411;postd=pp22

are equivalent, while

Sip:+358-555-1234567;postd=pp22;isub=1411@foo.com;user=phone
Sip:+358-555-1234567;isub=1411;postd=pp22@foo.com;user=phone

are not.

To mitigate this problem, elements constructing telephone-subscriber fields to place in the userinfo part
of a SIP or SIPS URBHoOULD fold any case-insensitive portion of telephone-subscriber to lower case,
and order the telephone-subscriber parameters lexically by parameter name. (All components of a tel URL
except for future-extension parameters are defined to be compared case-insensitive.)

Following this suggestion, both

tel:+358-555-1234567;postd=pp22
tel:+358-555-1234567;POSTD=PP22

become
Sip:+358-555-1234567;postd=pp22@foo.com;user=phone
and both

tel:+358-555-1234567;postd=pp22;isub=1411
tel:+358-555-1234567;isub=1411;postd=pp22

become

Sip:+358-555-1234567;isub=1411;postd=pp22;user=phone

19.2 Option Tags

Option tags are unique identifiers used to designate new options (extensions) in SIP. These tags are used in
Require (Section 20.32)Proxy-Require (Section 20.29)Supported (Section 20.37) antUnsupported
(Section 20.40) header fields. Note that these options appear as parameters in those header fields in an
option-tag = token form (see Section 25 for the definition taken).

The creator of a new SIP optiomusT either prefix the option with their reverse domain name or register
the new option with the Internet Assigned Numbers Authority (IANA) (See Section 27).

An example of a reverse-domain-name option is “com.foo.mynewfeature”, whose inventor can be reached
at “foo.com”. For these features, individual organizations are responsible for ensuring that option names do
not collide within the same domain. The domain name part of the optiosir use lower-case; the option

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 108]

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

name is case-insensitive.
Options registered with IANA do not contain periods and are globally unique. IANA option tags are
case-insensitive.

19.3 Tags

The “tag” parameter is used in th& and From header fields of SIP messages. It serves as a general
mechanism to identify a dialog, which is the combination of @al-ID along with two tags, one from

each participant in the dialog. When a UA sends a request outside of a dialog, it corfaims tag only,
providing “half” of the dialog ID. The dialog is completed from the response(s), each of which contributes
the second half in th@o header field. The forking of SIP requests means that multiple dialogs can be
established from a single request. This also explains the need for the two-sided dialog identifier; without a
contribution from the recipients, the originator could not disambiguate the multiple dialogs established from
a single request.

When a tag is generated by a UA for insertion into a request or respons@sit be globally unique
and cryptographically random with at least 32 bits of randomness. A property of this selection requirement
is that a UA will place a different tag into therom header of ariNVITE as it would place into thdo
header of the response to the saM¥ITE. This is needed in order for a UA to invite itself to a session, a
common case for “hairpinning” of calls in PSTN gateways. Similarly, tNWITEs for different calls will
have different-rom tags.

Besides the requirement for global uniqueness, the algorithm for generating a tag is implementation-
specific. Tags are helpful in fault tolerant systems, where a dialog is to be recovered on an alternate server
after a failure. A UAS can select the tag in such a way that a backup can recognize a request as part of a
dialog on the failed server, and therefore determine that it should attempt to recover the dialog and any other
state associated with it.

20 Header Fields

The general syntax for header fields is covered in Section 7.3. This section lists the full set of header fields
along with notes on syntax, meaning, and usage. Throughout this section, we use [HX.Y] to refer to Section
X.Y of the current HTTP/1.1 specification RFC 2616 [8]. Examples of each header field are given.
Information about header fields in relation to methods and proxy processing is summarized in Tables 2
and 3.
The “where” column describes the request and response types in which the header field can be used.
Values in this column are:

R: header field may only appear in requests;
r: header field may only appear in responses;

2xX, 4xx, etc.: A numerical value or range indicates response codes with which the header field can be
used;

c: header field is copied from the request to the response.

An empty entry in the “where” column indicates that the header field may be present in all requests and
responses.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. sdm¢aires Aug 2002 [Page 109]

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The “proxy” column describes the operations a proxy may perform on a header field:

a: A proxy can add or concatenate the header field if not present.
m: A proxy can modify an existing header field value.
d: A proxy can delete a header field value.

r: A proxy must be able to read the header field, and thus this header field cannot be encrypted.
The next six columns relate to the presence of a header field in a method:

c. Conditional; the header field is either mandatory or optional, depending on the presence of a route set or
the response code.

m: The header field is mandatory.

m*. The header fieldHOULD be sent, but clients/servers need to be prepared to receive messages without
that header field.

0: The header field is optional.

t: The header fieldHOULD be sent, but clients/servers need to be prepared to receive messages without
that header field. If a stream-based protocol (such as TCP) is used as a transport, then the header field
MUST be sent.

*. The header field is required if the message body is not empty. See sections 20.14, 20.15 and 7.4 for
details.

- The header field is not applicable.

“Optional” means that a UMAY include the header field in a request or response, and mAYAignore
the header field if present in the request or response (The exception to this rul®eqtiee header field
discussed in 20.32). A “mandatory” header fieldsST be present in a request, amisT be understood
by the UAS receiving the request. A mandatory response headewmfiedd be present in the response, and
the header fieldiusT be understood by the UAC processing the response. “Not applicable” means that the
header fieldvusT NOT be present in a request. If one is placed in a request by mistakesit be ignored
by the UAS receiving the request. Similarly, a header field labeled “not applicable” for a response means
that the UASMUST NOT place the header field in the response, and the WAGT ignore the header field
in the response.

A UA sHouLD ignore extension header parameters that are not understood.

A compact form of some common header field names is also defined for use when overall message size
is an issue.

The Contact, From, andTo header fields contain a URI. If the URI contains a comma, question mark
or semicolon, the URMUST be enclosed in angle brackets &nd>). Any URI parameters are contained
within these brackets. If the URI is not enclosed in angle brackets, any semicolon-delimited parameters are
header-parameters, not URI parameters.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 110]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Header field where proxy ACK BYE CAN INV OPT REG
Accept R - o] - 0] m* o]
Accept 2XX - - - o] m* o]
Accept 415 - o] - 0 o] o]
Accept-Encoding R - o] - o] o] o]
Accept-Encoding 2XX - - - 0 m* o]
Accept-Encoding 415 - o] - (o] o] o]
Accept-Language R - 0] - o] o] o]
Accept-Language 2XX - - - o] m* o]
Accept-Language 415 - o] - o] 0] o]
Alert-Info R ar - - - o] - -
Alert-Info 180 ar - - - o] - -
Allow R - o] - o] o] o]
Allow 2XX - o] - m* m* o]
Allow r - 0 - 0 o] o]
Allow 405 - m - m m m
Authentication-Info 2XX - o] - o] o] o]
Authorization R 0 0 o] o] o] o]
Call-ID c r m m m m m m
Call-Info ar - - - o] o] o]
Contact R 0 - - m 0 o]
Contact Ixx - - - 0 - -
Contact 2XX - - - m o] o]
Contact 3xx d - o] - o] 0 0
Contact 485 - o] - o] o] o]
Content-Disposition o] o] - o] o] o]
Content-Encoding o] o] - o] o] o]
Content-Language o] o] - o] o] o]
Content-Length ar t t t t t t
Content-Type * * - * * *
CSeq c r m m m m m m
Date a o] o] o] o] o] o]
Error-Info 300-699 a - o] o] 0 o] o]
Expires - - - o] - o]
From c r m m m m m m
In-Reply-To R - - - 0 - -
Max-Forwards R amr m m m m m m
Min-Expires 423 - - - - - m
MIME-Version o] o] - o] o] o]
Organization ar - - - o] o] o]

Table 2: Summary of header fields, A-O

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdaaqaires Aug 2002 [Page 111]

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Header field where proxy ACK BYE CAN INV OPT REG
Priority R ar - - - o] - -
Proxy-Authenticate 407 - m - m m m
Proxy-Authenticate 401 - o] o] 0 o] o]
Proxy-Authorization R dr o] o] - o] o] o]
Proxy-Require R ar - o] - o] 0 0
Record-Route R ar o] o] o] o] o] -
Record-Route 2xx,18x mr - o] o] 0 o] -
Reply-To - - - 0 - -
Require ar - o] - o] o] o]
Retry-After 404,413,480,486 - 0 0 0 0 o]
500,503 - 0 o} 0 o] o]
600,603 - 0 o] 0 o] o]
Route R adr c c c c c c
Server r - o] 0] 0 o] o]
Subject R - - - o] - -
Supported R - 0 0 m* 0 0
Supported 2XX - 0 o] m* m* 0
Timestamp o] 0 0 o] o] o]
To c(1) r m m m m m m
Unsupported 420 - o] o] o] o] o]
User-Agent 0] o] o] o] o] o]
Via R amr m m m m m m
Via rc dr m m m m m m
Warning r - o] o] o] o] o]
WWW-Authenticate 401 - m - m m m
WWW-Authenticate 407 - o] - o] 0 0

Table 3: Summary of header fields, P—Z; (1): copied with possible addition of tag

20.1 Accept

The Accept header field follows the syntax defined in [H14.1]. The semantics are also identical, with
the exception that if ndAccept header field is present, the sen&fouLD assume a default value of
application/sdp

An emptyAccept header field means that no formats are acceptable.

Example:

Accept: application/sdp;level=1, application/x-private, text/html

20.2 Accept-Encoding

The Accept-Encoding header field is similar té\ccept, but restricts the content-codings [H3.5] that are
acceptable in the response. See [H14.3]. The syntax of this header field is defined in [H14.3]. The semantics
in SIP are identical to those defined in [H14.3].

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 112]

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

An empty Accept-Encoding header field is permissible, even though the syntax in [H14.3] does not
provide for it. It is equivalent téAccept-Encoding: identity, that is, only the identity encoding, meaning
no encoding, is permissible.

If no Accept-Encoding header field is present, the sergrouLD assume a default value wfentity.

This differs slightly from the HTTP definition, which indicates that when not present, any encoding can
be used, but the identity encoding is preferred.

Example:

Accept-Encoding: gzip

20.3 Accept-Language

The Accept-Language header field is used in requests to indicate the preferred languages for reason
phrases, session descriptions, or status responses carried as message bodies in the respAuseptf no
Language header field is present, the sergrouLD assume all languages are acceptable to the client.

The Accept-Language header field follows the syntax defined in [H14.4]. The rules for ordering the
languages based on thg™parameter apply to SIP as well.

Example:

Accept-Language: da, en-gb;q=0.8, en;q=0.7

20.4 Alert-Info

When present in alNVITE request, thé\lert-Info header field specifies an alternative ring tone to the UAS.
When present in a 180 (Ringing) response,Alert-Info header field specifies an alternative ringback tone
to the UAC. A typical usage is for a proxy to insert this header field to provide a distinctive ring feature.
The Alert-Info header field can introduce security risks. These risks and the ways to handle them are
discussed in Section 20.9, which discusse<thk-Info header field since the risks are identical.
In addition, a usesHOULD be able to disable this feature selectively.
This helps prevent disruptions that could result from the use of this header field by untrusted elements.

Example:

Alert-Info: <http://www.example.com/sounds/moo.wav>

20.5 Allow

The Allow header field lists the set of methods supported by the UA generating the message.

All methods, includingACK and CANCEL, understood by the UMuUST be included in the list of
methods in theAllow header field, when present. The absence oAbow header fieldMusT NOT be
interpreted to mean that the UA sending the message supports no methods. Rather, it implies that the UA is
not providing any information on what methods it supports.

Supplying anAllow header field in responses to methods other tARTIONS reduces the number of
messages needed.

Example:

Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 113]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

w001 20.6 Authentication-Info

a092 TheAuthentication-Info header field provides for mutual authentication with HTTP Digest. A UAS

003 include this header field in a 2xx response to a request that was successfully authenticated using digest based
4002 ON theAuthorization header field.

4095 Syntax and semantics follow those specified in RFC 2617 [18].

4096 Example:

4097 Authentication-Info: nextnonce="47364c23432d2e131a5fh210812¢"

w0 20.7 Authorization

a000 TheAuthorization header field contains authentication credentials of a UA. Section 22.2 overviews the use
a0 Of the Authorization header field, and Section 22.4 describes the syntax and semantics when used with
a0 HTTP authentication.

4102 This header field, along witRroxy-Authorization, breaks the general rules about multiple header field

a03 Values. Although not a comma-separated list, this header field name may be present multiple times, and
4104 MUST NOT be combined into a single header line using the usual rules described in Section 7.3.

4105 In the example below, there are no quotes around the Digest parameter:

4106 Authorization: Digest username="Alice", realm="atlanta.com"”,
4107 nonce="84a4cc6f3082121f32b42a2187831a9e",
4108 response="7587245234h3434cc3412213e5f113a5432"

moe 20.8 Call-ID

a10 TheCall-ID header field uniquely identifies a particular invitation or all registrations of a particular client.
a1 A single multimedia conference can give rise to several calls with diffeatitIDs, for example, if a user

a1z invites a single individual several times to the same (long-running) confer€alklDs are case-sensitive
sz and are simply compared byte-by-byte.

4114 The compact form of th€all-ID header field is.

4115 Examples:

4116 Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bfé@biloxi.com
4117 i:f81d4fae-7dec-11d0-a765-00a0c91e6bf6@192.0.2.4

ais 20.9 Call-Info

a9 TheCall-Info header field provides additional information about the caller or callee, depending on whether
a120 it is found in a request or response. The purpose of the URI is described bpuhgose” parameter.

a121 The “icon” parameter designates an image suitable as an iconic representation of the caller or callee. The
422 “info” parameter describes the caller or callee in general, for example, through a web pageaittie “

4123 parameter provides a business card, for example, in vCard [35] or LDIF [36] formats. Additional tokens can
4124 be registered using IANA and the procedures in Section 27.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 114]

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150
4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Use of theCall-Info header field can pose a security risk. If a callee fetches the URIs provided by a
malicious caller, the callee may be at risk for displaying inappropriate or offensive content, dangerous or
illegal content, and so on. Therefore, itRECOMMENDED that a UA only render the information in the
Call-Info header field if it can verify the authenticity of the element that originated the header field and
trusts that element. This need not be the peer UA; a proxy can insert this header field into requests.

Example:

Call-Info: <http://wwww.example.com/alice/photo.jpg> ;purpose=icon,
<http://www.example.com/alice/> ;purpose=info

20.10 Contact

A Contact header field value provides a URI whose meaning depends on the type of request or response it
is in.

A Contact header field value can contain a display name, a URI with URI parameters, and header
parameters.

This document defines theontact parameters " and “expires”. These parameters are only used
when theContact is present in ®ISTER request or response, or in a 3xx response. Additional param-
eters may be defined in other specifications.

When the header field value contains a display name, the URI including all URI parameters is enclosed
n“<”and“>". Ifno“ <”and “>" are present, all parameters after the URI are header parameters, not URI
parameters. The display hame can be tokens, or a quoted string, if a larger character set is desired.

Even if the ‘display-name” is empty, the ‘hame-addr” form MusT be used if the &ddr-spec” con-
tains a comma, semicolon, or question mark. There may or may not be LWS betwealispilag-name
and the <”.

These rules for parsing a display name, URI and URI parameters, and header parameters also apply for
the header field$o andFrom.

The Contact header field has a role similar to thecation header field in HTTP. However, the HTTP header

field only allows one address, ungquoted. Since URIs can contain commas and semicolons as reserved characters,
they can be mistaken for header or parameter delimiters, respectively.

The compact form of th€ontact header field isn (for “moved”).

The second example below showsCantact header field value containing both a URI parameter
(transport) and a header parametexpires).

Contact: "Mr. Watson" <sip:watson@worcester.bell-telephone.com>
;g=0.7; expires=3600,
"Mr. Watson" <mailto:watson@bell-telephone.com> ;q=0.1

m: <sips:bob@192.0.2.4>;expires=60

20.11 Content-Disposition

The Content-Disposition header field describes how the message body or, for multipart messages, a mes-
sage body part is to be interpreted by the UAC or UAS. This SIP header field extends the GiiM&nt-
Type (RFC 2183 [19]).

The value $ession” indicates that the body part describes a session, for either calls or early (pre-call)
media. The valuerender” indicates that the body part should be displayed or otherwise rendered to the

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 115]

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

user. For backward-compatibility, if théontent-Disposition header field is missing, the serv&ouLD
assume bodies @ontent-Type application/sdp are the dispositionsession”, while other content
types are fender”.

The disposition typeiton” indicates that the body part contains an image suitable as an iconic repre-
sentation of the caller or callee. The valért” indicates that the body part contains information, such as
an audio clip, that should be rendered instead of ring tone.

The handling parametenandling-param, describes how the UAS should react if it receives a message
body whose content type or disposition type it does not understand. The parameter has defined values
of “optional” and “required”. If the handling parameter is missing, the valueduired” sHOULD be
assumed.

If this header field is missing, the MIME type determines the default content disposition. If there is
none, ‘render” is assumed.

Example:

Content-Disposition: session

20.12 Content-Encoding

The Content-Encoding header field is used as a modifier to theedia-type”. When present, its value
indicates what additional content codings have been applied to the entity-body, and thus what decoding
mechanismaiusT be applied in order to obtain the media-type referenced byCitretent-Type header
field. Content-Encoding is primarily used to allow a body to be compressed without losing the identity of
its underlying media type.

If multiple encodings have been applied to an entity-body, the content cosiings be listed in the
order in which they were applied.

All content-coding values are case-insensitive. IANA acts as a registry for content-coding value tokens.
See [H3.5] for a definition of the syntax foontent-coding.

ClientsMAY apply content encodings to the body in requests. A sener apply content encodings to
the bodies in responses. The semnversT only use encodings listed in thccept-Encoding header field
in the request.

The compact form of th€ontent-Encoding header field i®. Examples:

Content-Encoding: gzip
e: tar

20.13 Content-Language
See [H14.12]. Example:

Content-Language: fr

20.14 Content-Length

The Content-Length header field indicates the size of the message-body, in decimal number of octets,
sent to the recipient. ApplicatiorsHOULD use this field to indicate the size of the message-body to be

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 116]

4201

4202
4203
4204
4205

4206
4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

transferred, regardless of the media type of the entity. If a stream-based protocol (such as TCP) is used as

transport, the header fieldusT be used.

The size of the message-body does include the CRLF separating headers and body. Baoptent-
Length greater than or equal to zero is a valid value. If no body is present in a message, tGemtéet-
Length header field valu@usT be set to zero.

The ability to omitContent-Length simplifies the creation of cgi-like scripts that dynamically generate re-
sponses.
The compact form of the header fieldis
Examples:

Content-Length: 349
l: 173

20.15 Content-Type

The Content-Type header field indicates the media type of the message-body sent to the recipient. The
“media-type” element is defined in [H3.7]. Th€ontent-Type header fielduusT be present if the body is
not empty. If the body is empty, andGontent-Type header field is present, it indicates that the body of the
specific type has zero length (for example, an empty audio file).

The compact form of the header fieldds

Examples:

Content-Type: application/sdp
c: text/html; charset=ISO-8859-4

20.16 CSeq

A CSeq header field in a request contains a single decimal sequence number and the request method.
The sequence numberusTt be expressible as a 32-bit unsigned integer. The method p&&ef] is
case-sensitive. Th€Seq header field serves to order transactions within a dialog, to provide a means to
uniquely identify transactions, and to differentiate between new requests and request retransmissions. Two
CSeq header fields are considered equal if the sequence number and the request method are identical.
Example:

CSeq: 4711 INVITE

20.17 Date

The Date header field contains a the date and time. Unlike HTTP/1.1, SIP only supports the most recent
RFC 1123 [20] format for dates. As in [H3.3], SIP restricts the time zonglirdate to “GMT”, while
RFC 1123 allows any time zondgc1123-date is case-sensitive.

TheDate header field reflects the time when the request or response is first sent.

The Date header field can be used by simple end systems without a battery-backed clock to acquire a notion of
current time. However, in its GMT form, it requires clients to know their offset from GMT.

Example:

Date: Sat, 13 Nov 2010 23:29:00 GMT

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 117]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

a3z 20.18 Error-Info

4239 TheError-Info header field provides a pointer to additional information about the error status response.

4240 SIP UACs have user interface capabilities ranging from pop-up windows and audio on PC softclients to audio-
4241 only on "black” phones or endpoints connected via gateways. Rather than forcing a server generating an error to
4242 choose between sending an error status code with a detailed reason phrase and playing an audio recording, the
4243 Error-Info header field allows both to be sent. The UAC then has the choice of which error indicator to render to the
4244 caller.

4245 A UAC mAY treat a SIP or SIPS URI in darror-Info header field as if it were @ontact in a redirect

4226 and generate a neiNVITE, resulting in a recorded announcement session being established. A non-SIP
2227 URI MAY be rendered to the user.
4248 Examples:

4249 SIP/2.0 404 The number you have dialed is not in service
4250 Error-Info: <sip:not-in-service-recording@atlanta.com>

w51 20.19 Expires

4252 The Expires header field gives the relative time after which the message (or content) expires.

4253 The precise meaning of this is method dependent.

4254 The expiration time in adNVITE doesnot affect the duration of the actual session that may result
4255 from the invitation. Session description protocols may offer the ability to express time limits on the session
4256 duration, however.

4257 The value of this field is an integral number of seconds (in decimal) between 0 and (2**31)-1, measured
4258 from the receipt of the request.
4259 Example:

4260 Expires: 5

w2er 20.20 From

262 The From header field indicates the initiator of the request. This may be different from the initiator of the
w263 dialog. Requests sent by the callee to the caller use the callee’s addresEiiorthieeader field.

4264 The optional tisplay-name” is meant to be rendered by a human user interface. A systenwLD use

4265 the display name “Anonymous” if the identity of the client is to remain hidden. Even ifdrsplay-name”

a266 IS empty, the hame-addr” form MusT be used if the &ddr-spec” contains a comma, question mark, or
4267 Semicolon. Syntax issues are discussed in Section 7.3.1.

4268 Section 12 describes hotirom header fields are compared for the purpose of matching requests to
a9 dialogs. See Section 20.10 for the rules for parsing a display name, URI and URI parameters, and header
4270 parameters.

4271 The compact form of thErom header field is.

4272 Examples:

4273 From: "A. G. Bell" <sip:agb@bell-telephone.com> ;tag=a48s

4274 From: sip:+12125551212@server.phone2net.com;tag=887s
4275 f: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 118]

4276

4277

4278

4279

4280
4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

20.21 In-Reply-To

The In-Reply-To header field enumerates tlall-IDs that this call references or returns. Th&sdl-IDs
may have been cached by the client then included in this header field in a return call.
This allows automatic call distribution systems to route return calls to the originator of the first call. This also

allows callees to filter calls, so that only return calls for calls they originated will be accepted. This field is not a
substitute for request authentication.

Example:

In-Reply-To: 70710@saturn.bell-tel.com, 17320@saturn.bell-tel.com

20.22 Max-Forwards

The Max-Forwards header field must be used with any SIP method to limit the number of proxies or
gateways that can forward the request to the next downstream server. This can also be useful when the client
is attempting to trace a request chain that appears to be failing or looping in mid-chain.

TheMax-Forwards value is an integer in the range 0-255 indicating the remaining number of times this
request message is allowed to be forwarded. This count is decremented by each server that forwards the
request. The recommended value is 70.

This header field should be inserted by elements that can not otherwise guarantee loop detection. For
example, a B2BUA should insertMax-Forwards header field.

Example:

Max-Forwards: 6

20.23 Min-Expires

TheMin-Expires header field conveys the minimum refresh interval supported for soft-state elements man-
aged by that server. This includ€ontact header fields that are stored by a registrar. The header field
contains a decimal integer number of seconds from 0 to (2**32)The use of the header field in a 423
(Registration Too Brief) response is described in Sections 10.2.8, 10.3, and 21.4.17.

Example:

Min-Expires: 60

20.24 MIME-Version

See [H19.4.1].
Example:

MIME-Version: 1.0

20.25 Organization

The Organization header field conveys the name of the organization to which the SIP element issuing the
request or response belongs.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 119]

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The fieldmAY be used by client software to filter calls.

Example:

Organization: Boxes by Bob

20.26 Priority

ThePriority header field indicates the urgency of the request as perceived by the cliefridtiey header

field describes the priority that the SIP request should have to the receiving human or its agent. For example,
it may be factored into decisions about call routing and acceptance. For these decisions, a message contain-
ing no Priority header fieldsHouLD be treated as if it specified Rriority of “non-urgent”. ThePriority

header fielddoes not influence the use of communications resources such as packet forwarding priority in
routers or access to circuits in PSTN gateways. The header field can have the values “non-urgent”, “normal”,
“urgent”, and “emergency”, but additional values can be defined elsewhererRetCisoMMENDED that the

value of “emergency” only be used when life, limb, or property are in imminent danger. Otherwise, there

are no semantics defined for this header field.

These are the values of RFC 2076 [37], with the addition of “emergency”.

Examples:

Subject: A tornado is heading our way!
Priority: emergency

or

Subject: Weekend plans
Priority: non-urgent

20.27 Proxy-Authenticate

A Proxy-Authenticate header field value contains an authentication challenge.

The syntax for this header field and its use is defined in [H14.33]. See 22.3 for further details on its
usage.

Example:

Proxy-Authenticate: Digest realm="atlanta.com”,
domain="sip:ssl.carrier.com",
nonce="f84flcec4le6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

20.28 Proxy-Authorization

TheProxy-Authorization header field allows the client to identify itself (or its user) to a proxy that requires
authentication. AProxy-Authorization field value consists of credentials containing the authentication
information of the user agent for the proxy and/or realm of the resource being requested.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 120]

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

See [H14.34] for a definition of the syntax, and section 22.3 for a discussion of its usage.

This header field, along witAuthorization, breaks the general rules about multiple header field names.
Although not a comma-separated list, this header field name may be present multiple timessandoT
be combined into a single header line using the usual rules described in Section 7.3.1.

Example:

Proxy-Authorization: Digest username="Alice", realm="atlanta.com”,
nonce="c60f3082ee1212b402a21831ae",
response="245f23415f11432b3434341c022"

20.29 Proxy-Require

The Proxy-Require header field is used to indicate proxy-sensitive features that must be supported by the
proxy. See Section 20.32 for more details on the mechanics of this message and a usage example.
Example:

Proxy-Require: foo

20.30 Record-Route

The Record-Route header field is inserted by proxies in a request to force future requests in the dialog to
be routed through the proxy.

Examples of its use with thRoute header field are described in Sections 16.12.1.

Example:

Record-Route: <sip:serverl0.biloxi.com;lr>, <sip:bigbox3.site3.atlanta.com;ir>

20.31 Reply-To

The Reply-To header field contains a logical return URI that may be different fronftben header field.
For example, the URMAY be used to return missed calls or unestablished sessions. If the user wished to
remain anonymous, the header fisldouLD either be omitted from the request or populated in such a way
that does not reveal any private information.

Even if the ‘display-name” is empty, the ‘hame-addr” form MuUsT be used if the &ddr-spec” con-
tains a comma, question mark, or semicolon. Syntax issues are discussed in Section 7.3.1.

Example:

Reply-To: Bob <sip:bob@biloxi.com>

20.32 Require

The Require header field is used by UACs to tell UASs about options that the UAC expects the UAS to
support in order to process the request. Although an optional header fielRetheére MUST NOT be
ignored if it is present.

The Require header field contains a list of option tags, described in Section 19.2. Each option tag
defines a SIP extension that/'sT be understood to process the request. Frequently, this is used to indicate

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 121]

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

that a specific set of extension header fields need to be understood. A UAC compliant to this specification
MUST only include option tags corresponding to standards-track RFCs.
Example:

Require: 100rel

20.33 Retry-After

The Retry-After header field can be used with a 503 (Service Unavailable) response to indicate how long
the service is expected to be unavailable to the requesting client and with a 404 (Not Found), 413 (Request
Entity Too Large), 480 (Temporarily Unavailable), 486 (Busy Heg£)0 (Busy), or 603 (Decline) response

to indicate when the called party anticipates being available again. The value of this field is a positive integer
number of seconds (in decimal) after the time of the response.

An optional comment can be used to indicate additional information about the time of callback. An
optional ‘duration” parameter indicates how long the called party will be reachable starting at the initial
time of availability. If no duration parameter is given, the service is assumed to be available indefinitely.

Examples:

Retry-After: 18000;duration=3600
Retry-After: 120 (I'm in a meeting)

20.34 Route

TheRoute header field is used to force routing for a request through the listed set of proxies. Examples of
the use of thd&Rkecord-Route header field are in Section 16.12.1.
Example:

Route: <sip:bigbox3.site3.atlanta.com;lr>, <sip:serverl0.biloxi.com;lr>

20.35 Server

The Server header field contains information about the software used by the UAS to handle the request.
The syntax for this field is defined in [H14.38].

Revealing the specific software version of the server might allow the server to become more vulnerable
to attacks against software that is known to contain security holes. Implemsatets D make theServer
header field a configurable option.

Example:

Server. HomeProxy v2

20.36 Subject

The Subject header field provides a summary or indicates the nature of the call, allowing call filtering
without having to parse the session description. The session description does not have to use the same
subject indication as the invitation.

The compact form of th8ubject header field is.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 122]

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Example:

Subject: Need more boxes
s: Tech Support

20.37 Supported

The Supported header field enumerates all the extensions supported by the UAC or UAS.

TheSupported header field contains a list of option tags, described in Section 19.2, that are understood
by the UAC or UAS. A UA compliant to this specificatiomusT only include option tags corresponding to
standards-track RFCs. If empty, it means that no extensions are supported.

Example:

Supported: 100rel

20.38 Timestamp

TheTimestamp header field describes when the UAC sent the request to the UAS.

See Section 8.2.6 for details on how to generate a response to a request that contains the header field.
Although there is no normative behavior defined here that makes use of the header, it allows for extensions
or SIP applications to obtain RTT estimates.

Example:

Timestamp: 54

20.39 To

TheTo header field specifies the logical recipient of the request.
The optional tisplay-name” is meant to be rendered by a human-user interface. Td@ ‘barameter
serves as a general mechanism for dialog identification.
See Section 13 for details of th&ay” parameter.
Section 12 describes hovo andFrom header fields are compared for the purpose of matching requests
to dialogs. See Section 20.10 for the rules for parsing a display name, URI and URI parameters, and header
parameters.
The compact form of th&o header field ig.
The following are examples of valitb header fields:

To: The Operator <sip:operator@cs.columbia.edu>;tag=287447
t. sip:+12125551212@server.phone2net.com

20.40 Unsupported

TheUnsupported header field lists the features not supported by the UAS. See Section 20.32 for motivation.
Example:

Unsupported: foo

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 123]

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

20.41 User-Agent

The User-Agent header field contains information about the UAC originating the request. The syntax and
semantics are defined in [H14.43].

Revealing the specific software version of the user agent might allow the user agent to become more
vulnerable to attacks against software that is known to contain security holes. ImplenseraensD make
the User-Agent header field a configurable option.

Example:

User-Agent: Softphone Betal.5

20.42 Via

The Via header field indicates the path taken by the request so far and indicates the path that should be
followed in routing responses. The branch ID parameter ivideader field values serves as a transaction
identifier, and is used by proxies to detect loops.

A Via header field value contains the transport protocol used to send the message, the client’s host name
or network address, and possibly the port number at which it wishes to receive respoNseseAder field
value can also contain parameters suchraaddr”, “ttl”, “received”, and “branch”, whose meaning and
use are described in other sections.

Transport protocols defined here atdDP”, “TCP”, “TLS”, and “SCTP”. “TLS” means TLS over
TCP. When a request is sent to a SIPS URI, the protocol still indicates “SIP”, and the transport protocol is

TLS.

Via: SIP/2.0/UDP erlang.bell-telephone.com:5060;branch=z9hG4bK87asdks7
Via: SIP/2.0/UDP 128.59.16.1:5060 ;received=128.59.19.3;branch=z9hG4bK77asjd

The compact form of th¥ia header field iv.

In this example, the message originated from a multi-homed host with two addresses, 128.59.16.1
and 128.59.19.3. The sender guessed wrong as to which network interface would be used. Erlang.bell-
telephone.com noticed the mismatch and added a parameter to the previou¥iadpsder field value,
containing the address that the packet actually came from.

The host or network address and port number are not required to follow the SIP URI syntax. Specifically,
LWS on either side of the “:" or “/” is allowed, as shown here:

Via: SIP / 2.0 / UDP first.example.com: 4000;ttl=16
:maddr=224.2.0.1 :branch=z9hG4bKa7c6a8dlze.1

Even though this specification mandates that the branch parameter be present in all requests, the BNF
for the header field indicates that it is optional. This allows interoperation with RFC 2543 elements, which
did not have to insert the branch parameter.

20.43 Warning
TheWarning header field is used to carry additional information about the status of a resWaseing
header field values are sent with responses and contain a three-digit warning code, host name, and warning

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 124]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

4479 text.

4480 The “warn-text” should be in a natural language that is most likely to be intelligible to the human user

a1 receiving the response. This decision can be based on any available knowledge, such as the location of the
w2 User, theAccept-Language field in a request, or th€ontent-Language field in a response. The default

a3 language is i-default [21].

4484 The currently-definedwarn-code”s are listed below, with a recommendern-text in English and a

a5 description of their meaning. These warnings describe failures induced by the session description. The first
wse digit of warning codes beginning with “3” indicates warnings specific to SIP. Warnings 300 through 329 are
a7 reserved for indicating problems with keywords in the session description, 330 through 339 are warnings
wsg related to basic network services requested in the session description, 370 through 379 are warnings related
a1s9 tO quantitative QoS parameters requested in the session description, and 390 through 399 are miscellaneous
a0 Warnings that do not fall into one of the above categories.

w91 300 Incompatible network protocol: One or more network protocols contained in the session description
4492 are not available.

a9z 301 Incompatible network address formats: One or more network address formats contained in the ses-
4494 sion description are not available.

w95 302 Incompatible transport protocol: One or more transport protocols described in the session descrip-
4496 tion are not available.

w97 303 Incompatible bandwidth units: One or more bandwidth measurement units contained in the session
4498 description were not understood.

w99 304 Media type not available: One or more media types contained in the session description are not avail-
4500 able.

ss00 305 Incompatible media format: One or more media formats contained in the session description are not
4502 available.

as03 - 306 Attribute not understood: One or more of the media attributes in the session description are not sup-
4504 ported.

as0s 307 Session description parameter not understoodA parameter other than those listed above was not
4506 understood.

as07 - 330 Multicast not available: The site where the user is located does not support multicast.

a0 331 Unicast not available: The site where the user is located does not support unicast communication (usu-
4509 ally due to the presence of a firewall).

as10 370 Insufficient bandwidth: The bandwidth specified in the session description or defined by the media
4511 exceeds that known to be available.

w512 399 Miscellaneous warning: The warning text can include arbitrary information to be presented to a hu-
4513 man user or logged. A system receiving this warmngsT NOT take any automated action.

4514 1xx and 2xx have been taken by HTTP/1.1.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 125]

4515

4516

4517

4518

4519

4520

4521

4522

4523

4524

4525

4526

4527

4528

4529

4530

4531

4532

4533

4534

4535

4536

4537

4538

4539

4540

4541

4542

4543

4544

4545

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Additional “warn-code”s can be defined through IANA, as defined in Section 27.2.
Examples:

Warning: 307 isi.edu "Session parameter 'foo’ not understood"
Warning: 301 isi.edu "Incompatible network address type 'E.164™

20.44 WWW:-Authenticate

A WWW-Authenticate header field value contains an authentication challenge. The syntax for this header
field and use is defined in [H14.47]. See 22.2 for further details on its usage.
Example:

WWW-Authenticate: Digest realm="atlanta.com”,
domain="sip:boxesbybob.com",
nonce="f84flcec4le6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

21 Response Codes

The response codes are consistent with, and extend, HTTP/1.1 response codes. Not all HTTP/1.1 response
codes are appropriate, and only those that are appropriate are given here. Other HTTP/1.1 response codes
SHOULD NOTbe used. Also, SIP defines a new class, 6xx.

21.1 Provisional 1xx

Provisional responses, also known as informational responses, indicate that the server contacted is perform-
ing some further action and does not yet have a definitive response. A server sends a 1xx response if it
expects to take more than 200 ms to obtain a final response. Note that 1xx responses are not transmitted
reliably. They never cause the client to sendA@K. Provisional (1xx) responsagAy contain message

bodies, including session descriptions.

21.1.1 100 Trying

This response indicates that the request has been received by the next-hop server and that some unspecified
action is being taken on behalf of this call (for example, a database is being consulted). This response, like
all other provisional responses, stops retransmissions ¥ E by a UAC. The 100 (Trying) response

is different from other provisional responses, in that it is never forwarded upstream by a stateful proxy.

21.1.2 180 Ringing

The UA receiving théNVITE is trying to alert the user. This respongey be used to initiate local ringback.

21.1.3 181 Call Is Being Forwarded

A servermMAY use this status code to indicate that the call is being forwarded to a different set of destinations.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 126]

4546

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574
4575

4576

4577

4578

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

21.1.4 182 Queued

The called party is temporarily unavailable, but the server has decided to queue the call rather than reject it.
When the callee becomes available, it will return the appropriate final status response. The reason phrase
MAY give further details about the status of the call, for example, “5 calls queued; expected waiting time is
15 minutes”. The servemAy issue several 182 (Queued) responses to update the caller about the status of
the queued call.

21.1.5 183 Session Progress

The 183 (Session Progress) response is used to convey information about the progress of the call that is not
otherwise classified. ThReason-Phrase, header fields, or message badyy be used to convey more
details about the call progress.

21.2 Successful 2xx

The request was successful.

21.2.1 200 OK

The request has succeeded. The information returned with the response depends on the method used in the
request.

21.3 Redirection 3xx

3xx responses give information about the user’s new location, or about alternative services that might be
able to satisfy the call.

21.3.1 300 Multiple Choices

The address in the request resolved to several choices, each with its own specific location, and the user (or
UA) can select a preferred communication end point and redirect its request to that location.

The respons#AY include a message body containing a list of resource characteristics and location(s)
from which the user or UA can choose the one most appropriate, if allowed bycttept request header
field. However, no MIME types have been defined for this message body.

The choicessHOULD also be listed a€ontact fields (Section 20.10). Unlike HTTP, the SIP response
MAY contain severaContact fields or a list of addresses inGontact field. UAs MAY use theContact
header field value for automatic redirectionnoky ask the user to confirm a choice. However, this specifi-
cation does not define any standard for such automatic selection.

This status response is appropriate if the callee can be reached at several different locations and the server cannot
or prefers not to proxy the request.

21.3.2 301 Moved Permanently

The user can no longer be found at the address iR#tpest-URI, and the requesting cliesHouLD retry
at the new address given by tl®ntact header field (Section 20.10). The requestaiouULD update any

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 127]

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

4591
4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

local directories, address books, and user location caches with this new value and redirect future requests to
the address(es) listed.

21.3.3 302 Moved Temporarily

The requesting cliensHOULD retry the request at the new address(es) given byCthretact header field
(Section 20.10). Th&equest-URI of the new request uses the value of entact header field in the
response.

The duration of the validity of th€ontact URI can be indicated through dxpires (Section 20.19)
header field or amxpires parameter in th€€ontact header field. Both proxies and UAsaY cache this
URI for the duration of the expiration time. If there is no explicit expiration time, the address is only valid
once for recursing, anddusT NOT be cached for future transactions.

If the URI cached from th€ontact header field fails, th&®equest-URI from the redirected request
MAY be tried again a single time.

The temporary URI may have become out-of-date sooner than the expiration time, and a new temporary URI
may be available.

21.3.4 305 Use Proxy

The requested resourerusST be accessed through the proxy given by@wntact field. TheContact field

gives the URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305 (Use
Proxy) responsemusT only be generated by UASs.

21.3.5 380 Alternative Service

The call was not successful, but alternative services are possible. The alternative services are described in
the message body of the response. Formats for such bodies are not defined here, and may be the subject of
future standardization.

21.4 Request Failure 4xx

4xx responses are definite failure responses from a particular server. TheselgamtD NOT retry the same
request without modification (for example, adding appropriate authorization). However, the same request to
a different server might be successful.

21.4.1 400 Bad Request

The request could not be understood due to malformed syntaxR&ason-Phrase sHouLD identify the

syntax problem in more detail, for example, “Missing Call-ID header field”.

21.4.2 401 Unauthorized

The request requires user authentication. This response is issued by UASs and registrars, while 407 (Proxy
Authentication Required) is used by proxy servers.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 128]

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

21.4.3 402 Payment Required

Reserved for future use.

21.4.4 403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will not help, and the request
SHOULD NOT be repeated.

21.4.5 404 Not Found

The server has definitive information that the user does not exist at the domain specifie®Raqthest-
URI. This status is also returned if the domain in Request-URI does not match any of the domains
handled by the recipient of the request.

21.4.6 405 Method Not Allowed

The method specified in tHeequest-Line is understood, but not allowed for the address identified by the
Request-URI.

The responsetusT include anAllow header field containing a list of valid methods for the indicated
address.

21.4.7 406 Not Acceptable
The resource identified by the request is only capable of generating response entities that have content
characteristics not acceptable according toAbeept header fields sent in the request.

21.4.8 407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the cliergT first authenticate itself with
the proxy. SIP access authentication is explained in Sections 26 and 22.3.

This status code can be used for applications where access to the communication channel (for example,
a telephony gateway) rather than the callee requires authentication.

21.4.9 408 Request Timeout

The server could not produce a response within a suitable amount of time, for example, if it could not
determine the location of the user in time. The clismly repeat the request without modifications at any
later time.

21.4.10 410 Gone

The requested resource is no longer available at the server and no forwarding address is known. This
condition is expected to be considered permanent. If the server does not know, or has no facility to determine,
whether or not the condition is permanent, the status code 404 (Not Fedpd)LD be used instead.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 129]

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

4660

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

21.4.11 413 Request Entity Too Large

The server is refusing to process a request because the request entity-body is larger than the server is willing
or able to process. The serweny close the connection to prevent the client from continuing the request.

If the condition is temporary, the serveHOULD include aRetry-After header field to indicate that it is
temporary and after what time the clienay try again.

21.4.12 414 Request-URI Too Long

The server is refusing to service the request becaudedtjaest-URI is longer than the server is willing to
interpret.

21.4.13 415 Unsupported Media Type

The server is refusing to service the request because the message body of the request is in a format not sup-
ported by the server for the requested method. The sereULD return a list of acceptable formats using

the Accept, Accept-Encoding and Accept-Language header fields. UAC processing of this response is
described in Section 8.1.3.5.

21.4.14 416 Unsupported URI Scheme

The server cannot process the request because the scheme of the URRégthest-URI is unknown to
the server. Client processing of this response is described in Section 8.1.3.5.

21.4.15 420 Bad Extension

The server did not understand the protocol extension specifie®inxy-Require (Section 20.29) oRe-
quire (Section 20.32) header field. The sergerouLD include a list of the unsupported extensions in an
Unsupported header field in the response. UAC processing of this response is described in Section 8.1.3.5.

21.4.16 421 Extension Required

The UAS needs a particular extension to process the request, but this extension is not liSagpored
header field in the request. Responses with this statusnaode& contain aRequire header field listing the
required extensions.

A UAS sHOULD NOT use this response unless it truly cannot provide any useful service to the client.
Instead, if a desirable extension is not listed in wpported header field, serversHouLD process the
request using baseline SIP capabilities and any extensions supported by the client.

21.4.17 423 Interval Too Brief

The server is rejecting the request because the expiration time of the resource refreshed by the request is too
short. This response can be used by a registrar to reject a registration @drtset header field expiration

time was too small. The use of this response and the reMireExpires header field are described in
Sections 10.2.8, 10.3, and 20.23.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 130]

4673

4674

4675

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

4686

4687

4688

4689

4690

4691

4692
4693
4694

4695

4696

4697

4698

4699

4700

4701

4702

4703

4704

4705
4706

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

21.4.18 480 Temporarily Unavailable

The callee’s end system was contacted successfully but the callee is currently unavailable (for example, is
not logged in, logged in but in a state that precludes communication with the callee, or has activated the “do
not disturb” feature). The respons®y indicate a better time to call in tHeetry-After header field. The
user could also be available elsewhere (unbeknownst to this server). The reasorsplrase indicate a
more precise cause as to why the callee is unavailable. This salaeLD be settable by the UA. Status
486 (Busy HereMAY be used to more precisely indicate a particular reason for the call failure.

This status is also returned by a redirect or proxy server that recognizes the user identified by the
Request-URI, but does not currently have a valid forwarding location for that user.

21.4.19 481 Call/Transaction Does Not Exist

This status indicates that the UAS received a request that does not match any existing dialog or transaction.

21.4.20 482 Loop Detected

The server has detected a loop (Section 16.3 Item 4).

21.4.21 483 Too Many Hops

The server received a request that contaimMdax-Forwards (Section 20.22) header field with the value
zero.

21.4.22 484 Address Incomplete

The server received a request witlRaquest-URI that was incomplete. Additional informatidHoULD
be provided in the reason phrase.
This status code allows overlapped dialing. With overlapped dialing, the client does not know the length of the

dialing string. It sends strings of increasing lengths, prompting the user for more input, until it no longer receives a
484 (Address Incomplete) status response.

21.4.23 485 Ambiguous

TheRequest-URI was ambiguous. The respongay contain a listing of possible unambiguous addresses
in Contact header fields. Revealing alternatives can infringe on privacy of the user or the organization. It
MUST be possible to configure a server to respond with status 404 (Not Found) or to suppress the listing of
possible choices for ambiguotequest-URIs.

Example response to a request with Bequest-URI sip:lee@example.com

SIP/2.0 485 Ambiguous

Contact: Carol Lee <sip:carol.lee@example.com>
Contact: Ping Lee <sip:p.lee@example.com>

Contact: Lee M. Foote <sips:lee.foote@example.com>

Some email and voice mail systems provide this functionality. A status code separate from 3xx is used since
the semantics are different: for 300, it is assumed that the same person or service will be reached by the choices

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 131]

4707
4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

provided. While an automated choice or sequential search makes sense for a 3xx response, user intervention is
required for a 485 (Ambiguous) response.

21.4.24 486 Busy Here

The callee’s end system was contacted successfully, but the callee is currently not willing or able to take
additional calls at this end system. The respanse indicate a better time to call in tHeetry-After header

field. The user could also be available elsewhere, such as through a voice mail service. Status 600 (Busy
Everywhere)sHOULD be used if the client knows that no other end system will be able to accept this call.

21.4.25 487 Request Terminated
The request was terminated bBAE or CANCEL request. This response is never returned fOANCEL
request itself.

21.4.26 488 Not Acceptable Here

The response has the same meaning as 606 (Not Acceptable), but only applies to the specific resource
addressed by thRequest-URI and the request may succeed elsewhere.

A message body containing a description of media capabilities be present in the response, which is
formatted according to th&ccept header field in théNVITE (or application/sdp if not present), the same
as a message body in a 200 (OK) response ©ORMIONS request.

21.4.27 491 Request Pending
The request was received by a UAS that had a pending request within the same dialog. Section 14.2 describes
how such “glare” situations are resolved.

21.4.28 493 Undecipherable

The request was received by a UAS that contained an encrypted MIME body for which the recipient does not
possess or will not provide an appropriate decryption key. This responsdiave a single body containing

an appropriate public key that should be used to encrypt MIME bodies sent to this UA. Details of the usage
of this response code can be found in Section 23.2.

21.5 Server Failure 5xx

5xx responses are failure responses given when a server itself has erred.

21.5.1 500 Server Internal Error

The server encountered an unexpected condition that prevented it from fulfilling the request. Thexlient
display the specific error condition amhy retry the request after several seconds.

If the condition is temporary, the serveny indicate when the client may retry the request using the
Retry-After header field.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 132]

4738

4739

4740

4741

4742

4743

4744

4745

4746

4747

4748

4749

4750

4751

4752

4753

4754

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

21.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response
when a UAS does not recognize the request method and is not capable of supporting it for any user. (Proxies
forward all requests regardless of method.)

Note that a 405 (Method Not Allowed) is sent when the server recognizes the request method, but that
method is not allowed or supported.

21.5.3 502 Bad Gateway
The server, while acting as a gateway or proxy, received an invalid response from the downstream server it
accessed in attempting to fulfill the request.

21.5.4 503 Service Unavailable

The server is temporarily unable to process the request due to a temporary overloading or maintenance of
the server. The servefAy indicate when the client should retry the request Redry-After header field.
If no Retry-After is given, the clienmusT act as if it had received a 500 (Server Internal Error) response.

A client (proxy or UAC) receiving a 503 (Service Unavailab&)ouLD attempt to forward the request
to an alternate server. $tHouLD NOT forward any other requests to that server for the duration specified in
the Retry-After header field, if present.

ServeravAy refuse the connection or drop the request instead of responding with 503 (Service Unavail-
able).

21.5.5 504 Server Time-out

The server did not receive a timely response from an external server it accessed in attempting to process the
request. 408 (Request Timeout) should be used instead if there was no response within the period specified
in the Expires header field from the upstream server.

21.5.6 505 Version Not Supported

The server does not support, or refuses to support, the SIP protocol version that was used in the request. The
server is indicating that it is unable or unwilling to complete the request using the same major version as the
client, other than with this error message.

21.5.7 513 Message Too Large

The server was unable to process the request since the message length exceeded its capabilities.

21.6 Global Failures 6xx

6xx responses indicate that a server has definitive information about a particular user, not just the particular
instance indicated in thRequest-URI.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 133]

4769

4770

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

4783

4784

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

21.6.1 600 Busy Everywhere

The callee’s end system was contacted successfully but the callee is busy and does not wish to take the call
at this time. The responseAy indicate a better time to call in thRetry-After header field. If the callee

does not wish to reveal the reason for declining the call, the callee uses status code 603 (Decline) instead.
This status response is returned only if the client knows that no other end point (such as a voice mail system)
will answer the request. Otherwise, 486 (Busy Here) should be returned.

21.6.2 603 Decline

The callee’s machine was successfully contacted but the user explicitly does not wish to or cannot partici-
pate. The responseAy indicate a better time to call in tHReetry-After header field. This status response
is returned only if the client knows that no other end point will answer the request.

21.6.3 604 Does Not Exist Anywhere

The server has authoritative information that the user indicated Réelqeest-URI does not exist anywhere.

21.6.4 606 Not Acceptable

The user’s agent was contacted successfully but some aspects of the session description such as the requested
media, bandwidth, or addressing style were not acceptable.

A 606 (Not Acceptable) response means that the user wishes to communicate, but cannot adequately
support the session described. The 606 (Not Acceptable) respenseontain a list of reasons in\&arn-
ing header field describing why the session described cannot be supported. Warning reason codes are listed
in Section 20.43.

A message body containing a description of media capabilities be present in the response, which is
formatted according to th&ccept header field in théNVITE (or application/sdp if not present), the same
as a message body in a 200 (OK) response ©ORMIONS request.

It is hoped that negotiation will not frequently be needed, and when a new user is being invited to join
an already existing conference, negotiation may not be possible. It is up to the invitation initiator to decide
whether or not to act on a 606 (Not Acceptable) response.

This status response is returned only if the client knows that no other end point will answer the request.

22 Usage of HTTP Authentication

SIP provides a stateless, challenge-based mechanism for authentication that is based on authentication in
HTTP. Any time that a proxy server or UA receives a request (with the exceptions given in Section 22.1), it
MAY challenge the initiator of the request to provide assurance of its identity. Once the originator has been
identified, the recipient of the requestiouLD ascertain whether or not this user is authorized to make the
request in question. No authorization systems are recommended or discussed in this document.

The “Digest” authentication mechanism described in this section provides message authentication and
replay protection only, without message integrity or confidentiality. Protective measures above and beyond
those provided by Digest need to be taken to prevent active attackers from modifying SIP requests and
responses.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. sdm¢aires Aug 2002 [Page 134]

4805

4806

4807

4808

4809

4810

4811

4812

4813

4814

4815

4816

4817

4818

4819

4820

4821

4822
4823

4824

4825

4826

4827

4828

4829

4830

4831

4832

4833

4834

4835

4836

4837

4838

4839

4840

4841

4842

4843

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Note that due to its weak security, the usage of “Basic” authentication has been deprecated. Servers
MUST NOT accept credentials using the “Basic” authorization scheme, and serveksssaNOT challenge
with “Basic”. This is a change from RFC 2543.

22.1 Framework

The framework for SIP authentication closely parallels that of HTTP (RFC 2617 [18]). In particular, the
BNF for auth-scheme, auth-param, challenge, realm, realm-value, andcredentials is identical (al-

though the usage of “Basic” as a scheme is not permitted). In SIP, a UAS uses the 401 (Unauthorized)
response to challenge the identity of a UAC. Additionally, registrars and redirect semersnake use

of 401 (Unauthorized) responses for authentication, but proxiesT NOT, and insteadiAy use the 407
(Proxy Authentication Required) response. The requirements for inclusion drthe/-Authenticate,
Proxy-Authorization, WWW-Authenticate, and Authorization in the various messages are identical to
those described in RFC 2617 [18].

Since SIP does not have the concept of a canonical root URL, the notion of protection spaces is in-
terpreted differently in SIP. The realm string alone defines the protection domain. This is a change from
RFC 2543, in which th&equest-URI and the realm together defined the protection domain.

This previous definition of protection domain caused some amount of confusion sirRedhest-URI sent by
the UAC and theRequest-URI received by the challenging server might be different, and indeed the final form of

theRequest-URI might not be known to the UAC. Also, the previous definition depended on the presence of a SIP
URI in theRequest-URI and seemed to rule out alternative URI schemes (for example, the tel URL).

Operators of user agents or proxy servers that will authenticate received requestadhere to the
following guidelines for creation of a realm string for their server:

e Realm stringsvusT be globally unique. It iIRECOMMENDED that a realm string contain a hostname
or domain name, following the recommendation in Section 3.2.1 of RFC 2617 [18].

e Realm stringssHoOULD present a human-readable identifier that can be rendered to a user.

For example:

INVITE sip:bob@biloxi.com SIP/2.0
Authorization: Digest realm="biloxi.com", <...>

Generally, SIP authentication is meaningful for a specific realm, a protection domain. Thus, for Digest
authentication, each such protection domain has its own set of usernames and passwords. If a server does
not require authentication for a particular requestjAtr accept a default username, “anonymous”, which
has no password (password of “”). Similarly, UACs representing many users, such as PSTN gateways,
have their own device-specific username and password, rather than accounts for particular users, for their
realm.

While a server can legitimately challenge most SIP requests, there are two requests defined by this
document that require special handling for authenticath®K andCANCEL.

Under an authentication scheme that uses responses to carry values used to compute nonces (such as
Digest), some problems come up for any requests that take no response, iné@ngror this reason,
any credentials in thENVITE that were accepted by a serwewsT be accepted by that server for tAEK.

UACs creating arACK message will duplicate all of th&uthorization and Proxy-Authorization header

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 135]

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871

4872

4873

4874

4875

4876

4877

4878

4879

4880

4881

4882

4883

4884

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

field values that appeared in theVITE to which theACK corresponds. ServersusT NOT attempt to
challenge amACK.

Although theCANCEL method does take a response (a 2xx), semnversT NOT attempt to challenge
CANCEL requests since these requests cannot be resubmitted. Gene€ANGEL requestSHOULD be
accepted by a server if it comes from the same hop that sent the request being canceled (provided that some
sort of transport or network layer security association, as described in Section 26.2.1, is in place).

When a UAC receives a challenge,sitiouLD render to the user the contents of thhedim” param-
eter in the challenge (which appears in eithaV&/W-Authenticate header field oProxy-Authenticate
header field) if the UAC device does not already know of a credential for the realm in question. A service
provider that pre-configures UAs with credentials for its realm should be aware that users will not have the
opportunity to present their own credentials for this realm when challenged at a pre-configured device.

Finally, note that even if a UAC can locate credentials that are associated with the proper realm, the
potential exists that these credentials may no longer be valid or that the challenging server will not accept
these credentials for whatever reason (especially when “anonymous” with no password is submitted). In
this instance a server may repeat its challenge, or it may respond with a 403 Forbidden. AJ3AGIOT
re-attempt requests with the credentials that have just been rejected (though the request may be are retried if
the nonce was stale).

22.2 User-to-User Authentication

When a UAS receives a request from a UAC, the UA& authenticate the originator before the request

is processed. If no credentials (in taithorization header field) are provided in the request, the UAS

can challenge the originator to provide credentials by rejecting the request with a 401 (Unauthorized) status
code.

TheWWW-Authenticate response-header fieldusT be included in 401 (Unauthorized) response mes-
sages. The field value consists of at least one challenge that indicates the authentication scheme(s) and
parameters applicable to the realm. See [H14.47] for a definition of the syntax.

An example of theVWW-Authenticate header field in a 401 challenge is:

WWW-Authenticate: Digest
realm="biloxi.com",
gop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
opaque="5ccc069c403ebafof0171e9517f40e41"

When the originating UAC receives the 401 (UnauthorizedyHbuLD, if it is able, re-originate the
request with the proper credentials. The UAC may require input from the originating user before proceeding.
Once authentication credentials have been supplied (either directly by the user, or discovered in an internal
keyring), UAssHOULD cache the credentials for a given value of ffeeheader field andréalm” and
attempt to re-use these values on the next request for that destinationmAYAsache credentials in any
way they would like.

If no credentials for a realm can be located, UA@sr attempt to retry the request with a username of
“anonymous” and no password (a password of).

Once credentials have been located, any UA that wishes to authenticate itself with a UAS or registrar
— usually, but not necessarily, after receiving a 401 (Unauthorized) respanse €o so by including an

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 136]

4885

4886

4887

4888

4889

4890

4891

4892

4893

4894

4895

4896

4897

4898

4899

4900

4901

4902

4903

4904

4905

4906

4907

4908

4909

4910

4911

4912

4913

4914
4915
4916

4917

4918

4919

4920

4921

4922

4923

4924

4925

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Authorization header field with the request. TAeathorization field value consists of credentials containing
the authentication information of the UA for the realm of the resource being requested as well as parameters
required in support of authentication and replay protection.

An example of théAuthorization header field is:

Authorization: Digest username="bob",
realm="biloxi.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="sip:bob@biloxi.com"”,
gop=auth,
nc=00000001,
cnonce="0a4f113b",
response="6629fae49393a05397450978507c4efl",
opaque="5ccc069c403ebafof0171e9517f40e41"

When a UAC resubmits a request with its credentials after receiving a 401 (Unauthorized) or 407 (Proxy
Authentication Required) responseMuST increment theCSeq header field value as it would normally
when sending an updated request.

22.3 Proxy-to-User Authentication

Similarly, when a UAC sends a request to a proxy server, the proxy semerauthenticate the originator
before the request is processed. If no credentials (irPtiogy-Authorization header field) are provided

in the request, the proxy can challenge the originator to provide credentials by rejecting the request with a
407 (Proxy Authentication Required) status code. The pmoxgT populate the 407 (Proxy Authentication
Required) message withRroxy-Authenticate header field value applicable to the proxy for the requested
resource.

The use ofProxy-Authentication and Proxy-Authorization parallel that described in [18], with one
difference. ProxiesausT NOT add values to th@roxy-Authorization header field. All 407 (Proxy Au-
thentication Required) responses sT be forwarded upstream toward the UAC following the procedures
for any other response. It is the UAC's responsibility to add Rnexy-Authorization header field value
containing credentials for the realm of the proxy that has asked for authentication.

If a proxy were to resubmit a request adding’@oxy-Authorization header field value, it would need to in-

crement theCSeq in the new request. However, this would cause the UAC that submitted the original request to
discard a response from the UAS, as @feq value would be different.

When the originating UAC receives the 407 (Proxy Authentication RequiresjduLD, if it is able,
re-originate the request with the proper credentials. It should follow the same procedures for the display of
the “realm” parameter that are given above for responding to 401.

If no credentials for a realm can be located, UA@sr attempt to retry the request with a username of
“anonymous” and no password (a password of).

The UAC sHOULD also cache the credentials used in the re-originated request.

The following rule isSRECOMMENDED for proxy credential caching:

If a UA receives aProxy-Authenticate header field value in a 401/407 response to a request with a
particularCall-ID, it should incorporate credentials for that realm in all subsequent requests that contain the

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 137]

4926

4927

4928

4929

4930

4931

4932

4933

4934

4935

4936

4937

4938

4939

4940

4941

4942

4943

4944

4945

4946

4947

4948

4949

4950
4951
4952
4953
4954
4955

4956

4957

4958

4959

4960

4961

4962

4963

4964

4965

4966

4967

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

sameCall-ID. These credential®usT NOT be cached across dialogs; however, if a UA is configured with

the realm of its local outbound proxy, when one exists, then thevd cache credentials for that realm
across dialogs. Note that this does mean a future request in a dialog could contain credentials that are not
needed by any proxy along tfoute header path.

Any UA that wishes to authenticate itself to a proxy server — usually, but not necessarily, after receiving
a 407 (Proxy Authentication Required) responseay do so by including d&roxy-Authorization header
field value with the request. TH&roxy-Authorization request-header field allows the client to identify itself
(or its user) to a proxy that requires authentication. Phexy-Authorization header field value consists of
credentials containing the authentication information of the UA for the proxy and/or realm of the resource
being requested.

A Proxy-Authorization header field value applies only to the proxy whose realm is identified in the
“realm” parameter (this proxy may previously have demanded authentication usiRgakye Authenticate
field). When multiple proxies are used in a chaiRraxy-Authorization header field valugusT NOT be
consumed by any proxy whose realm does not matchriedrh” parameter specified in that value.

Note that if an authentication scheme that does not support realms is usedPiroxiyeAuthorization
header field, a proxy serverusT attempt to parse aRroxy-Authorization header field values to determine
whether one of them has what the proxy server considers to be valid credentials. Because this is potentially
very time-consuming in large networks, proxy sen@mUuLD use an authentication scheme that supports
realms in theProxy-Authorization header field.

If a request is forked (as described in Section 16.7), various proxy servers and/or UAs may wish to
challenge the UAC. In this case, the forking proxy server is responsible for aggregating these challenges
into a single response. EatiWW-Authenticate andProxy-Authenticate value received in responses to
the forked requestiusT be placed into the single response that is sent by the forking proxy to the UA,; the
ordering of these header field values is not significant.

When a proxy server issues a challenge in response to a request, it will not proxy the request until the UAC has
retried the request with valid credentials. A forking proxy may forward a request simultaneously to multiple proxy
servers that require authentication, each of which in turn will not forward the request until the originating UAC has
authenticated itself in their respective realm. If the UAC does not provide credentials for each challenge, then the
proxy servers that issued the challenges will not forward requests to the UA where the destination user might be
located, and therefore, the virtues of forking are largely lost.

When resubmitting its request in response to a 401 (Unauthorized) or 407 (Proxy Authentication Re-
quired) that contains multiple challenges, a UMBY include anAuthorization value for eacHVWW-
Authenticate value and aroxy-Authorization value for eachProxy-Authenticate value for which the
UAC wishes to supply a credential. As noted above, multiple credentials in a rexjuest D be differen-
tiated by the fealm” parameter.

It is possible for multiple challenges associated with the same realm to appear in the same 401 (Unautho-
rized) or 407 (Proxy Authentication Required). This can occur, for example, when multiple proxies within
the same administrative domain, which use a common realm, are reached by a forking request. When it re-
tries a request, a UA®AY therefore supply multiple credentials Authorization or Proxy-Authorization
header fields with the samegalm” parameter value. The same credents#souLD be used for the same
realm.

See [H14.34] for a definition of the syntax Bfoxy-Authentication andProxy-Authorization.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 138]

4968

4969

4970

4971

4972

4973

4974

4975

4976

4977

4978

4979

4980

4981

4982

4983

4984

4985

4986

4987

4988

4989

4990

4991

4992

4993

4994

4995

4996

4997

4998

4999

5000

5001

5002

5003

5004

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

22.4 The Digest Authentication Scheme

This section describes the modifications and clarifications required to apply the HTTP Digest authentication
scheme to SIP. The SIP scheme usage is almost completely identical to that for HTTP [18].

Since RFC 2543 is based on HTTP Digest as defined in RFC 2069 [38], SIP servers supporting RFC
2617 mUsT ensure they are backwards compatible with RFC 2069. Procedures for this backwards com-
patibility are specified in RFC 2617. Note, however, that SIP senerstT NOT accept or request Basic
authentication.

The rules for Digest authentication follow those defined in [18], with “HTTP/1.1" replaced by “SIP/2.0”
in addition to the following differences:

1. The URI included in the challenge has the following BNF:
URI = SIP-URI / SIPS-URI

2. The BNF in RFC 2617 has an error in that the 'uri’ parameter ofAlignorization header field for
HTTP Digest authentication is not enclosed in quotation marks. (The example in Section 3.5 of RFC
2617 is correct.) For SIP, the 'unitusT be enclosed in quotation marks.

3. The BNF fordigest-uri-value is:

digest-uri-value = Request-URI ; as defined in Section 25
4. The example procedure for choosing a nonce baséttamdoes not work for SIP.
5. The text in RFC 2617 [18] regarding cache operation does not apply to SIP.

6. RFC 2617 [18] requires that a server check that the URI in the request line and the URI included in
the Authorization header field point to the same resource. In a SIP context, these two URIs may refer
to different users, due to forwarding at some proxy. Therefore, in SIP, a semrecheck that the
Request-URI in the Authorization header field value corresponds to a user for whom the server is
willing to accept forwarded or direct requests, but it is not necessarily a failure if the two fields are
not equivalent.

7. As a clarification to the calculation of the A2 value for message integrity assurance in the Digest
authentication scheme, implementers should assume, when the entity-body is empty (that is, when
SIP messages have no body) that the hash of the entity-body resolves to the MD5 hash of an empty
string, or:

H(entity-body) = MD5(™) = "d41d8cd98f00b204e9800998ecf8427¢e”"

8. RFC 2617 notes that a cnonce valuesT NOT be sent in authorization (and by extensiofProxy-
Authorization) header field if no qop directive has been sent. Therefore, any algorithms that have a
dependency on the cnonce (including “MD5-Sess”) require that the qop directive be sent. Use of the
“gop” parameter is optional in RFC 2617 for the purposes of backwards compatibility with RFC 2069;
since RFC 2543 was based on RFC 2069, the “qop” parameter must unfortunately remain optional
for clients and servers to receive. However, serweysT always send a “gop” parameter \MWW-
Authenticate andProxy-Authenticate header field values. If a client receives a “qop” parameter in a
challenge header field, itusT send the “qop” parameter in any resulting authorization header field.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 139]

5005

5006

5007

5008

5009

5010

5011
5012
5013
5014
5015
5016

5017

5018
5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

RFC 2543 did not allow usage of thaithentication-Info header field (it effectively used RFC 2069).
However, we now allow usage of this header field, since it provides integrity checks over the bodies and
provides mutual authentication. RFC 2617 [18] defines mechanisms for backwards compatibility using the
gop attribute in the request. These mechanisimsT be used by a server to determine if the client supports
the new mechanisms in RFC 2617 that were not specified in RFC 2069.

23 S/MIME

SIP messages carry MIME bodies and the MIME standard includes mechanisms for securing MIME con-
tents to ensure both integrity and confidentiality (including the 'multipart/signed’ and "application/pkcs7-
mime’ MIME types, see RFC 1847 [22], RFC 2630 [23] and RFC 2633 [24]). Implementers should note,
however, that there may be rare network intermediaries (not typical proxy servers) that rely on viewing or
modifying the bodies of SIP messages (especially SDP), and that secure MIME may prevent these sorts of
intermediaries from functioning.

This applies particularly to certain types of firewalls.

The PGP mechanism for encrypting the header fields and bodies of SIP messages described in RFC 2543 has
been deprecated.

23.1 S/MIME Certificates

The certificates that are used to identify an end-user for the purposes of S/IMIME differ from those used
by servers in one important respect - rather than asserting that the identity of the holder corresponds to a
particular hostname, these certificates assert that the holder is identified by an end-user address. This address
is composed of the concatenation of thisérinfo” “@” and “domainname” portions of a SIP or SIPS URI

(in other words, an email address of the form “bob@biloxi.com”), most commonly corresponding to a user’s
address-of-record.

These certificates are also associated with keys that are used to sign or encrypt bodies of SIP messages.

Bodies are signed with the private key of the sender (who may include their public key with the message
as appropriate), but bodies are encrypted with the public key of the intended recipient. Obviously, senders
must have foreknowledge of the public key of recipients in order to encrypt message bodies. Public keys
can be stored within a UA on a virtual keyring.

Each user agent that supports S/IMIMIEBST contain a keyring specifically for end-users’ certificates.

This keyring should map between addresses of record and corresponding certificates. Over time, users
SHOULD use the same certificate when they populate the originating URI of signalindrioine header
field) with the same address-of-record.

Any mechanisms depending on the existence of end-user certificates are seriously limited in that there is
virtually no consolidated authority today that provides certificates for end-user applications. However, users
SHOULD acquire certificates from known public certificate authorities. As an alternative, magrsreate
self-signed certificates. The implications of self-signed certificates are explored further in Section 26.4.2.
Implementations may also use pre-configured certificates in deployments in which a previous trust relation-
ship exists between all SIP entities.

Above and beyond the problem of acquiring an end-user certificate, there are few well-known central-
ized directories that distribute end-user certificates. However, the holder of a cert#ficata. b publish
their certificate in any public directories as appropriate. Similarly, UABeULD support a mechanism
for importing (manually or automatically) certificates discovered in public directories corresponding to the
target URIs of SIP requests.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 140]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

sr 23.2 SIMIME Key Exchange

saas SIP itself can also be used as a means to distribute public keys in the following manner.

5049 Whenever the CMS SignedData message is used in S/IMIME for SIR)Str contain the certificate

sos0 bearing the public key necessary to verify the signature.

5051 When a UAC sends a request containing an S/MIME body that initiates a dialog, or sends a non-
sos2 INVITE request outside the context of a dialog, the U@ uLD structure the body as an S/IMIME 'multi-

sos3 part/signed’ CMS SignedData body. If the desired CMS service is EnvelopedData (and the public key of the
sos4 target user is known), the UAGHOULD send the EnvelopedData message encapsulated within a SignedData
5055 Message.

5056 When a UAS receives a request containing an S/IMIME CMS body that includes a certificate, the UAS
sos7 SHOULD first verify the certificate, if possible, with any available certificate authority. The JASuULD

sos8 also determine the subject of the certificate and compare this value Fodihreheader field of the request.

sos9 If the certificate cannot be verified, because it is self-signed, or signed by no known authority, or if it is
soe0 Verifiable but its subject does not correspond toRhem header field of request, the UABJST notify its

soe1 USer of the status of the certificate (including the subject of the certificate, its signer, and any key fingerprint
sz information) and request explicit permission before proceeditighe certificate was successfully verified

soes and the subject of the certificate corresponds td-tioen header field of the SIP request, or if the user (after

soe4 Notification) explicitly authorizes the use of the certificate, the WA®ULD add this certificate to a local

soe5 keyring, indexed by the address-of-record of the holder of the certificate.

5066 When a UAS sends a response containing an S/MIME body that answers the first request in a dialog, or
so67 @ response to a ndNVITE request outside the context of a dialog, the U8 ULD structure the body

soe8 @S an S/IMIME 'multipart/signed’ CMS SignedData body. If the desired CMS service is EnvelopedData, the
soe0 UAS SHOULD send the EnvelopedData message encapsulated within a SignedData message.

5070 When a UAC receives a response containing an S/IMIME CMS body that includes a certificate, the UAC
sor1 - SHOULD first verify the certificate, if possible, with any available certificate authority. The YAGULD

sor2 also determine the subject of the certificate and compare this value To tiedd of the response; although

sozs the two may very well be different, and this is not necessarily indicative of a security breach. If the certificate
so7a cannot be verified because it is self-signed, or signed by no known authority, thetaUACnotify its user

sors Of the status of the certificate (including the subject of the certificate, its signator, and any key fingerprint
soze information) and request explicit permission before proceeding. If the certificate was successfully verified,
sor7 - and the subject of the certificate corresponds toTilndieader field in the response, or if the user (after

sors notification) explicitly authorizes the use of the certificate, the UsM®ULD add this certificate to a local

sor9 Keyring, indexed by the address-of-record of the holder of the certificate. If the UAC had not transmitted its
sos0 OWN certificate to the UAS in any previous transactiorsHbuLD use a CMS SignedData body for its next

so81 request or response.

5082 On future occasions, when the UA receives requests or responses that coRtaim aeader field

sos3 corresponding to a value in its keyring, the $NoOuULD compare the certificate offered in these messages
sosa With the existing certificate in its keyring. If there is a discrepancy, theMd&ST notify its user of a change

soss Of the certificate (preferably in terms that indicate that this is a potential security breach) and acquire the
so86 USer's permission before continuing to process the signaling. If the user authorizes this certiiegtelLib

sos7 be added to the keyring alongside any previous value(s) for this address-of-record.

5088 Note well however, that this key exchange mechanism does not guarantee the secure exchange of keys
sos9 When self-signed certificates, or certificates signed by an obscure authority, are used - it is vulnerable to
so0 Well-known attacks. In the opinion of the authors, however, the security it provides is proverbially better

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 141]

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

5101

5102

5103

5104

5105

5106

5107

5108

5109

5110

5111

5112

5113

5114

5115

5116

5117

5118

5119

5120

5121

5122

5123

5124

5125

5126

5127

5128

5129

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

than nothing; it is in fact comparable to the widely used SSH application. These limitations are explored in
greater detail in Section 26.4.2.

If a UA receives an S/IMIME body that has been encrypted with a public key unknown to the recipient,
it MUST reject the request with a 493 (Undecipherable) response. This respapnsa D contain a valid
certificate for the respondent (corresponding, if possible, to any address of record giverfanhibader
field of the rejected request) within a MIME body with a ‘certs-onlghtfime-type” parameter.

A 493 (Undecipherable) sent without any certificate indicates that the respondent cannot or will not
utilize SIMIME encrypted messages, though they may still support S/IMIME signatures.

Note that a user agent that receives a request containing an S/MIME body that is not optional (with
a Content-Disposition header handling” parameter of “required”MuUsST reject the request with a 415
Unsupported Media Type response if the MIME type is not understood. A user agent that receives such a
response when S/IMIME is seeHOULD notify its user that the remote device does not support S/IMIME,
and it MAY subsequently resend the request without SIMIME, if appropriate; however, this 415 response
may constitute a downgrade attack.

If a user agent sends an S/MIME body in a request, but receives a response that contains a MIME body
that is not secured, the UASHOULD notify its user that the session could not be secured. However, if a
user agent that supports S/IMIME receives a request with an unsecured kayuitdD NOT respond with
a secured body, but if it expects S/IMIME from the sender (for example, because the sErateriseader
field value corresponds to an identity on its keychain), the WA®ULD notify its user that the session
could not be secured.

Finally, if during the course of a dialog a UA receives a certificate in a CMS SignedData message that
does not correspond with the certificates previously exchanged during a dialog, the $i2notify its user
of the change, preferably in terms that indicate that this is a potential security breach.

23.3 Securing MIME bodies

There are two types of secure MIME bodies that are of interest to SIP: 'multipart/signed’ and "application/pkcs7-
mime’. The procedures for the use of these bodies should follow the S/IMIME specification [24] with a few
variations.

e “multipart/signed”MUsT be used only with CMS detached signatures.

This allows backwards compatibility with non-S/MIME-compliant recipients.

¢ S/MIME bodiessHouLD have aContent-Disposition header field, and the value of theandling”
parametesHOULD be “required.”

e If a UAC has no certificate on its keyring associated with the address-of-record to which it wants to
send a request, it cannot send an encrypted “application/pkcs7-mime” MIME message MAACS
send an initial request such as @PTIONS message with a CMS detached signature in order to
solicit the certificate of the remote side (the signasm®uLD be over a “application/sip” body of the
type described in Section 23.4).

Note that future standardization work on S/MIME may define non-certificate based keys.

e Senders of S/IMIME bodiesHouLD use the “SMIMECapabilities” (see Section 2.5.2 of [24]) at-
tribute to express their capabilities and preferences for further communications. Note especially that

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 142]

5130

5131

5132

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

5145

5146

5147

5148

5149

5150

5151

5152

5153

5154

5155

5156

5157

5158

5159

5160

5161

5162

5163

5164

5165

5166

5167

5168

5169

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

sendersmAy use the “preferSignedData” capability to encourage receivers to respond with CMS
SignedData messages (for example, when sendif@RaFIONS request as described above).

e S/MIME implementationsvusT at a minimum support SHA1 as a digital signature algorithm, and
3DES as an encryption algorithm. All other signature and encryption algoritmwsbe supported.
Implementations can negotiate support for these algorithms with the “SMIMECapabilities” attribute.

e Each S/MIME body in a SIP messageouLD be signed with only one certificate. If a UA receives
a message with multiple signatures, the outermost signature should be treated as the single certificate
for this body. Parallel signaturesiouLb NOT be used.

The following is an example of an encrypted SIMIME SDP body within a SIP message:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e€66710

CSeq: 314159 INVITE

Max-Forwards: 70

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;

name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m
handling=required

kkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkhkhkkkkkkkkkkkkkhkkhkkkkkkx

* Content-Type: application/sdp *

* *
* \/::() *
* o=alice 53655765 2353687637 IN IP4 pc33.atlanta.com *

* g=- *
*t=0 0 *
* ¢=IN IP4 pc33.atlanta.com *

* m=audio 3456 RTP/AVP 0 1 3 99 *
* a=rtpmap:0 PCMU/8000 *

kkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkhkkhkhkkkkkkkkkkkkkhkkkkkkkx

23.4 SIP Header Privacy and Integrity using S/MIME: Tunneling SIP

As ameans of providing some degree of end-to-end authentication, integrity or confidentiality for SIP header
fields, SIMIME can encapsulate entire SIP messages within MIME bodies of type “application/sip” and
then apply MIME security to these bodies in the same manner as typical SIP bodies. These encapsulated
SIP requests and responses do not constitute a separate dialog or transaction, they are a copy of the “outer”
message that is used to verify integrity or to supply additional information.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 143]

5170

5171

5172

5173

5174

5175

5176

5177

5178

5179

5180

5181

5182

5183

5184

5185

5186

5187

5188

5189

5190

5191

5192

5193

5194

5195

5196

5197

5198

5199

5200

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

If a UAS receives a request that contains a tunneled “application/sip” S/IMIME baslypit/LD include
a tunneled “application/sip” body in the response with the same smime-type.

Any traditional MIME bodies (such as SDBHOULD be attached to the "inner” message so that they
can also benefit from S/IMIME security. Note that “application/sip” bodies can be sent as a part of a MIME
“multipart/mixed” body if any unsecured MIME types should also be transmitted in a request.

23.4.1 Integrity and Confidentiality Properties of SIP Headers

When the S/IMIME integrity or confidentiality mechanisms are used, there may be discrepancies between the
values in the “inner” message and values in the “outer” message. The rules for handling any such differences
for all of the header fields described in this document are given in this section.

23.4.1.1 Integrity Whenever integrity checks are performed, the integrity of a header field should be
determined by matching the value of the header field in the signed body with that in the “outer” messages
using the comparison rules of SIP as described in 20.

Header fields that can be legitimately modified by proxy servers Rexjuest-URI, Via, Record-
Route, Route, Max-Forwards, andProxy-Authorization. If these header fields are not intact end-to-end,
implementationsHOULD NOT consider this a breach of security. Changes to any other header fields defined
in this documentconstitute an integrity violation; useksusT be notified of a discrepancy.

23.4.1.2 Confidentiality When messages are encrypted, header fields may be included in the encrypted
body that are not present in the “outer” message.

Some header fields must always have a plaintext version because they are required header fields in
requests and responses - these inclu@i®: From, Call-ID, CSeq, Contact. While it is probably not
useful to provide an encrypted alternative for @al-1D, Cseq, or Contact, providing an alternative to the
information in the “outer'To or From is permitted. Note that the values in an encrypted body are not used
for the purposes of identifying transactions or dialogs - they are merely informational. Ffdine header
field in an encrypted body differs from the value in the “outer” message, the value within the encrypted
body sHouLD be displayed to the user, bMmiusT NOT be used in the “outer” header fields of any future
messages.

Primarily, a user agent will want to encrypt header fields that have an end-to-end semantic, including:
Subject, Reply-To, Organization, Accept, Accept-Encoding, Accept-Language, Alert-Info, Error-

Info, Authentication-Info, Expires, In-Reply-To, Require, Supported, Unsupported, Retry-After, User-

Agent, Server, andWarning. If any of these header fields are present in an encrypted body, they should be
used instead of any “outer” header fields, whether this entails displaying the header field values to users or
setting internal states in the UA. TheyiouLD NOT however be used in the “outer” headers of any future
messages.

Since MIME bodies are attached to the “inner” message, implementations will usually encrypt MIME-
specific header fields, includinglIME-Version, Content-Type, Content-Length, Content-Language,
Content-Encoding and Content-Disposition. The “outer” message will have the proper MIME header
fields for SIMIME bodies. These header fields (and any MIME bodies they preface) should be treated as
normal MIME header fields and bodies received in a SIP message.

It is not particularly useful to encrypt the following header fiel@ate, Min-Expires, Timestamp,
Authorization, Priority, andWWW-Authenticate. This category also includes those header fields that can
be changed by proxy servers (described in the preceding section)si®&sLD never include these in an

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 144]

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

5233

5234

5235

5236

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

“inner” message if they are not included in the “outer” message. UAs that receive any of these header fields
in an encrypted bodgHoULD ignore the encrypted values.

Note that extensions to SIP may define additional header fields; the authors of these extensions should
describe the integrity and confidentiality properties of such header fields. If a SIP UA encounters an un-
known header field with an integrity violation,NtuST ignore the header field.

23.4.2 Tunneling Integrity and Authentication

Tunneling SIP messages within S/IMIME bodies can provide integrity for SIP header fields if the header
fields that the sender wishes to secure are replicated in a “application/sip” MIME body signed with a CMS
detached signature.

Provided that the “application/sip” body contains at least the fundamental dialog idenfiie=r¢m,

Call-ID, CSeq), then a signed MIME body can provide limited authentication. At the very least, if the
certificate used to sign the body is unknown to the recipient and cannot be verified, the signature can be used
to ascertain that a later request in a dialog was transmitted by the same certificate-holder that initiated the
dialog. If the recipient of the signed MIME body has some stronger incentive to trust the certificate (they
were able to verify it, acquire it from a trusted repository, or they have used it frequently) then the signature
can be taken as a stronger assertion of the identity of the subject of the certificate.

In order to eliminate possible confusions about the addition or subtraction of entire header fields, senders
SHouULD replicate all header fields from the request within the signed body. Any message bodies that require
integrity protectionrmusT be attached to the “inner” message.

If an integrity violation in a message is detected by its recipient, the messagéde rejected with a
403 (Forbidden) response if it is a request, or any existing digleg be terminated. UASHOULD notify
users of this circumstance and request explicit guidance on how to proceed.

The following is an example of the use of a tunneled “application/sip” body:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Max-Forwards: 70

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg=shal; boundary=boundary42

Content-Length: 568

--boundary42
Content-Type: application/sip

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <bob@biloxi.com>

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 145]

5253

5254

5255

5256

5257

5258

5259

5260

5261

5262

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

5279

5280

5281

5282

5283

5284

5285

5286

5287

5288

5289

5290

5291

5292

5293

5294

5295

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

From: Alice <alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Max-Forwards: 70

Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp

Content-Length: 147

v=0

o=UserA 2890844526 2890844526 IN IP4 here.com
s=Session SDP

c=IN IP4 pc33.atlanta.com

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

--boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s;
handling=required

ghyHhHUUjhJhjH77n8HHG Trivbnj756tbBOHG4VQpfyF467GhIGFHIY T6
4VQpfyF467GhIGHFY T6jH77n8HHGghyHhHUUjhJh756tbBOHG Trivbnj
N8HHGTrivhJhjH776tbBOHGA4VQbnj7567GhIGFHfY T6ghyHhHUUjpfyF4
7GhIGfHfY T64VQbnj756

--boundary42-

23.4.3 Tunneling Encryption

It may also be desirable to use this mechanism to encrypt a “application/sip” MIME body within a CMS
EnvelopedData message S/MIME body, but in practice, most header fields are of at least some use to the
network; the general use of encryption with S/IMIME is to secure message bodies like SDP rather than
message headers. Some informational header fields, such Salifext or Organization could perhaps
warrant end-to-end security. Headers defined by future SIP applications might also require obfuscation.

Another possible application of encrypting header fields is selective anonymity. A request could be con-
structed with &rom header field that contains no personal information (for example, sip:anonymous@anonymizer.ir
However, a seconéirom header field containing the genuine address-of-record of the originator could be
encrypted within a “application/sip” MIME body where it will only be visible to the endpoints of a dialog.

motivationNote that if this mechanism is used for anonymity, Fh@m header field will no longer
be usable by the recipient of a message as an index to their certificate keychain for retrieving the proper
S/MIME key to associated with the sender. The message must first be decrypted, and theFiomner”
header fieldwusT be used as an index.

In order to provide end-to-end integrity, encrypted “application/sip” MIME bodiesuLD be signed by

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 146]

5296

5297

5298

5299

5300

5301

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5320

5321

5322

5323

5324

5325

5326

5327

5328

5329

5330

5331

5332

5333

5334

5335

5336

5337

5338

5339

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

the sender. This creates a “multipart/signed” MIME body that contains an encrypted body and a signature,
both of type “application/pkcs7-mime”.

In the following example, of an encrypted and signed message, the text boxed in asterisks (“*") is
encrypted:

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.com>
From: Anonymous <sip:anonymous@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Max-Forwards: 70
Contact: <sip:pc33.atlanta.com>
Content-Type: multipart/signed;
protocol="application/pkcs7-signature"”;
micalg=shal; boundary=boundary42
Content-Length: 568

--boundary42
Content-Type: application/pkcs7-mime; smime-type=enveloped-data;
name=smime.p7m
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m
handling=required
Content-Length: 231

kkkkkkkkkkkhkkkkkkkkkkkhkhkkkkkkkkkkkhkhkkhkkkkkkkkkkkkhkhkkkkkkkk

* Content-Type: application/sip *

* INVITE sip:bob@biloxi.com SIP/2.0 *

* Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8 *

* To: Bob <bob@biloxi.com> *
* From:. Alice <alice@atlanta.com>;tag=1928301774 *

* Call-ID: a84b4c76e66710 *

* CSeq: 314159 INVITE *
* Max-Forwards: 70 *
* Contact: <sip:alice@pc33.atlanta.com> *

* Content-Type: application/sdp *

* v=0 *
* o=alice 53655765 2353687637 IN IP4 pc33.atlanta.com *

* g=Session SDP *
*t=0 0 *
* ¢=IN IP4 pc33.atlanta.com *

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 147]

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

5358

5359

5360

5361

5362

5363

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

* m=audio 3456 RTP/AVP 0 1 3 99 *
* a=rtpmap:0 PCMU/8000 *

kkkkkkkkkkkhkkkkkkkkkkkhkhkhkhkkkkkkkkkkkhkhkkhkkkkkkkkkkkkkhkkkkkkkk

--boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s;
handling=required

ghyHhHUUjhJhjH77n8HHG Trivbnj756tbBOHGA4VQpfyF467GhIGIHIYT6
4VQpfyF467GhIGHFY T6jH77n8HHGghyHhHUUjhJh756tbBOHG Trivbnj
N8HHG TrfvhJhjH776tbBOHGAVQbNj7567GhIGIHFY T6ghyHhHUUjpfyF4
7GhIGHFYT64VQbnj756

--boundary42-

24 Examples

In the following examples, we often omit the message body and the correspaddinignt-Length and
Content-Type header fields for brevity.

24.1 Registration

Bob registers on start-up. The message flow is shown in Figure 9. Note that the authentication usually
required for registration is not shown for simplicity.

- i

biloxi.com Bob's SIP
Registrar Phone

REGISTER F1 ‘
200 OK F2

Figure 9: SIP Registration Example

F1 REGISTER Bob -> Registrar

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 148]

5364

5365

5366

5367

5368

5369

5370

5371

5372

5373

5374

5375

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

5398

5399

5400

5401

5402

5403

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

REGISTER sip:registrar.biloxi.com SIP/2.0

Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7
Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Bob <sip:bob@biloxi.com>;tag=456248

Call-ID: 843817637684230@998sdasdh09

CSeq: 1826 REGISTER

Contact: <sip:bob@192.0.2.4>

Expires: 7200

Content-Length: 0

The registration expires after two hours. The registrar responds with a 200 OK:

F2 200 OK Registrar -> Bob

SIP/2.0 200 OK

Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7
rreceived=192.0.2.4

To: Bob <sip:bob@biloxi.com>

From: Bob <sip:bob@biloxi.com>;tag=456248

Call-ID: 843817637684230@998sdasdh09

CSeq: 1826 REGISTER

Contact: <sip:bob@192.0.2.4>

Expires: 7200

Content-Length: 0

24.2 Session Setup

This example contains the full details of the example session setup in Section 4. The message flow is shown
in Figure 1. Note that these flows show the minimum required set of header fields - some other header fields
such asAllow andSupported would normally be present.

F1 INVITE Alice -> atlanta.com proxy

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 149]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

5404 Contact: <sip:alice@pc33.atlanta.com>
5405 Content-Type: application/sdp

5406 Content-Length: 142

5407

5408 (Alice’s SDP not shown)

5409

sa0 F2 100 Trying atlanta.com proxy -> Alice

5411

5412 SIP/2.0 100 Trying

5413 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5414 :received=10.1.3.3

5415 To: Bob <sip:bob@biloxi.com>

5416 From: Alice <sip:alice@atlanta.com>;tag=1928301774
5417 Call-ID: a84b4c76e66710

5418 CSeq: 314159 INVITE

5419 Content-Length: 0

5420

se22 F3 INVITE atlanta.com proxy -> biloxi.com proxy

5422

5423 INVITE sip:bob@biloxi.com SIP/2.0

5424 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5425 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5426 ;received=10.1.3.3

5427 Max-Forwards: 69

5428 To: Bob <sip:bob@biloxi.com>

5429 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5430 Call-ID: a84b4c76e66710

5431 CSeq: 314159 INVITE

5432 Contact: <sip:alice@pc33.atlanta.com>

5433 Content-Type: application/sdp

5434 Content-Length: 142

5435

5436 (Alice’s SDP not shown)

5437

sz F4 100 Trying biloxi.com proxy -> atlanta.com proxy

5439

5440 SIP/2.0 100 Trying

5441 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5442 rreceived=10.1.1.1

5443 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5444 :received=10.1.3.3

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 150]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

5445 To: Bob <sip:bob@biloxi.com>

5446 From: Alice <sip:alice@atlanta.com>;tag=1928301774
5447 Call-ID: a84b4c76e66710

5448 CSeq: 314159 INVITE

5449 Content-Length: 0

5450

sas1 F5 INVITE biloxi.com proxy -> Bob

5452

5453 INVITE SiprOb@192.0.2.4 SIP/2.0

5454 Via: SIP/2.0/lUDP serverl0.biloxi.com;branch=z9nG4bK4b43c2ff8.1
5455 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5456 ;received=10.1.1.1

5457 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5458 ;received=10.1.3.3

5459 Max-Forwards: 68

5460 To: Bob <sip:bob@biloxi.com>

5461 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5462 Call-ID: a84b4c76e66710

5463 CSeq: 314159 INVITE

5464 Contact: <sip:alice@pc33.atlanta.com>

5465 Content-Type: application/sdp

5466 Content-Length: 142

5467

5468 (Alice’s SDP not shown)

5469

sa0 F6 180 Ringing Bob -> biloxi.com proxy

5471

5472 SIP/2.0 180 Ringing

5473 Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9nG4bK4b43c2ff8.1
5474 :received=10.2.1.1

5475 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5476 :received=10.1.1.1

5477 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5478 ;received=10.1.3.3

5479 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5480 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5481 Call-ID: a84b4c76e66710

5482 Contact: <sip:bob@192.0.2.4>

5483 CSeq: 314159 INVITE

5484 Content-Length: 0

5485
sas6 F7 180 Ringing biloxi.com proxy -> atlanta.com proxy

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 151]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

5487

5488 SIP/2.0 180 Ringing

5489 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5490 rreceived=10.1.1.1

5491 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5492 rreceived=10.1.3.3

5493 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5494 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5495 Call-ID: a84b4c76e66710

5496 Contact: <sip:bob@192.0.2.4>

5497 CSeq: 314159 INVITE

5498 Content-Length: 0

5499

sso0 F8 180 Ringing atlanta.com proxy -> Alice

5501

5502 SIP/2.0 180 Ringing

5503 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5504 :received=10.1.3.3

5505 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5506 From: Alice <sip:alice@atlanta.com>;tag=1928301774
5507 Call-ID: a84b4c76e66710

5508 Contact: <sip:bob@192.0.2.4>

5509 CSeq: 314159 INVITE

5510 Content-Length: 0

5511

ssiz2 F9 200 OK Bob -> biloxi.com proxy

5513

5514 SIP/2.0 200 OK

5515 Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9hG4bK4b43c2ff8.1
5516 :received=10.2.1.1

5517 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5518 :received=10.1.1.1

5519 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5520 ;received=10.1.3.3

5521 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5522 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5523 Call-ID: a84b4c76e66710

5524 CSeq: 314159 INVITE

5525 Contact: <sip:bob@192.0.2.4>

5526 Content-Type: application/sdp

5527 Content-Length: 131

5528

5529 (Bob’s SDP not shown)

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 152]

5530

5531

5632

5533

5534

5535

5536

5537

5538

5539

5540

5541

5542

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552

5553

5554

5555

5556

55657

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

F10 200 OK bhiloxi.com proxy -> atlanta.com proxy

SIP/2.0 200 OK

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9nG4bK77ef4c2312983.1
rreceived=10.1.1.1

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
:received=10.1.3.3

To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.4>

Content-Type: application/sdp

Content-Length: 131

(Bob’s SDP not shown)

F11 200 OK atlanta.com proxy -> Alice

SIP/2.0 200 OK

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
:received=10.1.3.3

To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.4>

Content-Type: application/sdp

Content-Length: 131

(Bob’s SDP not shown)

F12 ACK Alice -> Bob

ACK sip:bob@192.0.2.4 SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds9
Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 ACK

Content-Length: 0

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 153]

5573

5574

5575

5576

5577

5578

5579

5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591

5592

5593

5594

5595

5596

5597

5598

5599

5600

5601

5602

5603

5604

5605

5606

5607

5608

5609

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The media session between Alice and Bob is now established.

Bob hangs up first. Note that Bob’s SIP phone maintains its ©8eq numbering space, which, in
this example, begins with 231. Since Bob is making the requestala@dFrom URIs and tags have been
swapped.

F13 BYE Bob -> Alice

BYE sip:alice@pc33.atlanta.com SIP/2.0

Via: SIP/2.0/lUDP 192.0.2.4;branch=z9hG4bKnashds10
Max-Forwards: 70

From: Bob <sip:bob@biloxi.com>;tag=a6c85cf

To: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 231 BYE

Content-Length: 0

F14 200 OK Alice -> Bob

SIP/2.0 200 OK

Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKnashds10
:received=10.1.3.3

From: Bob <sip:bob@biloxi.com>;tag=a6c85cf

To: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 231 BYE

Content-Length: 0

The SIP Call Flows document [39] contains further examples of SIP messages.

25 Augmented BNF for the SIP Protocol

All of the mechanisms specified in this document are described in both prose and an augmented Backus-
Naur Form (BNF) defined in RFC 2234 [10]. Section 6.1 of RFC 2234 defines a set of core rules that are
used by this specification, and not repeated here. Implementers need to be familiar with the notation and
content of RFC 2234 in order to understand this specification. Certain basic rules are in uppercase, such as
SP, LWS, HTAB, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within definitions to clarify the use
of rule names.

In some cases, the BNF for a choice will indicate that some elements are optional through angle brackets.
For example:

foo = bar /baz /[boo]

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 154]

5610

5611

5612

5613

5614

5615

5616

5617

5618

5619

5620

5621

5622

5623

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The use of angle brackets is redundant syntactically. It is used as a semantic hint that the specific
parameter is optional to use.

25.1 Basic Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-
ASCII coded character set is defined by ANSI X3.4-1986.

alphanum = ALPHA /DIGIT

Several rules are incorporated from RFC 2396 [5] but are updated to make them compliant with RFC
2234 [10]. These include:

reserved = /)@)&) =
/ H$1! / 1!’1!

unreserved = alphanum / mark

mark = 1!_1! / H_H / 1!.1! / ”!1! / i il / 14N / mn
/7C/)

escaped = "%" HEXDIG HEXDIG

SIP header field values can be folded onto multiple lines if the continuation line begins with a space or
horizontal tab. All linear white space, including folding, has the same semantics as SP. A regipient
replace any linear white space with a single SP before interpreting the field value or forwarding the message
downstream. This is intended to behave exactly as HTTP/1.1 as described in RFC 2616 [8]. The SWS
construct is used when linear white space is optional, generally between tokens and separators.

LWS
SWS

[*WSP CRLF] 1*WSP ; linear whitespace
[LWS] ; sep whitespace

To separate the header name from the rest of value, a colon is used, which, by the above rule, allows
whitespace before, but no line break, and whitespace after, including a linebreak. The HCOLON defines
this construct.

HCOLON = *(SP /HTAB)"” SWS

The TEXT-UTF8 rule is only used for descriptive field contents and values that are not intended to be
interpreted by the message parser. Word$T&XT-UTF8 contain characters from the UTF-8 character
set (RFC 2279 [7]). Th& EXT-UTF8-TRIM rule is used for descriptive field contents that act quoted
strings, where leading and trailing LWS is not meaningful. In this regard, SIP differs from HTTP, which
uses the ISO 8859-1 character set.

TEXT-UTF8-TRIM
TEXT-UTF8char
UTF8-NONASCII

D*TEXT-UTF8char *(*LWS TEXT-UTF8char)
%x21-7E / UTF8-NONASCII

%xCO0-DF 1UTF8-CONT

%XEO-EF 2UTF8-CONT

%xFO-F7 3UTF8-CONT

%xF8-Fb 4UTF8-CONT

%xFC-FD 5UTF8-CONT

%x80-BF

S~~~ 1 1

UTF8-CONT

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 155]

5635

5636

5637

5638

5639

5640

5641

5642

5643

5644

5645

5646

5647

5648

5649

5650

5651

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

A CRLF is allowed in the definition oTEXT-UTF8-TRIM only as part of a header field continuation.
It is expected that the foldingWS will be replaced with a singl&P before interpretation of the EXT-
UTF8-TRIM value.

Hexadecimal numeric characters are used in several protocol elements. Some elements (authentication)
force hex alphas to be lower case.

LHEX = DIGIT / %x61-66 ;lowercase a-f

Many SIP header field values consist of words separated by LWS or special characters. Unless otherwise
stated, tokens are case-insensitive. These special chanmactersbe in a quoted string to be used within a
parameter value. The word construct is used in Call-ID to allow most separators to be used.

token = 1*(alphanum /"-" /" /") "o) e
[

separators = (" /") /"< /) >")T@"
TN <
AN TR
{"/ "}/ SP / HTAB

word = 1*@lphanum /™" /" /™") 0" [R
e
Ly
<
T
SN

When tokens are used or separators are used between elements, whitespace is often allowed before or
after these characters:

STAR = SWS ™" SWS ; asterisk

SLASH = SWS /" SWS; slash

EQUAL = SWS "="SWS; equal

LPAREN = SWS"(" SWS; left parenthesis

RPAREN = SWS")” SWS; right parenthesis

RAQUOT = ">"SWS; right angle quote

LAQUOT = SWS "< left angle quote

COMMA = SWS"’SWS; comma

SEMI = SWS """ SWS ; semicolon

COLON = SWS".” SWS; colon

LDQUOT = SWS DQUOTE; open double quotation mark
RDQUOT = DQUOTE SWS ; close double quotation mark

Comments can be included in some SIP header fields by surrounding the comment text with parentheses.
Comments are only allowed in fields containing “comment” as part of their field value definition. In all other
fields, parentheses are considered part of the field value.

comment = LPAREN *(ctext / quoted-pair / comment) RPAREN
ctext = %x21-27 / %x2A-5B / %x5D-7E / UTF8-NONASCII
/ LWS

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 156]

5652

5653

5654

5655

5656

5657

5658

5659

5660

5661

5662

5663

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

ctext includes all chars except left and right parens and backslash. A string of text is parsed as a single
word if it is quoted using double-quote marks. In quoted strings, quotation marks (") and backsigshes (
need to be escaped.

quoted-string
gdtext

SWS <”> *(qdtext / quoted-pair) <">
LWS / %x21 / %x23-5B / %x5D-7E
/ UTF8-NONASCII

The backslash characteh() MAY be used as a single-character quoting mechanism only within quoted-
string and comment constructs. Unlike HTTP/1.1, the characters CR and LF cannot be escaped by this
mechanism to avoid conflict with line folding and header separation.

quoted-pair = "\" (%x00-09 / %x0B-0C
/ %XO0E-7F)

SIP-URI = "sip:” [userinfo "@”] hostport
uri-parameters [headers |

SIPS-URI = ’sips:” [userinfo "@"] hostport
uri-parameters [headers |
userinfo = [user / telephone-subscriber [”:” password]]
user = *(unreserved / escaped / user-unreserved)
user-unreserved = & /=" /")) /))0
password = *(unreserved / escaped /
&S
hostport = host[" port]
host = hostname / IPv4address / IPv6reference
hostname = *(domainlabel ") toplabel ["]
domainlabel = alphanum
/ alphanum *(alphanum / ”-"') alphanum
toplabel = ALPHA / ALPHA *(alphanum / ”-") alphanum
IPvdaddress = 1*3DIGIT " 1*3DIGIT " 1*3DIGIT ".” 1*3DIGIT
IPvéreference = "[" IPvb6address ™"
IPv6address = hexpart[™" IPv4address]
hexpart = hexseq / hexseq "::" [hexseq] / "::" [hexseq]
hexseq = hex4 *(""" hex4)
hex4 = 1*4HEXDIG
port = 1*DIGIT

The BNF for telephone-subscriber can be found in RFC 2806 [9]. Note, however, that any characters
allowed there that are not allowed in the user part of the SIPNFIT be escaped.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 157]

5664

5665

INTERNET-DRAFT

uri-parameters
uri-parameter

transport-param

other-transport
user-param
other-user
method-param
ttl-param
maddr-param
Ir-param
other-param
pname

pvalue
paramchar

param-unreserved

headers
header

hname

hvalue
hnv-unreserved

draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

= *("" uri-parameter)
= transport-param / user-param / method-param

/ ttl-param / maddr-param / Ir-param / other-param
= “transport="

("udp” / "tcp” / "sctp” / "tls”

/ other-transport)

= token

= user=" ("phone” / "ip” / other-user)
= token

= "method=" Method

= "ttl="ttl

= “maddr=" host

= "

= pname ["=" pvalue]

= 1*paramchar

= 1*paramchar

= param-unreserved / unreserved / escaped

TR

"?” header *("&” header)

hname "=" hvalue

1*(hnv-unreserved / unreserved / escaped)
*(hnv-unreserved / unreserved / escaped)

T T

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 158]

5666

INTERNET-DRAFT

SIP-message
Request

Request-Line
Request-URI
absoluteURI
hier-part
net-path
abs-path
opaque-part
uric
uric-no-slash

path-segments
segment
param

pchar

scheme
authority
srvr
reg-name

query
SIP-Version

draft-ietf-sip-rfc2543bis-07.9.ps

Request / Response

Request-Line

*(message-header)

CRLF

[message-body |

Method SP Request-URI SP SIP-Version CRLF
SIP-URI / SIPS-URI / absoluteURI
scheme ™" (hier-part / opaque-part)

(net-path / abs-path) ["?” query]

"II" authority [abs-path]

"I” path-segments

uric-no-slash *uric

reserved / unreserved / escaped
unreserved / escaped /" /"?" /" /'@
[U8)

segment *(/" segment)

*pchar *(”;” param)

*pchar

unreserved / escaped /

L@ R0
ALPHA *(ALPHA / DIGIT /"+" /7" /"))
srvr / reg-name

[[userinfo "@"] hostport]
1*(unreserved / escaped / "$" /")
[T @) &N T

*uric

"SIP” " 1*DIGIT " 1*DIGIT

February 18, 2002

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 159]

5667

INTERNET-DRAFT

message-header

B N e S N

draft-ietf-sip-rfc2543bis-07.9.ps

(Accept
Accept-Encoding
Accept-Language
Alert-Info

Allow
Authentication-Info
Authorization
Call-ID

Call-Info

Contact
Content-Disposition
Content-Encoding
Content-Language
Content-Length
Content-Type
CSeq

Date

Error-Info

Expires

From

In-Reply-To
Max-Forwards
MIME-Version
Min-Expires
Organization
Priority
Proxy-Authenticate
Proxy-Authorization
Proxy-Require
Record-Route
Reply-To

Require
Retry-After

Route

Server

Subject

Supported
Timestamp

To

Unsupported
User-Agent

Via

Warning
WWW-Authenticate
extension-header) CRLF

February 18, 2002

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 160]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

INVITEmM = %x49.4E.56.49.54.45; INVITE in caps

ACKm = %x41.43.4B; ACK in caps

OPTIONSmM = %x4F50.54.49.4F.4E.53 ; OPTIONS in caps
BYEm = %x42.59.45; BYE in caps

CANCELmM = %x43.41.4E.43.45.4C ; CANCEL in caps
REGISTERmM = 0%0x52.45.47.49.53.54.45.52 ; REGISTER in caps
Method = INVITEm / ACKm / OPTIONSm / BYEm

/ CANCELm / REGISTERmM
/ extension-method
extension-method token
Response = Status-Line
*(message-header)
CRLF
5668 [message-body]

SIP-Version SP Status-Code SP Reason-Phrase CRLF
Informational
Redirection
Success
Client-Error
Server-Error
Global-Failure
extension-code
extension-code 3DIGIT
Reason-Phrase *(reserved / unreserved / escaped
5669 / UTF8-NONASCII / UTF8-CONT / SP / HTAB)

Status-Line
Status-Code

Informational = 7"100” ; Trying

/ "180" ; Ringing

/ "181" ; CallIs Being Forwarded
/ 7182 ; Queued

5670 / "183" ; Session Progress
5671 Success = 7"200" ;OK

Redirection = "300” ; Multiple Choices
"301” ; Moved Permanently
"302” ; Moved Temporarily
"305” ; Use Proxy

"380" ; Alternative Service

S~ T T T

5672

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 161]

5673

5674

5675

INTERNET-DRAFT

Client-Error

N e e N

Server-Error =

S~ T T T T T

Global-Failure =

~— T~ T

draft-ietf-sip-rfc2543bis-07.9.ps

"400”
"401”
"402”
"403”
"404”
"405”
"406”
"407”
"408”
"410”
"413”
"414”
"415”
"416”
"420”
"421”
"423"
"480”
"481"
"482”
"483”
"484”
"485”
"486”
"487”
"488”
"491”
"493”

"500”
"501”
"502”
"503”
"504”
"505”
"513”

"600”
"603”
"604”
"606”

; Bad Request

: Unauthorized

; Payment Required

: Forbidden

; Not Found

: Method Not Allowed

; Not Acceptable

; Proxy Authentication Required
; Request Timeout

; Gone

; Request Entity Too Large
; Request-URI Too Large

; Unsupported Media Type
; Unsupported URI Scheme
: Bad Extension

; Extension Required

: Interval Too Brief

; Temporarily not available

; Call Leg/Transaction Does Not Exist
; Loop Detected

; Too Many Hops

; Address Incomplete

; Ambiguous

; Busy Here

; Request Terminated

; Not Acceptable Here

; Request Pending

; Undecipherable

; Internal Server Error

; Not Implemented

; Bad Gateway

; Service Unavailable

: Server Time-out

; SIP Version not supported
; Message Too Large

; Busy Everywhere

: Decline

; Does not exist anywhere
; Not Acceptable

February 18, 2002

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 162]

5676

5677

5678

5679

5680

INTERNET-DRAFT

Accept

accept-range
media-range

accept-params
accept-extension
ae-name
ae-value

Accept-Encoding

encoding
codings
content-coding
gvalue

Accept-Language

language
language-range

Alert-Info
alert-param
generic-param
gen-value

Allow =

"Allow”

draft-ietf-sip-rfc2543bis-07.9.ps

"Accept” HCOLON

(accept-range *(COMMA accept-range))
media-range [accept-params |

(" [

/ (m-type SLASH ")

/ (m-type SLASH m-subtype)

) *(SEMI m-parameter)

SEMI "q” EQUAL qvalue *(accept-extension)
SEMI ae-name [EQUAL ae-value |

token

token / quoted-string

"Accept-Encoding” HCOLON

(encoding *(COMMA encoding))
codings [SEMI "g” EQUAL qgvalue]
content-coding / ™"

token

("0"["” 0*3DIGIT])

/("1 0*3("07) 1)

"Accept-Language” HCOLON

(language *(COMMA language))
language-range [SEMI "g” EQUAL qvalue]
((1*8ALPHA *("-" 1*8ALPHA)) / ™)

"Alert-Info” HCOLON alert-param *(COMMA alert-param)
LAQUOT absoluteURI RAQUOT *(SEMI generic-param)
token [EQUAL gen-value]

token / host / quoted-string

HCOLON Method *(COMMA Method)

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 163]

February 18, 2002

5681

5682

5683

5684

INTERNET-DRAFT

Authorization
credentials

digest-response
dig-resp

username
username-value
digest-uri
digest-uri-value
message-qop
chonce
chonce-value
nonce-count
nc-value
dresponse
request-digest
auth-param

auth-param-name

other-response

auth-scheme

Authentication-Info

ainfo

nextnonce
response-auth
response-digest

draft-ietf-sip-rfc2543bis-07.9.ps

"Authorization” HCOLON credentials
("Digest” LWS digest-response)

/ other-response

dig-resp *(COMMA dig-resp)
username / realm / nonce / digest-uri
/ dresponse / [algorithm] / [cnonce]
/ [opaque] / [message-qop]

/ [nonce-count] / [auth-param]
"username” EQUAL username-value
guoted-string

"uri” EQUAL LDQUOT digest-uri-value RDQUOT
rquest-uri ; Equal to request-uri as specified by HTTP/1.1
"qop” EQUAL qop-value

"cnonce” EQUAL cnonce-value
nonce-value

"nc” EQUAL nc-value

8LHEX

"response” EQUAL request-digest
LDQUOT 32LHEX RDQUOT
auth-param-name EQUAL

(token / quoted-string)

token

auth-scheme LWS auth-param
*(COMMA auth-param)

token

"Authentication-Info” HCOLON ainfo
*(COMMA ainfo)

[nextnonce] / [message-qop]

/ [response-auth] / [cnonce]

/ [nonce-count]

"nextnonce” EQUAL nonce-value
"rspauth” EQUAL response-digest
LDQUOT *LHEX RDQUOT

February 18, 2002

Cal-ID = ("Call-ID" /"i”) HCOLON callid
callid = word ["@" word]
Call-Info = "Call-Info” HCOLON info *(COMMA info)

info = LAQUOT absoluteURI RAQUOT *(SEMI info-param)
info-param ("purpose” EQUAL ("icon” / "info”
/ "card” / token)) / generic-param

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. sdm¢aires Aug 2002 [Page 164]

5685

5686

5687

5688

5689

5690

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

("Contact” / "'m”) HCOLON

(STAR / (contact-param *(COMMA contact-param)))
(name-addr / addr-spec) *(SEMI contact-params)

[display-name] LAQUOT addr-spec RAQUOT
SIP-URI / SIPS-URI / absoluteURI

*(token LWS)/ quoted-string

Contact

contact-param
name-addr
addr-spec
display-name

contact-params c-p-g / c-p-expires

/ contact-extension

"q” EQUAL gvalue

"expires” EQUAL delta-seconds
generic-param

1*DIGIT

c-p-q _
c-p-expires
contact-extension
delta-seconds

Content-Disposition "Content-Disposition” HCOLON

disp-type *(SEMI disp-param)

disp-type = ’render” / "session” / "icon” / "alert”
/ disp-extension-token
disp-param = handling-param / generic-param

"handling” EQUAL
("optional” / "required”
/ other-handling)

handling-param

other-handling = token
disp-extension-token = token
Content-Encoding = ("Content-Encoding” / "e”) HCOLON

content-coding *(COMMA content-coding)

Content-Language = "Content-Language” HCOLON
language-tag *(COMMA language-tag)

language-tag primary-tag *("-” subtag)

primary-tag = 1*8ALPHA
subtag = 1*8ALPHA
Content-Length = ("Content-Length” / "I”) HCOLON 1*DIGIT

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 165]

5691

5692

INTERNET-DRAFT

Content-Type
media-type
m-type
discrete-type

composite-type
extension-token

draft-ietf-sip-rfc2543bis-07.9.ps

= ("Content-Type” / "c”) HCOLON media-type
= m-type SLASH m-subtype *(SEMI m-parameter)
= discrete-type / composite-type
= ’text” /"image” / "audio” / "video”
/ "application” / extension-token
= "message” / "multipart” / extension-token
= jetf-token / x-token

ietf-token = token

x-token = "Xx-" token

m-subtype = extension-token / iana-token
iana-token = token

m-parameter = me-attribute EQUAL m-value
m-attribute = token

m-value = token / quoted-string

CSeq = "CSeq”HCOLON 1*DIGIT LWS Method
Date = "Date” HCOLON SIP-date
SIP-date = rfcll23-date

rfc1123-date
datel

wkday ")” datel SP time SP "GMT"
2DIGIT SP month SP 4DIGIT
; day month year (e.g., 02 Jun 1982)

February 18, 2002

time = 2DIGIT ™" 2DIGIT ™" 2DIGIT
; 00:00:00 - 23:59:59
wkday = "Mon” / "Tue” / "Wed"
/ HThuH / HFriH / ”Sat” / HSun”
month = "Jan” / "Feb” / "Mar” / "Apr”
/ HMay” / HJunH / ”JUIH / HAugH
5693 / "Sep” / "Oct” / "Nov” / "Dec”
Error-Info = "Error-Info” HCOLON error-uri *(COMMA error-uri)
5694 error-uri = LAQUOT absoluteURI RAQUOT *(SEMI generic-param)
Expires = "Expires” HCOLON delta-seconds
From = ("From” / "f”) HCOLON from-spec
from-spec = (\name-addr / addr-spec)
*(SEMI from-param)
from-param = tag-param / generic-param
5695 tag-param = "tag” EQUAL token
5696 In-Reply-To = "In-Reply-To” HCOLON callid *(COMMA callid)
5697 Max-Forwards = "Max-Forwards” HCOLON 1*DIGIT
5698 MIME-Version = "MIME-Version” HCOLON 1*DIGIT " 1*DIGIT

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 166]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

5699 Min-Expires = "Min-Expires” HCOLON delta-seconds

5700

5701

Organization

Priority
priority-value

other-priority

Proxy-Authenticate

challenge

other-challenge

"Organization” HCOLON TEXT-UTF8-TRIM

"Priority” HCOLON priority-value
"emergency” / "urgent” / "normal”
/ "non-urgent” / other-priority
token

"Proxy-Authenticate” HCOLON challenge

= ("Digest” LWS digest-cln *(COMMA digest-cIn))
/ other-challenge

auth-scheme LWS auth-param

*(COMMA auth-param)

digest-cin = realm /[domain] / nonce
/ [opaque] /[stale] /[algorithm]
/ [qop-options] / [auth-param]
realm = "realm” EQUAL realm-value
realm-value = quoted-string
domain = "domain” EQUAL LDQUOT URI
*(1*SP URI') RDQUOT
URI = absoluteURI / abs-path
nonce = "nonce” EQUAL nonce-value
nonce-value = quoted-string
opaque = "opaque” EQUAL quoted-string
stale = ’stale” EQUAL ("true” / "false”)
algorithm = "algorithm” EQUAL ("MD5” / "MD5-sess”
/ token)
gop-options = "gop” EQUAL LDQUOT qgop-value
*(”,” gop-value) RDQUOT
5702 gop-value = auth” / "auth-int” / token

5703

5704

Proxy-Authorization =

Proxy-Require

option-tag

Record-Route

"Proxy-Authorization” HCOLON credentials

"Proxy-Require” HCOLON option-tag
*(COMMA option-tag)
token

"Record-Route” HCOLON rec-route *(COMMA rec-route)

rec-route = name-addr *(SEMI rr-param)
5705 rr-param = generic-param

Reply-To = "Reply-To” HCOLON rplyto-spec

rplyto-spec = (‘name-addr / addr-spec)

5706

rplyto-param
Require

*(SEMI rplyto-param)
generic-param
"Require” HCOLON option-tag *(COMMA option-tag)

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 167]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Retry-After "Retry-After’” HCOLON delta-seconds
[comment]| *(SEMI retry-param)

("duration” EQUAL delta-seconds)

retry-param

5707 / generic-param
Route = "Route” HCOLON route-param *(COMMA route-param)
5708 route-param = name-addr *(SEMI rr-param)
Server = "Server” HCOLON 1*(product / comment)
product = token [SLASH product-version]
5709 product-version = token
5710 Subject = ("Subject” /"s”) HCOLON TEXT-UTF8-TRIM
Supported = ("Supported” /"k”) HCOLON
5711 [option-tag *(COMMA option-tag)]
Timestamp = "Timestamp” HCOLON 1*(DIGIT)

["” *(DIGIT)] [delay]

5712 delay = *DIGIT) [") *(DIGIT)]
To = ("To” /"t") HCOLON (name-addr
/ addr-spec) *(SEMI to-param)
5713 to-param = tag-param / generic-param
5714 Unsupported = "Unsupported” HCOLON option-tag *(COMMA option-tag)
5715 User-Agent = "User-Agent” HCOLON 1*(product / comment)
Via = ("Via" / "v") HCOLON via-parm *(COMMA via-parm)
via-parm = sent-protocol LWS sent-by *(SEMI via-params)
via-params = via-ttl / via-maddr
/ via-received / via-branch
/ via-extension
via-ttl = "ttl” EQUAL ttl
via-maddr = "maddr’ EQUAL host
via-received = "received” EQUAL (IPv4address / IPv6address)
via-branch = "pbranch” EQUAL token
via-extension = generic-param
sent-protocol = protocol-name SLASH protocol-version
SLASH transport
protocol-name = "SIP” / token
protocol-version = token

transport = "UDP” /"TCP” /"TLS” / "SCTP”
/ other-transport
sent-by = host [COLON port]
5716 ttl = 1*3DIGIT ; 0 to 255

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 168]

5717

5718

5719

5720

5721

5722

5723

5724

5725

5726

5727

5728

5729

5730

5731

5732

5733

5734

5735

5736

5737

5738

5739

5740

5741

5742

5743

5744

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Warning = "Warning” HCOLON warning-value *(COMMA warning-value)
warning-value = warn-code SP warn-agent SP warn-text
warn-code = 3DIGIT
warn-agent = hostport / pseudonym
; the name or pseudonym of the server adding
; the Warning header, for use in debugging
warn-text = quoted-string
pseudonym = token
WWW-Authenticate = "WWW-Authenticate” HCOLON challenge

header-name HCOLON header-value
token
*(TEXT—UTFSChar/ UTF8-CONT/ LWS)

extension-header
header-name
header-value

message-body = *OCTET

26 Security Considerations: Threat Model and Security Usage Recommen-
dations

SIP is not an easy protocol to secure. Its use of intermediaries, its multi-faceted trust relationships, its
expected usage between elements with no trust at all, and its user-to-user operation make security far from
trivial. Security solutions are needed that are deployable today, without extensive coordination, in a wide
variety of environments and usages. In order to meet these diverse needs, several distinct mechanisms
applicable to different aspects and usages of SIP will be required.

Note that the security of SIP signaling itself has no bearing on the security of protocols used in concert
with SIP such as RTP, or with the security implications of any specific bodies SIP might carry (although
MIME security plays a substantial role in securing SIP). Any media associated with a session can be en-
crypted end-to-end independently of any associated SIP signaling. Media encryption is outside the scope of
this document.

The considerations that follow first examine a set of classic threat models that broadly identify the
security needs of SIP. The set of security services required to address these threats is then detailed, followed
by an explanation of several security mechanisms that can be used to provide these services. Next, the
requirements for implementers of SIP are enumerated, along with exemplary deployments in which these
security mechanisms could be used to improve the security of SIP. Some notes on privacy conclude this
section.

26.1 Attacks and Threat Models

This section details some threats that should be common to most deployments of SIP. These threats have
been chosen specifically to illustrate each of the security services that SIP requires.

The following examples by no means provide an exhaustive list of the threats against SIP; rather, these
are “classic” threats that demonstrate the need for particular security services that can potentially prevent
whole categories of threats.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 169]

5745

5746

5747

5748

5749

5750

5751

5752

5753

5754

5755

5756

5757

5758

5759

5760

5761

5762

5763

5764

5765

5766

5767

5768

5769

5770

5771

5772

5773

5774

5775

5776

5777

5778

5779

5780

5781

5782

5783

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

These attacks assume an environment in which attackers can potentially read any packet on the network
- it is anticipated that SIP will frequently be used on the public Internet. Attackers on the network may be
able to modify packets (perhaps at some compromised intermediary). Attackers may wish to steal services,
eavesdrop on communications, or disrupt sessions.

26.1.1 Registration Hijacking

The SIP registration mechanism allows a user agent to identify itself to a registrar as a device at which a
user (designated by an address of record) is located. A registrar assesses the identity assetfiednn the
header field of ®ISTER message to determine whether this request can modify the contact addresses
associated with the address-of-record inToéneader field. While these two fields are frequently the same,
there are many valid deployments in which a third-party may register contacts on a user’s behalf.

TheFrom header field of a SIP request, however, can be modified arbitrarily by the owner of a UA, and
this opens the door to malicious registrations. An attacker that successfully impersonates a party authorized
to change contacts associated with an address-of-record could, for example, de-register all existing contacts
for a URI and then register their own device as the appropriate contact address, thereby directing all requests
for the affected user to the attacker’s device.

This threat belongs to a family of threats that rely on the absence of cryptographic assurance of a re-
quest’s originator. Any SIP UAS that represents a valuable service (a gateway that interworks SIP requests
with traditional telephone calls, for example) might want to control access to its resources by authenticating
requests that it receives. Even end-user UAs, for example SIP phones, have an interest in ascertaining the
identities of originators of requests.

This threat demonstrates the need for security services that enable SIP entities to authenticate the origi-
nators of requests.

26.1.2 Impersonating a Server

The domain to which a request is destined is generally specified iRégeiest-URI. UAs commonly

contact a server in this domain directly in order to deliver a request. However, there is always a possibility
that an attacker could impersonate the remote server, and that the UA's request could be intercepted by some
other party.

For example, consider a case in which a redirect server at one domain, chicago.com, impersonates a
redirect server at another domain, biloxi.com. A user agent sends a request to biloxi.com, but the redirect
server at chicago.com answers with a forged response that has appropriate SIP header fields for a response
from biloxi.com. The forged contact addresses in the redirection response could direct the originating UA
to inappropriate or insecure resources, or simply prevent requests for biloxi.com from succeeding.

This family of threats has a vast membership, many of which are critical. As a converse to the registration
hijacking threat, consider the case in which a registration sent to biloxi.com is intercepted by chicago.com,
which replies to the intercepted registration with a forged 301 (Moved Permanently) response. This response
might seem to come from biloxi.com yet designate chicago.com as the appropriate registrar. All future
REGISTER requests from the originating UA would then go to chicago.com.

Prevention of this threat requires a means by which UAs can authenticate the servers to whom they send
requests.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 170]

5784

5785

5786

5787

5788

5789

5790

5791

5792

5793

5794

5795

5796

5797

5798

5799

5800

5801

5802

5803

5804

5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

5815

5816

5817

5818

5819

5820

5821

5822

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

26.1.3 Tampering with Message Bodies

As a matter of course, SIP UAs route requests through trusted proxy servers. Regardless of how that trust is
established (authentication of proxies is discussed elsewhere in this section), a UA may trust a proxy server
to route a request, but not to inspect or possibly modify the bodies contained in that request.

Consider a UA that is using SIP message bodies to communicate session encryption keys for a media
session. Although it trusts the proxy server of the domain it is contacting to deliver signaling properly, it
may not want the administrators of that domain to be capable of decrypting any subsequent media session.
Worse yet, if the proxy server were actively malicious, it could modify the session key, either acting as a
man-in-the-middle, or perhaps changing the security characteristics requested by the originating UA.

This family of threats applies not only to session keys, but to most conceivable forms of content car-
ried end-to-end in SIP. These might include MIME bodies that should be rendered to the user, SDP, or
encapsulated telephony signals, among others. Attackers might attempt to modify SDP bodies, for example,
in order to point RTP media streams to a wiretapping device in order to eavesdrop on subsequent voice
communications.

Also note that some header fields in SIP are meaningful end-to-end, for ex&upject. UAs might
be protective of these header fields as well as bodies (a malicious intermediary chan@objdw header
field might make an important request appear to be spam, for example). However, since many header fields
are legitimately inspected or altered by proxy servers as a request is routed, not all header fields should be
secured end-to-end.

For these reasons, the UA might want to secure SIP message bodies, and in some limited cases header
fields, end-to-end. The security services required for bodies include confidentiality, integrity, and authen-
tication. These end-to-end services should be independent of the means used to secure interactions with
intermediaries such as proxy servers.

26.1.4 Tearing Down Sessions

Once a dialog has been established by initial messaging, subsequent requests can be sent that modify the
state of the dialog and/or session. It is critical that principals in a session can be certain that such requests
are not forged by attackers.

Consider a case in which a third-party attacker captures some initial messages in a dialog shared by two
parties in order to learn the parameters of the sesdiortag, From tag, and so forth) and then inserts a
BYE request into the session. The attacker could opt to forge the request such that it seemed to come from
either participant. Once tH&YE is received by its target, the session will be torn down prematurely.

Similar mid-session threats include the transmission of forgé¥8TEs that alter the session (possibly
to reduce session security or redirect media streams as part of a wiretapping attack).

The most effective countermeasure to this threat is the authentication of the sendeB¥Ehia this
instance, the recipient needs only know thatBiYE came from the same party with whom the correspond-
ing dialog was established (as opposed to ascertaining the absolute identity of the sender). Also, if the
attacker is unable to learn the parameters of the session due to confidentiality, it would not be possible to
forge theBYE. However, some intermediaries (like proxy servers) will need to inspect those parameters as
the session is established.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 171]

5823

5824

5825

5826

5827

5828

5829

5830

5831

5832

5833

5834

5835

5836

5837

5838

5839

5840

5841

5842

5843

5844

5845

5846

5847

5848

5849

5850

5851

5852

5853

5854

5855

5856

5857

5858

5859

5860

5861

5862

5863

5864

5865

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

26.1.5 Denial of Service and Amplification

Denial-of-service attacks focus on rendering a particular network element unavailable, usually by directing
an excessive amount of network traffic at its interfaces. A distributed denial-of-service attack allows one
network user to cause multiple network hosts to flood a target host with a large amount of network traffic.

In many architectures, SIP proxy servers face the public Internet in order to accept requests from world-
wide IP endpoints. SIP creates a number of potential opportunities for distributed denial-of-service attacks
that must be recognized and addressed by the implementers and operators of SIP systems.

Attackers can create bogus requests that contain a falsified source IP address and a correg@onding
header field that identify a targeted host as the originator of the request and then send this request to a large
number of SIP network elements, thereby using hapless SIP UAs or proxies to generate denial-of-service
traffic aimed at the target.

Similarly, attackers might use falsifigloute header field values in a request that identify the target
host and then send such messages to forking proxies that will amplify messaging sent to thR ¢agyet-

Route could be used to similar effect when the attacker is certain that the SIP dialog initiated by the request
will result in numerous transactions originating in the backwards direction.

A number of denial-of-service attacks open uRREGISTER requests are not properly authenticated
and authorized by registrars. Attackers could de-register some or all users in an administrative domain,
thereby preventing these users from being invited to new sessions. An attacker could also register a large
number of contacts designating the same host for a given address-of-record in order to use the registrar and
any associated proxy servers as amplifiers in a denial-of-service attack. Attackers might also attempt to
deplete available memory and disk resources of a registrar by registering huge numbers of bindings.

The use of multicast to transmit SIP requests can greatly increase the potential for denial-of-service
attacks.

These problems demonstrate a general need to define architectures that minimize the risks of denial-of-
service, and the need to be mindful in recommendations for security mechanisms of this class of attacks.

26.2 Security Mechanisms

From the threats described above, we gather that the fundamental security services required for the SIP
protocol are: preserving the confidentiality and integrity of messaging, preventing replay attacks or message
spoofing, providing for the authentication and privacy of the participants in a session, and preventing denial-
of-service attacks. Bodies within SIP messages separately require the security services of confidentiality,
integrity, and authentication.

Rather than defining new security mechanisms specific to SIP, SIP reuses wherever possible existing
security models derived from the HTTP and SMTP space.

Full encryption of messages provides the best means to preserve the confidentiality of signaling - it
can also guarantee that messages are not modified by any malicious intermediaries. However, SIP requests
and responses cannot be naively encrypted end-to-end in their entirety because message fields such as the
Request-URI, Route, andVia need to be visible to proxies in most network architectures so that SIP
requests are routed correctly. Note that proxy servers need to modify some features of messages as well (such
as addingvia header field values) in order for SIP to function. Proxy servers must therefore be trusted, to
some degree, by SIP UAs. To this purpose, low-layer security mechanisms for SIP are recommended, which
encrypt the entire SIP requests or responses on the wire on a hop-by-hop basis, and that allow endpoints to
verify the identity of proxy servers to whom they send requests.

SIP entities also have a need to identify one another in a secure fashion. When a SIP endpoint asserts

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 172]

5866

5867

5868

5869

5870

5871

5872

5873

5874

5875

5876

5877

5878

5879

5880

5881

5882

5883

5884

5885

5886

5887

5888

5889

5890

5891

5892

5893

5894

5895

5896

5897

5898

5899

5900

5901

5902

5903

5904

5905

5906

5907

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

the identity of its user to a peer UA or to a proxy server, that identity should in some way be verifiable. A
cryptographic authentication mechanism is provided in SIP to address this requirement.

An independent security mechanism for SIP message bodies supplies an alternative means of end-to-end
mutual authentication, as well as providing a limit on the degree to which user agents must trust intermedi-
aries.

26.2.1 Transport and Network Layer Security

Transport or network layer security encrypts signaling traffic, guaranteeing message confidentiality and
integrity.

Oftentimes, certificates are used in the establishment of lower-layer security, and these certificates can
also be used to provide a means of authentication in many architectures.

Two popular alternatives for providing security at the transport and network layer are, respectively, TLS
[16] and IPSec [25].

IPSec is a set of network-layer protocol tools that collectively can be used as a secure replacement for
traditional IP (Internet Protocol). IPSec is most commonly used in architectures in which a set of hosts or
administrative domains have an existing trust relationship with one another. IPSec is usually implemented
at the operating system level in a host, or on a security gateway that provides confidentiality and integrity
for all traffic it receives from a particular interface (as in a VPN architecture). IPSec can also be used on a
hop-by-hop basis.

In many architectures IPSec does not require integration with SIP applications; IPSec is perhaps best
suited to deployments in which adding security directly to SIP hosts would be arduous. UAs that have a
pre-shared keying relationship with their first-hop proxy server are also good candidates to use IPSec. Any
deployment of IPSec for SIP would require an IPSec profile describing the protocol tools that would be
required to secure SIP. No such profile is given in this document.

TLS provides transport-layer security over connection-oriented protocols (for the purposes of this docu-
ment, TCP); “tIs” (signifying TLS over TCP) can be specified as the desired transport protocol witlan a
header field value or a SIP-URI. TLS is most suited to architectures in which hop-by-hop security is required
between hosts with no pre-existing trust association. For example, Alice trusts her local proxy server, which
after a certificate exchange decides to trust Bob’s local proxy server, which Bob trusts, hence Bob and Alice
can communicate securely.

TLS must be tightly coupled with a SIP application. Note that transport mechanisms are specified on
a hop-by-hop basis in SIP, thus a UA that sends requests over TLS to a proxy server has no assurance that
TLS will be used end-to-end.

The TLSRSAWITH_AES_128 CBC_SHA ciphersuitemusT be supported at a minimum by imple-
menters when TLS is used in a SIP application. For purposes of backwards compatibility, proxy servers,
redirect servers, and registrassiouLD support TLSRSA WITH_3DESEDE CBC_SHA. Implementers
MAY also support any other ciphersuite.

26.2.2 SIPS URI scheme

The SIPS URI scheme adheres to the syntax of the SIP URI (described in 19), although the scheme string is
"sips” rather than "sip”. The semantics of SIPS are very different from the SIP URI, however.

A SIPS URI can be used as an address-of-record for a particular user - the URI by which the user is
canonically known (on their business cards, infinem header field of their requests, in tfie header field
of REGISTER requests). When used as Request-URI of a request, the SIPS scheme signifies that each

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 173]

5908

5909

5910

5911

5912

5913

5914

5915

5916

5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930

5931

5932

5933

5934

5935

5936

5937

5938

5939

5940

5941

5942

5943

5944

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

hop over which the request is forwarded must be secured with TLS. When used by the originator of a request
(as would be the case if they encountered a SIPS URI as the address-of-record of the target), SIPS dictates
that the entire request path be so secured. No other mechanism in SIP allows the originator of a request to
specify security characteristics that are preferred for the entire request path.

The SIPS scheme is also applicable to many of the other ways in which SIP URIs are used in SIP today,
including in theRequest-URI, in addresses-of-record, contact addresses (popul@tmgact headers, in-
cluding those oREGISTER methods), andRoute headers. The SIPS URI scheme allows these existing
fields to designate secure resources.

In effect, using SIPS in th&®equest-URI ensures that TLS is used on every segment between the
originator of the request and the destination. This is a handy service, though one that is useful only in
architectures in which it is desirable to use TLS for every hop.

The use of SIPS in particular entails that mutual TLS authenticationuLD be employed, asHOULD
the ciphersuite TLIRSA WITH_AES_128 CBC_SHA. Certificates received in the authentication process
SHOULD be verified against root certificates in the client; failure to verify a certifisateuLD result in the
failure of the request.

motivationNote that in the SIPS URI scheme, transport is independent of TLS, and thus “sips:alice@atlanta.corr
and “sips:alice@atlanta.com;transport=sctp” are both valid (although note that UDP is not a valid transport
for SIPS). The use of “transport=tls” has consequently been deprecated, partly because it was specific to a
single hop of the request. This is a change since RFC 2543.

Users that distribute a SIPS URI as an address-of-record may elect to operate devices that do not even
accept requests over insecure transports.

26.2.3 HTTP Authentication

SIP provides a challenge capability, based on HTTP authentication, that relies on the 401 and 407 response
codes as well as header fields for carrying challenges and credentials. Without significant modification, the
reuse of the HTTP Digest authentication scheme in SIP allows for replay protection and one-way authenti-
cation.

The usage of Digest authentication in SIP is detailed in Section 22.

26.2.4 S/MIME

As is discussed above, encrypting entire SIP messages end-to-end for the purpose of confidentiality is not
appropriate because network intermediaries (like proxy servers) need to view certain header fields in order
to route messages correctly, and if these intermediaries are excluded from security associations, then SIP
messages will essentially be non-routable.

However, SIMIME allows SIP UAs to encrypt MIME bodies within SIP, securing these bodies end-to-
end without affecting message headers. S/IMIME can provide end-to-end confidentiality and integrity for
message bodies, as well as mutual authentication. It is also possible to use S/IMIME to provide a form of
integrity and confidentiality for SIP header fields through SIP message tunneling.

The usage of S/IMIME in SIP is detailed in Section 23.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 174]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

sas 26.3 Implementing Security Mechanisms
sae 26.3.1 Requirements for Implementers of SIP

saa7 Proxy servers, redirect servers, and registrawsT implement TLS, andMusT support both mutual and

sos8 ONe-way authentication. It is stronglgECOMMENDED that UAs be capable initiating TLS; UARAY

saa0 alsoO be capable of acting as a TLS server. Proxy servers, redirect servers, and resHSitars possess

sos0 @ Site certificate whose subject corresponds to their canonical hosthameMAYAkave certificates of

ses1 their own for mutual authentication with TLS, but no provisions are set forth in this document for their
ses2 - Use. All SIP elements that support TM&ST have a mechanism for verifying certificates received during

ses3 TLS negotiation; this entails possession of one or more root certificates issued by certificate authorities
ssa (preferably well-known distributors of site certificates comparable to those issuing root certificates for web
sos5 browsers). All SIP elements that support TUBST also support the SIPS URI scheme.

5956 Proxy servers, redirect servers, registrars, and MAg also implement IPSec or other lower-layer
s957 Security protocols.
5958 When a UA attempts to contact a proxy server, redirect server, or registrar, theslACGLD initiate a

sss9 TLS connection over which it will send SIP messages. In some architectures, MYSeeceive requests

sse0 Over such TLS connections as well.

5961 Proxy servers, redirect servers, registrars, and WAST implement Digest Authorization, encompassing
sz all of the aspects required in 2Rroxy servers, redirect servers, and registsateuULD be configured with

so63 At least one Digest realm, and at least orealm” string supported by a given serveHouLD correspond

so6a tO the server’s hostname or domainname.

5965 UAs MAY support the signing and encrypting of MIME bodies, and transference of credentials with
soe6 S/IMIME as described in 231f a UA holds one or more root certificates of certificate authorities in order to
soe7 verify certificates for TLS or IPSec, #HOuULD be capable of reusing these to verify S/IMIME certificates,
sees @S appropriate. A UMAY hold root certificates specifically for verifying S/IMIME certificates.

5969 Note that is it anticipated that future security extensions may upgrade the normative strength associated with
5970 S/MIME as S/MIME implementations appear and the problem space becomes better understood.

sor1 26.3.2 Security Solutions

so72 The operation of these security mechanisms in concert can follow the existing web and email security models
so73 t0 some degree. At a high level, UAs authenticate themselves to servers (proxy servers, redirect servers, and
so74 registrars) with a Digest username and password; servers authenticate themselves to UAs one hop away, or
so75 t0 another server one hop away (and vice versa), with a site certificate delivered by TLS.

5076 On a peer-to-peer level, UAs trust the network to authenticate one another ordinarily; however, S/IMIME
so77 can also be used to provide direct authentication when the network does not, or if the network itself is not
so7s trusted.

5979 The following is an illustrative example in which these security mechanisms are used by various UAs
ss0 @and servers to prevent the sorts of threats described in Section 26.1. While implementers and network
ses1 administratorsaAy follow the normative guidelines given in the remainder of this section, these are provided

sos2 - ONnly as example implementations.

sies 26.3.2.1 Registration When a UA comes online and registers with its local administrative domain, it
se8a SHOULD establish a TLS connection with its registrar (Section 10 describes how the UA reaches its reg-
sos5 istrar). The registrasHOULD offer a certificate to the UA, and the site identified by the certificatesT

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 175]

5986

5987

5988

5989

5990

5991

5992
5993

5994

5995

5996

5997

5998

5999

6000

6001

6002

6003

6004
6005
6006
6007

6008

6009

6010

6011

6012
6013
6014

6015

6016

6017

6018

6019

6020

6021

6022

6023

6024

6025

6026

6027

6028

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

correspond with the domain in which the UA intends to register; for example, if the UA intends to register
the address-of-record 'alice@atlanta.com’, the site certificate must identify a host within the atlanta.com
domain (such as sip.atlanta.com). When it receives the TLS Certificate message,sh® UKD verify the
certificate and inspect the site identified by the certificate. If the certificate is invalid, revoked, or if it does
not identify the appropriate party, the MUST NOT send theREGISTER message and otherwise proceed
with the registration.

When a valid certificate has been provided by the registrar, the UA knows that the registrar is not an attacker
who might redirect the UA, steal passwords, or attempt any similar attacks.

The UA then creates REGISTER request thasHOULD be addressed toRequest-URI correspond-
ing to the site certificate received from the registrar. When the UA sendRE@&STER request over
the existing TLS connection, the registemiouLD challenge the request with a 401 (Proxy Authentication
Required) response. The “realm” parameter within Binexy-Authenticate header field of the response
SHOULD correspond to the domain previously given by the site certificate. When the UAC receives the
challenge, isHOULD either prompt the user for credentials or take an appropriate credential from a keyring
corresponding to the “realm” parameter in the challenge. The username of this cregdeotialb corre-
spond with the “userinfo” portion of the URI in tHEo header field of th®ISTER request. Once the
Digest credentials have been inserted into an appropfieiry-Authorization header field, th®IS-
TER should be resubmitted to the registrar.

Since the registrar requires the user agent to authenticate itself, it would be difficult for an attacker REGrge
ISTER requests for the user’s address-of-record. Also note that sindREESTER is sent over a confidential
TLS connection, attackers will not be able to interceptREGISTER to record credentials for any possible replay
attack.

Once the registration has been accepted by the registrar, theHdALD leave this TLS connection
open provided that the registrar also acts as the proxy server to which requests are sent for users in this
administrative domain. The existing TLS connection will be reused to deliver incoming requests to the UA
that has just completed registration.

Because the UA has already authenticated the server on the other side of the TLS connection, all requests that
come over this connection are known to have passed through the proxy server - attackers cannot create spoofed
requests that appear to have been sent through that proxy server.

26.3.2.2 Interdomain Requests Now let's say that Alice’s UA would like to initiate a session with a user
in a remote administrative domain, namely “bob@biloxi.com”. We will also say that the local administrative
domain (atlanta.com) has a local outbound proxy.

The proxy server that handles inbound requests for an administrative domairalso act as a local
outbound proxy; for simplicity’s sake we'll assume this to be the case for atlanta.com (otherwise the user
agent would initiate a new TLS connection to a separate server at this point). Assuming that the client has
completed the registration process described in the preceding seciei@utD reuse the TLS connection
to the local proxy server when it sends IAVITE request to another user. The WAOULD reuse cached
credentials in théNVITE to avoid prompting the user unnecessarily.

When the local outbound proxy server has validated the credentials presented by the UMNNITe,
it SHOULD inspect theRequest-URI to determine how the message should be routed (see [4]). If the
“domainname” portion of th®equest-URI had corresponded to the local domain (atlanta.com) rather than
biloxi.com, then the proxy server would have consulted its location service to determine how best to reach
the requested user.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 176]

6029
6030
6031
6032

6033

6034

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044

6045

6046
6047

6048

6049

6050

6051

6052

6053

6054

6055

6056

6057

6058

6059

6060

6061

6062

6063

6064

6065

6066

6067
6068

6069

6070

6071

6072

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Had “alice@atlanta.com” been attempting to contact, say, “alex@atlanta.com”, the local proxy would have
proxied to the request to the TLS connection Alex had established with the registrar when he registered. Since
Alex would receive this request over his authenticated channel, he would be assured that Alice’s request had been
authorized by the proxy server of the local administrative domain.

However, in this instance thRequest-URI designates a remote domain. The local outbound proxy
server at atlanta.cosHouLD therefore establish a TLS connection with the remote proxy server at biloxi.com.
Since both of the participants in this TLS connection are servers that possess site certificates, mutual TLS
authenticationsHoULD occur. Each side of the connectieriouLD verify and inspect the certificate of
the other, noting the domain name that appears in the certificate for comparison with the header fields of
SIP messages. The atlanta.com proxy server, for exarapleyLD verify at this stage that the certificate
received from the remote side corresponds with the biloxi.com domain. Once it has done so, and TLS ne-
gotiation has completed, resulting in a secure channel between the two proxies, the atlanta.com proxy can
forward thelNVITE request to biloxi.com.

The proxy server at biloxi.cormHOULD inspect the certificate of the proxy server at atlanta.com in turn
and compare the domain asserted by the certificate with the “domainname” portiorFodthéeader field
in the INVITE request. The biloxi proxyAY have a strict security policy that requires it to reject requests
that do not match the administrative domain from which they have been proxied.

Such security policies could be instituted to prevent the SIP equivalent of SMTP 'open relays’ that are frequently
exploited to generate spam.

This policy, however, only guarantees that the request came from the domain it ascribes to itself; it
does not allow biloxi.com to ascertain how atlanta.com authenticated Alice. Only if biloxi.com has some
other way of knowing atlanta.com’s authentication policies could it possibly ascertain how Alice proved her
identity. biloxi.com might then institute an even stricter policy that forbids requests that come from domains
that are not known administratively to share a common authentication policy with biloxi.com.

Once thdNVITE has been approved by the biloxi proxy, the proxy sesrepuLD identify the existing
TLS channel, if any, associated with the user targeted by this request (in this case “bob@biloxi.com”). The
INVITE should be proxied through this channel to Bob. Since the request is received over a TLS connection
that had previously been authenticated as the biloxi proxy, Bob knows th&tdheheader field was not
tampered with and that atlanta.com has validated Alice, although not necessarily whether or not to trust
Alice’s identity.

Before they forward the request, both proxy sen&#®uLD add aRecord-Route header field to the
request so that all future requests in this dialog will pass through the proxy servers. The proxy servers can
thereby continue to provide security services for the lifetime of this dialog. If the proxy servers do not add
themselves to th®ecord-Route, future messages will pass directly end-to-end between Alice and Bob
without any security services (unless the two parties agree on some independent end-to-end security such
as S/MIME). In this respect the SIP trapezoid model can provide a nice structure where conventions of
agreement between the site proxies can provide a reasonably secure channel between Alice and Bob.

An attacker preying on this architecture would, for example, be unable to fddd&Eaequest and insert it into

the signaling stream between Bob and Alice because the attacker has no way of ascertaining the parameters of the
session and also because the integrity mechanism transitively protects the traffic between Alice and Bob.

26.3.2.3 Peerto Peer RequestsAlternatively, consider a UA asserting the identity “carol@chicago.com”
that has no local outbound proxy. When Carol wishes to sen®®fiTE to “bob@biloxi.com”, her UA
SHOULD initiate a TLS connection with the biloxi proxy directly (using the mechanism described in [4]
to determine how to best to reach the giveequest-URI). When her UA receives a certificate from the

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 177]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

so73 biloxi proxy, it SHOULD be verified normally before she passes IdYITE across the TLS connection.

so7a However, Carol has no means of proving her identity to the biloxi proxy, but she does have a CMS-detached
075 Signature over a “message/sip” body in th&/ITE. It is unlikely in this instance that Carol would have any

so7e Ccredentials in the biloxi.com realm, since she has no formal association with biloxi.com. The biloxi proxy
so77 MAY also have a strict policy that precludes it from even bothering to challenge requests that do not have
sozs biloxi.com in the “domainname” portion of tHerom header field - it treats these users as unauthenticated.

6079 The biloxi proxy has a policy for Bob that all non-authenticated requests should be redirected to the
s0s0 appropriate contact address registered against 'bob@biloxi.com’, nansglybob@192.0.24. Carol

ss1 receives the redirection response over the TLS connection she established with the biloxi proxy, so she
sos2 trusts the veracity of the contact address.

6083 Carol sHouLD then establish a TCP connection with the designated address and send N\H&&

sosa With a Request-URI containing the received contact address (recomputing the signature in the body as
soss the request is readied). Bob receives tNYITE on an insecure interface, but his UA inspects and, in

soss this instance, recognizes tikeom header field of the request and subsequently matches a locally cached
sos7 certificate with the one presented in the sighature of the body dNMETE. He replies in similar fashion,

soss authenticating himself to Carol, and a secure dialog begins.

6089 Sometimes firewalls or NATs in an administrative domain could preclude the establishment of a direct TCP
6090 connection to a UA. In these cases, proxy servers could also potentially relay requests to UAs in a way that has no
6091 trust implications (for example, forgoing an existing TLS connection and forwarding the request over cleartext TCP)
6092 as local policy dictates.

so03 26.3.2.4 DoS Protection In order to minimize the risk of a denial-of-service attack against architectures

sosa USING these security solutions, implementers should take note of the following guidelines.

6095 When the host on which a SIP proxy server is operating is routable from the public Intesebit D

sos be deployed in an administrative domain with defensive operational policies (blocking source-routed traffic,
sos7 preferably filtering ping traffic). Both TLS and IPSec can also make use of bastion hosts at the edges of
soss administrative domains that participate in the security associations to aggregate secure tunnels and sockets.
so99 These bastion hosts can also take the brunt of denial-of-service attacks, ensuring that SIP hosts within the
6100 administrative domain are not encumbered with superfluous messaging.

6101 No matter what security solutions are deployed, floods of messages directed at proxy servers can lock up
6102 Proxy server resources and prevent desirable traffic from reaching its destination. There is a computational
s103 €xpense associated with processing a SIP transaction at a proxy server, and that expense is greater for
s104 Stateful proxy servers than it is for stateless proxy servers. Therefore, stateful proxies are more susceptible
s10s to flooding than stateless proxy servers.

6106 UAs and proxy serversHouLD challenge questionable requests with onkjirayle401 (Unauthorized)

s07 Or 407 (Proxy Authentication Required), forgoing the normal response retransmission algorithm, and thus
s08 behaving statelessly towards unauthenticated requests.

6109 Retransmitting the 401 (Unauthorized) or 407 (Proxy Authentication Required) status response amplifies the
6110 problem of an attacker using a falsified header field value (sudtigggo direct traffic to a third party.
6111 In summary, the mutual authentication of proxy servers through mechanisms such as TLS significantly

sz reduces the potential for rogue intermediaries to introduce falsified requests or responses that can deny
eu13 Service. This commensurately makes it harder for attackers to make innocent SIP nodes into agents of
s114 amplification.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 178]

6115

6116

6117

6118

6119

6120

6121

6122

6123

6124

6125

6126

6127

6128

6129

6130

6131

6132

6133

6134

6135

6136

6137

6138

6139

6140

6141

6142

6143

6144

6145

6146

6147

6148

6149

6150

6151

6152

6153

6154

6155

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

26.4 Limitations

Although these security mechanisms, when applied in a judicious manner, can thwart many threats, there are
limitations in the scope of the mechanisms that must be understood by implementers and network operators.

26.4.1 HTTP Digest

One of the primary limitations of using HTTP Digest in SIP is that the integrity mechanisms in Digest do
not work very well for SIP. Specifically, they offer protection of tRequest-URI and the method of a
message, but not for any of the header fields that UAs would most likely wish to secure.

The existing replay protection mechanisms described in RFC 2617 also have some limitations for SIP.
The next-nonce mechanism, for example, does not support pipelined requests. The nonce-count mechanism
should be used for replay protection.

Another limitation of HTTP Digest is the scope of realms. Digest is valuable when a user wants to
authenticate themselves to a resource with which they have a pre-existing association, like a service provider
of which the user is a customer (which is quite a common scenario and thus Digest provides an extremely
useful function). By way of contrast, the scope of TLS is interdomain or multirealm, since certificates are
often globally verifiable, so that the UA can authenticate the server with no pre-existing association.

26.4.2 S/MIME

The largest outstanding defect with the SIMIME mechanism is the lack of a prevalent public key infrastruc-
ture for end users. If self-signed certificates (or certificates that cannot be verified by one of the participants
in a dialog) are used, the SIP-based key exchange mechanism described in Section 23.2 is susceptible to a
man-in-the-middle attack with which an attacker can potentially inspect and modify S/IMIME bodies. The
attacker needs to intercept the first exchange of keys between the two parties in a dialog, remove the exist-
ing CMS-detached signatures from the request and response, and insert a different CMS-detached signature
containing a certificate supplied by the attacker (but which seems to be a certificate for the proper address-
of-record). Each party will think they have exchanged keys with the other, when in fact each has the public
key of the attacker.

It is important to note that the attacker can only leverage this vulnerability on the first exchange of keys
between two parties - on subsequent occasions, the alteration of the key would be noticeable to the UAs. It
would also be difficult for the attacker to remain in the path of all future dialogs between the two parties
over time (as potentially days, weeks, or years pass).

SSH is susceptible to the same man-in-the-middle attack on the first exchange of keys; however, it is
widely acknowledged that while SSH is not perfect, it does improve the security of connections. The use of
key fingerprints could provide some assistance to SIP, just as it does for SSH. For example, if two parties use
SIP to establish a voice communications session, each could read off the fingerprint of the key they received
from the other, which could be compared against the original. It would certainly be more difficult for the
man-in-the-middle to emulate the voices of the participants than their signaling (a practice that was used
with the Clipper chip-based secure telephone).

The S/IMIME mechanism allows UAs to send encrypted requests without preamble if they possess a
certificate for the destination address-of-record on their keyring. However, it is possible that any particular
device registered for an address-of-record will not hold the certificate that has been previously employed by
the device’s current user, and that it will therefore be unable to process an encrypted request properly, which
could lead to some avoidable error signalinghis is especially likely when an encrypted request is forked.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 179]

6156

6157

6158

6159

6160

6161

6162

6163

6164

6165

6166

6167

6168

6169

6170

6171

6172

6173

6174

6175

6176

6177

6178

6179

6180

6181

6182

6183

6184

6185

6186

6187

6188

6189

6190

6191

6192

6193

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

The keys associated with SIMIME are most useful when associated with a particular user (an address-
of-record) rather than a device (a UA). When users move between devices, it may be difficult to transport
private keys securely between UAs; how such keys might be acquired by a device is outside the scope of
this document.

Another, more prosaic difficulty with the SIMIME mechanism is that it can result in very large messages,
especially when the SIP tunneling mechanism described in Section 23.4 is used. For that reason, it is
RECOMMENDED that TCP should be used as a transport protocol when S/IMIME tunneling is employed.

26.4.3 TLS

The most commonly voiced concern about TLS is that it cannot run over UDP; TLS requires a connection-
oriented underlying transport protocol, which for the purposes of this document means TCP.

It may also be arduous for a local outbound proxy server and/or registrar to maintain many simultaneous
long-lived TLS connections with numerous UAs. This introduces some valid scalability concerns, especially
for intensive ciphersuites. Maintaining redundancy of long-lived TLS connections, especially when a UA is
solely responsible for their establishment, could also be cumbersome.

TLS only allows SIP entities to authenticate servers to which they are adjacent; TLS offers strictly
hop-by-hop security. Neither TLS, nor any other mechanism specified in this document, allows clients to
authenticate proxy servers to whom they cannot form a direct TCP connection.

26.4.4 SIPS URIs

Using TLS on every segment of a request path entails that the terminating UAS must be reachable over TLS.
This means that many hybrid architectures that use TLS to secure part of the request path, but rely on some
other mechanism for the final hop to a UAS, cannot make use of the SIPS AoR. Also, since many UAs will
not accept incoming TLS connections, even those UAs that do support TLS may be required to maintain
persistent TLS connections as described in the TLS limitations section above.

It is very difficult to guarantee that TLS will be used end-to-end. It is possible that cryptographically
authenticated proxy servers that are non-compliant or compromised may choose to disregard the forwarding
rules associated with SIPS. These intermediaries may, for example, retarget a request from a SIPS URI to
a SIP URI. It is therefore recommended that recipients of a request to SIP URI insp@&othbader field
value to see if it contains a SIPS URI. S/IMIME may also be used to ensure that the original fornTof the
header field is carried end-to-end. Entities that accept only SIPS request may also refuse connections on
insecure ports.

End users will undoubtedly discern the difference between SIPS and SIP URIs, and they may manually
edit them in response to stimuli. This can either benefit or degrade security. For example, if an attacker
corrupts a DNS cache, inserting a fake record set that effectively removes all SIPS records for a proxy
server, then any SIPS requests that traverse this proxy server may fail. When a user, however, sees that
repeated calls to a SIPS AoR are failing, on some devices they could manually convert the scheme from
SIPS to SIP and retry. Of course, there are some safeguards against this (if the destination UA is truly
paranoid it could refuse all non-SIPS requests), but it is a limitation worth noting. On the bright side, users
might also divine that 'SIPS’ would be valid even when they are presented only with a SIP URI.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 180]

6194

6195

6196

6197

6198

6199

6200

6201

6202

6203

6204

6205

6206

6207

6208

6209

6210

6211

6212

6213

6214

6215

6216

6217
6218

6219

6220

6221

6222

6223

6224

6225

6226

6227

6228

6229

6230

6231

6232

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

26.5 Privacy

SIP messages frequently contain sensitive information about their senders - not just what they have to say, but
with whom they communicate, when they communicate and for how long, and from where they participate
in sessions. Many applications and their users require that this sort of private information be hidden from
any parties that do not need to know it.

Note that there are also less direct ways in which private information can be divulged. If a user or service
chooses to be reachable at an address that is guessable from the person’s name and organizational affiliation
(which describes most addresses-of-record), the traditional method of ensuring privacy by having an unlisted
“phone number” is compromised. A user location service can infringe on the privacy of the recipient of a
session invitation by divulging their specific whereabouts to the caller; an implementation consequently
SHOULD be able to restrict, on a per-user basis, what kind of location and availability information is given
out to certain classes of callers. This is a whole class of problem that is expected to be studied further in
ongoing SIP work.

In some cases, users may want to conceal personal information in header fields that convey identity. This
can apply not only to th&rom and related headers representing the originator of the request, but also the
To - it may not be appropriate to convey to the final destination a speed-dialing nickname, or an unexpanded
identifier for a group of targets, either of which would be removed fronRégquest-URI as the request is
routed, but not changed in tfi® header field if the two were initially identical. Thusnmitay be desirable
for privacy reasons to createla header field that differs from thiRequest-URI.

27 |1ANA Considerations

All new or experimental method names, header field hames, and status codes used in SIP applications
SHOULD be registered with IANA in order to prevent potential naming conflicts. RESOMMENDED that
new “option-tag”s and ‘warn-code”s also be registered. Before IANA registration, new protocol elements

SHOULD be described in an Internet-Draft or, preferably, an RFC.
For Internet-Drafts, IANA is requested to make the draft available as part of the registration database.

By the time an RFC is published, colliding names may have already been implemented.

When a registration for either a new header field, new method, or new status code is created based on
an Internet-Draft, and that Internet-Draft becomes an RFC, the person that performed the registration
notify IANA to change the registration to point to the RFC instead of the Internet-Draft.

Registrations should be sentitma@iana.org

27.1 Option Tags

Option tags are used in header fields sucReguire, Supported, Proxy-Require, andUnsupported in

support of SIP compatibility mechanisms for extensions (Section 19.2). The option tag itself is a string that

is associated with a particular SIP option (that is, an extension). It identifies the option to SIP endpoints.
When registering a new SIP option with IANA, the following informati@sT be provided:

e Name and description of option. The namay be of any length, busHouLD be no more than
twenty characters long. The nam@sT consist ofalphanum (Section 25) characters only.

¢ A listing of any new SIP header fields, header parameter fields, or parameter values defined by this
option. A SIP optiormusT NOT redefine header fields or parameters defined in either RFC 2543, any

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 181]

6233

6234

6235

6236

6237

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6249

6250

6251

6252

6253

6254

6255

6256

6257

6258

6259

6260

6261

6262

6263

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

standards-track extensions to RFC 2543, or other extensions registered through IANA.

¢ Indication of who has change control over the option (for example, IETF, ISO, ITU-T, other interna-
tional standardization bodies, a consortium, or a particular company or group of companies).

e A reference to a further description if available, for example (in order of preference) an RFC, a pub-
lished paper, a patent filing, a technical report, documented source code, or a computer manual.

e Contact information (postal and email address).

This procedure has been borrowed from RTSP [28] and the RTP AVP [40].

27.2 Warn-Codes

Warning codes provide information supplemental to the status code in SIP response messages when the
failure of the transaction results from a Session Description Protocol (SDP, [1]). Wam-code” values
can be registered with IANA as they arise.

The “warn-code” consists of three digits. A first digit of “3” indicates warnings specific to SIP.

Warnings 300 through 329 are reserved for indicating problems with keywords in the session description,
330 through 339 are warnings related to basic network services requested in the session description, 370
through 379 are warnings related to quantitative QoS parameters requested in the session description, and
390 through 399 are miscellaneous warnings that do not fall into one of the above categories.

1xx and 2xx have been taken by HTTP/1.1.

27.3 Header Field Names

Header field names do not require working group or working group chair review prior to IANA registration,
but sHouLD be documented in an RFC or Internet-Draft before IANA is consulted.
The following information needs to be provided to IANA in order to register a new header field name:

The name and email address of the individual performing the registration;

the name of the header field being registered;

a compact form version for that header field, if one is defined,;

the name of the draft or RFC where the header field is defined:;

a copy of the draft or RFC where the header field is defined.

Header fieldssHouLD NOT use theX- prefix notation anduusT NOT duplicate the names of header
fields used by SMTP or HTTP unless the syntax is a compatible superset and the semantics are similar.
Some common and widely used header fieldy be assigned one-letter compact forms (Section 7.3.3).
Compact forms can only be assigned after SIP working group review. In the absence of this working group,
a designated expert reviews the request.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 182]

6264

6265

6266

6267

6268

6269

6270

6271

6272

6273

6274

6275

6276

6277

6278

6279

6280

6281

6282

6283

6284

6285

6286

6287

6288

6289

6290

6291

6292

6293

6294

6295

6296

6297

6298

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

27.4 Method and Response Codes

Because the status code space is limited, they do require working group or working group chair review, and
MUST be documented in an RFC or Internet draft. The same procedures apply to new method names.

The following information needs to be provided to IANA in order to register a new response code or
method:

e The name and email address of the individual performing the registration;

¢ the number of the response code or name of the method being registered,;

the default reason phrase for that status code, if applicable;

the name of the draft or RFC where the method or status code is defined;

a copy of the draft or RFC where the method or status code is defined.

27.5 The “application/sip” MIME type.

This document registers the “application/sip” MIME media type in order to allow SIP messages to be tun-
neled as bodies within SIP, primarily for end-to-end security purposes. This media type is defined by the
following information:

Media type name: application Media subtype name: sip Required parameters: none Optional parame-
ters: version

e version: The SIP-Version number of the enclosed message (e.g., "2.0”). If not present, the version
can be determined from the first line of the body.

Encoding scheme: see below Security considerations: see below

SIP specifies UTF-8 encoding. While most header field names and data elements will lie in the 7-bit
ASCII compatible range, data elements and SIP bodies may contain 8-bit values. In order to preserve the
readability of SIP messages being carried as the body of other messages, “application/sip” bodies (including
any bodies they in turn contain) SHOULD be UTF-8 encoded. If transcoding a body to UTF-8 is not feasible,
the “application/sip” part MAY be binary encoded. If the transport is not 8-bit clean, encoding formats such
as base-64 can be used.

Motivation and examples of this usage as a security mechanism in concert with S/IMIME are given in
23.4.

28 Changes From RFC 2543

This RFC revises RFC 2543. It is mostly backwards compatible with RFC 2543. The changes described
here fix many errors discovered in RFC 2543 and provide information on scenarios not detailed in RFC
2543. The protocol has been presented in a more cleanly layered model here.

We break the differences into functional behavior that is a substantial change from RFC 2543, which has
impact on interoperability or correct operation in some cases, and functional behavior that is different from
RFC 2543 but not a potential source of interoperability problems. There have been countless clarifications
as well, which are not documented here.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 183]

6299

6300

6301

6302

6303

6304

6305

6306

6307

6308

6309

6310

6311

6312

6313

6314

6315

6316

6317

6318

6319

6320

6321

6322

6323

6324

6325

6326

6327

6328

6329

6330

6331

6332

6333

6334

6335

6336

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

28.1 Major Functional Changes

When a UAC wishes to terminate a call before it has been answered, itGAMNSEL. If the original
INVITE still returns a 2xx, the UAC then sen&8E. BYE can only be sent on an existing call leg
(now called a dialog in this RFC), whereas it could be sent at any time in RFC 2543.

The SIP BNF was converted to be RFC 2234 compliant.

SIP URL BNF was made more general, allowing a greater set of characters in the user part. Fur-
thermore, comparison rules were simplified to be primarily case-insensitive, and detailed handling of
comparison in the presence of parameters was described. The most substantial change is that a URI
with a parameter with the default value does not match a URI without that parameter.

RemovedVia hiding. It had serious trust issues, since it relied on the next hop to perform the obfus-
cation process. Insteadfja hiding can be done as a local implementation choice in stateful proxies,
and thus is no longer documented.

In RFC 2543 CANCEL andINVITE transactions were intermingled. They are separated now. When
a user sends aMNVITE and then &CANCEL, the INVITE transaction still terminates normally. A
UAS needs to respond to the originhlVITE request with a 487 response.

Similarly, CANCEL and BYE transactions were intermingled; RFC 2543 allowed the UAS not to
send a response tNVITE when aBYE was received. That is disallowed here. The origiNV¥ITE
needs a response.

In RFC 2543, UAs needed to support only UDP. In this RFC, UAs need to support both UDP and
TCP.

In RFC 2543, a forking proxy only passed up one challenge from downstream elements in the event
of multiple challenges. In this RFC, proxies are supposed to collect all challenges and place them into
the forwarded response.

In Digest credentials, the URI needs to be quoted; this is unclear from RFC 2617 and RFC 2069 which
are both inconsistent on it.

SDP processing has been split off into a separate specification [13], and more fully specified as a
formal offer/answer exchange process that is effectively tunneled through SIP. SDP is allowed in
INVITE/200 or 200ACK for baseline SIP implementations; RFC 2543 alluded to the ability to use it

in INVITE, 200, andACK in a single transaction, but this was not well specified. More complex SDP
usages are allowed in extensions.

Added full support for IPv6 in URIs and in théa header field. Support for IPv6 Mia has required

that its header field parameters allow the square bracket and colon characters. These characters were
previously not permitted. In theory, this could cause interop problems with older implementations.
However, we have observed that most implementations accept any non-control ASCII character in
these parameters.

DNS SRV procedure is now documented in a separate specification [4]. This procedure uses both SRV
and NAPTR resource records and no longer combines data from across SRV records as described in
RFC 2543.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 184]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

6337 e Loop detection has been made optional, supplanted by a mandatory uddge-6brwards. The

6338 loop detection procedure in RFC 2543 had a serious bug which would report “spirals” as an error
6339 condition when it was not. The optional loop detection procedure is more fully and correctly specified
6340 here.

6341 e Usage of tags is now mandatory (they were optional in RFC 2543), as they are now the fundamental
6342 building blocks of dialog identification.

6343 e Added theSupported header field, allowing for clients to indicate what extensions are supported to
6344 a server, which can apply those extensions to the response, and indicate their usageegitir&in

6345 the response.

6346 e Extension parameters were missing from the BNF for several header fields, and they have been added.
6347 ¢ Handling ofRoute andRecord-Route construction was very underspecified in RFC 2543, and also
6348 not the right approach. It has been substantially reworked in this specification (and made vastly
6349 simpler), and this is arguably the largest change. Backwards compatibility is still provided for de-
6350 ployments that do not use “pre-loaded routes”, where the initial request has aRetitef header

6351 field values obtained in some way outsideR#fcord-Route. In those situations, the new mechanism

6352 is not interoperable.

6353 e In RFC 2543, lines in a message could be terminated with CR, LF, or CRLF. This specification only
6354 allows CRLF.

6355 e Comments (expressed with rounded brackets) have been removed from the grammar of SIP.

6356 e Usage ofRoute in CANCEL andACK was not well defined in RFC 2543. Itis now well specified; if

6357 a request had Route header field, itSCANCEL or ACK for a non-2xx response to the request need

6358 to carry the sam®&oute header field valuesACKs for 2xx responses use tR®ute values learned

6359 from theRecord-Route of the 2xx responses.

6360 e RFC 2543 allowed multiple requests in a single UDP packet. This usage has been removed.

6361 e Usage of absolute time in tHexpires header field and parameter has been removed. It caused inter-
6362 operability problems in elements that were not time synchronized, a common occurrence. Relative
6363 times are used instead.

6364 e The branch parameter of théa header field value is now mandatory for all elements to use. It now
6365 plays the role of a unique transaction identifier. This avoids the complex and bug-laden transaction
6366 identification rules from RFC 2543. A magic cookie is used in the parameter value to determine if
6367 the previous hop has made the parameter globally unique, and comparison falls back to the old rules
6368 when it is not present. Thus, interoperability is assured.

6369 e In RFC 2543, closure of a TCP connection was made equivalentGAMCEL. This was nearly

6370 impossible to implement (and wrong) for TCP connections between proxies. This has been eliminated,
6371 so that there is no coupling between TCP connection state and SIP processing.

6372 e RFC 2543 was silent on whether a UA could initiate a new transaction to a peer while another was in
6373 progress. That is now specified here. It is allowed for MW TE requests, disallowed foNVITE.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 185]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

6374 e PGP was removed. It was not sufficiently specified, and not compatible with the more complete PGP
6375 MIME. It was replaced with SIMIME.

6376 e Additional security features were added with TLS, and these are described in a much larger and
6377 complete security considerations section.

6378 e In RFC 2543, a proxy was not required to forward provisional responses from 101 to 199 upstream.
6379 This was changed tausT. This is important, since many subsequent features depend on delivery of
6380 all provisional responses from 101 to 199.

6381 e Little was said about the 503 response code in RFC 2543. It has since found substantial use in indicat-
6382 ing failure or overload conditions in proxies. This requires somewhat special treatment. Specifically,
6383 receipt of a 503 should trigger an attempt to contact the next element in the result of a DNS SRV
6384 lookup. Also, 503 response is only forwarded upstream by a proxy under certain conditions.

6385 e RFC 2543 defined, but did no sufficiently specify, a mechanism for UA authentication of a server.
6386 That has been removed. Instead, the mutual authentication procedures of RFC 2617 are allowed.

6387 e A UA cannot send 8YE for a call until it has received aACK for the initial INVITE. This was

6388 allowed in RFC 2543 but leads to a potential race condition.

6389 e A UA or proxy cannot sendCANCEL for a transaction until it gets a provisional response for the

6390 request. This was allowed in RFC 2543 but leads to potential race conditions.

6391 e The action parameter in registrations has been deprecated. It was insufficient for any useful services,
6392 and caused conflicts when application processing was applied in proxies.

6393 e RFC 2543 had a number of special cases for multicast. For example, certain responses were sup-
6394 pressed, timers were adjusted, and so on. Multicast now plays a more limited role, and the protocol
6395 operation is unaffected by usage of multicast as opposed to unicast. The limitations as a result of that
6396 are documented.

6397 e Basic authentication has been removed entirely and its usage forbidden.

6398 e Proxies no longer forward a 6xx immediately on receiving it. Instead, they CANCEL pending
6399 branches immediately. This avoids a potential race condition that would result in a UAC getting a
6400 6xx followed by a 2xx. In all cases except this race condition, the result will be the same - the 6xx is
6401 forwarded upstream.

6402 e RFC 2543 did not address the problem of request merging. This occurs when a request forks at a
6403 proxy and later rejoins at an element. Handling of merging is done only at a UA, and procedures are
6404 defined for rejecting all but the first request.

s0s 28.2 Minor Functional Changes

6406 e Added theAlert-Info, Error-Info, and Call-Info header fields for optional content presentation to
6407 users.

6408 e Added theContent-Language, Content-Disposition andMIME-Version header fields.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 186]

6409

6410

6411

6412

6413

6414

6415

6416

6417

6418

6419

6420

6421

6422

6423

6424

6425

6426

6427

6428

6429

6430

6431

6432

6433

6434

6435

6436

6437

6438

6439

6440

6441

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

e Added a “glare handling” mechanism to deal with the case where both parties send each other a
re INVITE simultaneously. It uses the new 491 (Request Pending) error code.

e Added theln-Reply-To andReply-To header fields for supporting the return of missed calls or mes-
sages at a later time.

e Added TLS and SCTP as valid SIP transports.

e There were a variety of mechanisms described for handling failures at any time during a call; those
are now generally unifiedBYE is sent to terminate.

e RFC 2543 mandated retransmissionlIdiITE responses over TCP, but noted it was really only
needed for 2xx. That was an artifact of insufficient protocol layering. With a more coherent transaction
layer defined here, that is no longer needed. Only 2xx responsBR/t®Es are retransmitted over
TCP.

e Client and server transaction machines are now driven based on timeouts rather than retransmit counts.
This allows the state machines to be properly specified for TCP and UDP.

e TheDate header field is used REGISTER responses to provide a simple means for auto-configuration
of dates in user agents.

e Allowed a registrar to reject registrations with expirations that are too short in duration. Defined the
423 response code and thén-Expires for this purpose.

e Added the “sips” URI scheme for end-to-end TLS. This scheme is not backwards compatible with
RFC 2543. Existing elements that receive a request with a SIPS URI schemeRedest-URI
will likely reject the request. This is actually a feature; it ensures that a call to a SIPS URI is only
delivered if all path hops can be secured.

29 Acknowledgments

We wish to thank the members of the IETF MMUSIC and SIP WGs for their comments and suggestions.
Detailed comments were provided by Brian Bidulock, Jim Buller, Neil Deason, Dave Devanathan, Keith
Drage, @&dric Fluckiger, Yaron Goland, John Hearty, Berniendisen, Jo Hornsby, Phil Hoffer, Christian
Huitema, Jean Jervis, Gadi Karmi, Peter Kjellerstedt, Anders Kristensen, Jonathan Lennox, Gethin Liddell,
Allison Mankin, William Marshall, Rohan Mahy, Keith Moore, Vern Paxson, Moshe J. Sambol, Chip Sharp,
Igor Slepchin, Eric Tremblay, and Rick Workman.

Brian Rosen provided the compiled BNF.

This work is based, inter alia, on [41, 42].

30 Authors’ Addresses

Authors addresses are listed alphabetically for the editors, the writers, and then the original authors of RFC
2543. All listed authors actively contributed large amounts of text to this document.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 187]

6442

6443

6444

6445

6446

6447

6448

6449

6450

6451

6452

6453

6454

6455

6456

6457

6458

6459

6460

6461

6462

6463

6464

6465

6466

6467

6468

6469

6470

6471

6472

6473

6474

6475

6476

6477

6478

6479

6480

6481

6482

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps

Jonathan Rosenberg

dynamicsoft

72 Eagle Rock Ave

East Hanover, NJ 07936

USA

electronic mailjdrosen@dynamicsoft.com

Henning Schulzrinne

Dept. of Computer Science

Columbia University

1214 Amsterdam Avenue

New York, NY 10027

USA

electronic mail:schulzrinne@cs.columbia.edu

Gonzalo Camarillo

Ericsson

Advanced Signalling Research Lab.

FIN-02420 Jorvas

Finland

electronic mail:Gonzalo.Camarillo@ericsson.com

Alan Johnston

WorldCom

100 South 4th Street

St. Louis, MO 63102

USA

electronic mail:alan.johnston@wcom.com

Jon Peterson

NeuStar, Inc

1800 Sutter Street, Suite 570

Concord, CA 94520

USA

electronic mail;jon.peterson@neustar.com

Robert Sparks

dynamicsoft, Inc.

5100 Tennyson Parkway

Suite 1200

Plano, Texas 75024

USA

electronic mailrrsparks@dynamicsoft.com

Mark Handley
ACIRI
electronic mail:mjh@aciri.org

February 18, 2002

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 188]

6483

6484

6485

6486

6487

6488

6489

6490

6491

6492

6493

6494

6495

6496

6497

6498

6499

6500

6501

6502

6503

6504

6505

6506

6507

6508

6509

6510

6511

6512

6513

6514

6515

6516

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Eve Schooler

Computer Science Department 256-80
California Institute of Technology
Pasadena, CA 91125

USA

electronic mail:schooler@cs.caltech.edu

Normative References

[1] M. Handley and V. Jacobson, “SDP: session description protocol,” Request for Comments 2327, Inter-
net Engineering Task Force, Apr. 1998.

[2] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments 2119,
Internet Engineering Task Force, Mar. 1997.

[3] P. Resnick and Editor, “Internet message format,” Request for Comments 2822, Internet Engineering
Task Force, Apr. 2001.

[4] H. Schulzrinne and J. Rosenberg, “SIP: Session initiation protocol — locating SIP servers,” Internet
Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

[5] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic syntax,”
Request for Comments 2396, Internet Engineering Task Force, Aug. 1998.

[6] T. Berners-Lee, L. Masinter, and M. McCalhill, “Uniform resource locators (URL),” Request for Com-
ments 1738, Internet Engineering Task Force, Dec. 1994.

[7] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” Request for Comments 2279, Internet
Engineering Task Force, Jan. 1998.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol — HTTP/1.1,” Request for Comments 2616, Internet Engineering Task Force, June
1999.

[9] A. Vaha-Sipila, “URLs for telephone calls,” Request for Comments 2806, Internet Engineering Task
Force, Apr. 2000.

[10] D. Crocker, Ed., and P. Overell, “Augmented BNF for syntax specifications: ABNF,” Request for
Comments 2234, Internet Engineering Task Force, Nov. 1997.

[11] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two: Media types,”
Request for Comments 2046, Internet Engineering Task Force, Nov. 1996.

[12] D. Eastlake, S. Crocker, and J. Schiller, “Randomness recommendations for security,” Request for
Comments 1750, Internet Engineering Task Force, Dec. 1994.

[13] J. Rosenberg and H. Schulzrinne, “An offer/answer model with SDP,” Internet Draft, Internet Engi-
neering Task Force, Jan. 2002. Work in progress.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdm¢aires Aug 2002 [Page 189]

6517

6518

6519

6520

6521

6522

6523

6524

6525

6526

6527

6528

6529

6530

6531

6532

6533

6534

6535

6536

6537

6538

6539

6540

6541

6542

6543

6544

6545

6546

6547

6548

6549

6550

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Postel, “User datagram protocol,” Request for Comments 768, Internet Engineering Task Force,
Aug. 1980.

J. Postel, “DoD standard transmission control protocol,” Request for Comments 761, Internet Engi-
neering Task Force, Jan. 1980.

R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson, “Stream control transmission protocol,” Request for Comments 2960, Internet Engi-
neering Task Force, Oct. 2000.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart, “HTTP
authentication: Basic and digest access authentication,” Request for Comments 2617, Internet Engi-
neering Task Force, June 1999.

R. Troost, S. Dorner, and K. Moore, “Communicating presentation information in internet messages:
The content-disposition header field,” Request for Comments 2183, Internet Engineering Task Force,
Aug. 1997.

R. Braden and Ed, “Requirements for internet hosts - application and support,” Request for Comments
1123, Internet Engineering Task Force, Oct. 1989.

H. Alvestrand, “IETF policy on character sets and languages,” Request for Comments 2277, Internet
Engineering Task Force, Jan. 1998.

J. Galvin, S. Murphy, S. Crocker, and N. Freed, “Security multiparts for MIME: multipart/signed and
multipart/encrypted,” Request for Comments 1847, Internet Engineering Task Force, Oct. 1995.

R. Housley, “Cryptographic message syntax,” Request for Comments 2630, Internet Engineering Task
Force, June 1999.

B. Ramsdell and Ed, “S/MIME version 3 message specification,” Request for Comments 2633, Internet
Engineering Task Force, June 1999.

T. Dierks and C. Allen, “The TLS protocol version 1.0,” Request for Comments 2246, Internet Engi-
neering Task Force, Jan. 1999.

S. Kent and R. Atkinson, “Security architecture for the internet protocol,” Request for Comments 2401,
Internet Engineering Task Force, Nov. 1998.

Non-Normative References

[26]

[27]

[28]

R. Pandya, “Emerging mobile and personal communication systégSE Communications Maga-
zine Vol. 33, pp. 44-52, June 1995.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time
applications,” Request for Comments 1889, Internet Engineering Task Force, Jan. 1996.

H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” Request for Com-
ments 2326, Internet Engineering Task Force, Apr. 1998.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. sdm¢aires Aug 2002 [Page 190]

6551

6552

6553

6554

6555

6556

6557

6558

6559

6560

6561

6562

6563

6564

6565

6566

6567

6568

6569

6570

6571

6572

6573

6574

6575

6576

6577

6578

6579

6580

6581

6582

6583

6584

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

[29] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen, and J. Segers, “Megaco protocol version
1.0,” Request for Comments 3015, Internet Engineering Task Force, Nov. 2000.

[30] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation protocol,” Request
for Comments 2543, Internet Engineering Task Force, Mar. 1999.

[31] P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” Request for Comments 2368,
Internet Engineering Task Force, July 1998.

[32] E. M. Schooler, “A multicast user directory service for synchronous rendezvous,” Master’s Thesis CS-
TR-96-18, Department of Computer Science, California Institute of Technology, Pasadena, California,
Aug. 1996.

[33] S. Donovan, “The SIP INFO method,” Request for Comments 2976, Internet Engineering Task Force,
Oct. 2000.

[34] R. Rivest, “The MD5 message-digest algorithm,” Request for Comments 1321, Internet Engineering
Task Force, Apr. 1992.

[35] F. Dawson and T. Howes, “vcard MIME directory profile,” Request for Comments 2426, Internet
Engineering Task Force, Sept. 1998.

[36] G. Good, “The LDAP data interchange format (LDIF) - technical specification,” Request for Com-
ments 2849, Internet Engineering Task Force, June 2000.

[37] J. Palme, “Common internet message headers,” Request for Comments 2076, Internet Engineering
Task Force, Feb. 1997.

[38] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L. Stewart, “An exten-
sion to HTTP : Digest access authentication,” Request for Comments 2069, Internet Engineering Task
Force, Jan. 1997.

[39] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, D. Willis, J. Rosenberg, K. Summers, and
H. Schulzrinne, “SIP telephony call flow examples,” Internet Draft, Internet Engineering Task Force,
Apr. 2001. Work in progress.

[40] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” Request for
Comments 1890, Internet Engineering Task Force, Jan. 1996.

[41] E. M. Schooler, “Case study: multimedia conference control in a packet-switched teleconferencing
system,”Journal of Internetworking: Research and Experiendel. 4, pp. 99-120, June 1993. ISI
reprint series ISI/RS-93-359.

[42] H. Schulzrinne, “Personal mobility for multimedia services in the InternetZuropean Workshop on
Interactive Distributed Multimedia Systems and Services (IDNERrlin, Germany), Mar. 1996.

A Table of Timer Values

Table 4 sumarizes the meaning and defaults of the various timers used by this specification.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 191]

6585

6586

6587

6588

6589

6590

6591

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

Timer Value Section Meaning
T1 500ms default Section 17.1.1.1 RTT Estimate
T2 4s Section 17.1.2.2 The maximum retransmit

interval for noniNVITE
requests antNVITE

responses
T4 5s Section 17.1.2.2 Maximum duration a
message will
remain in the network
Timer A initially T1 Section 17.1.1.2 INVITE request retransmit
interval, for UDP only
TimerB 64*T1 Section 17.1.1.2 INVITE transaction
timeout timer
Timer C > 3min Section Section 16.6 prodMVITE transaction
bullet 11 timeout
Timer D > 32s for UDP Section 17.1.1.2 Wait time for response
Os for TCP/SCTP retransmits
Timer E initially T1 Section 17.1.2.2 NOMNVITE request
retransmit interval,
UDP only
Timer F 64*T1 Section 17.1.2.2 ndiNVITE transaction
timeout timer
Timer G initially T1 Section 17.2.1 INVITE response
retransmit interval
TimerH 64*T1 Section 17.2.1 Wait time for
ACK receipt
Timerl T4 for UDP Section 17.2.1 Wait time for
Os for TCP/SCTP ACK retransmits
TimerJ 64*T1 for UDP Section 17.2.2 Wait time for
Os for TCP/SCTP nofNVITE request
retransmits
Timer K T4 for UDP Section 17.1.2.2 Wait time for
Os for TCP/SCTP response retransmits

Table 4: Summary of timers

Full Copyright Statement

Copyright (c) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 192]

6592

6593

6594

6595

6596

6597

6598

6599

6600

6601

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.9.ps February 18, 2002

other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

J. Rosenberg,H. Schulzrinne,G. Camarillo,A. Johnston,J. Peterson,R. Sparks,M. Handley,E. Sdmgaires Aug 2002 [Page 193]

