\section{General User Agent Behavior }

\label{sec:ua}
A user agent represents an end system. It contains a User Agent Client (UAC), which generates requests, and a User Agent Server (UAS) which responds to them. A UAC is capable of generating a request based on some external stimulus (the user clicking a button, or a signal on a PSTN line), and processing a response. A UAS is capable of receiving a request, and generating response, based on user input, external stimulus, the result of a program execution, or some other mechanism.
When a UAC sends a request, it will pass through some number of proxy servers, which forward the request towards the UAS. When the UAS generates a response, the response is forwarded towards the UAC.
UAC and UAS procedures depend strongly on two factors. First, whether the request or response is inside or outside of a dialog, and second, based on the method of a request. Dialogs are discussed thoroughly in Section \ref{sec:dialog}; they represent a peer-to-peer relationship between user agents, and are established by specific SIP methods, such as {\INVITE}.

In this section, we discuss the method independent rules for UAC and UAS behavior when processing of requests that are outside of a dialog. This includes, of course, the requests which themselves establish a dialog.
\subsection{UAC Behavior}

\label{sec:general:req}
\subsubsection{Generating the Request}
\label{sec:general:gen}
A valid SIP request formulated by a UAC {\MUST} at a minimum contain the following headers: \header{To}, \header{From}, \header{CSeq}, \header{Call-ID}, and \header{Via}; all of these headers are mandatory in all SIP messages. These five headers are the fundamental building blocks of a SIP message, as they jointly provide for most of the critical message routing services including the addressing of messages, the routing of responses, ordering of messages, and the unique identification of transactions.

Examples of requests send outside of a dialog include an {\INVITE} to establish a session (Section \ref{sec:initiate}) and an {\OPTIONS} to query for capabilities (Section \ref{sec:query-for-capabilities}).

\paragraph{\header{To}}

\label{sec:general:uac:header:to}

The \header{To} general-header field first and foremost specifies the desired ``logical'' recipient of the request, or the address of record of the user or resource that is the target of this request. This may or may not be the ultimate recipient of the request. The \header{To} header {\MAY} contain a SIP URI, but it may also make use of other URI schemes (for example as the tel URL \cite{rfc2806}) when appropriate. The \header{To} header field allows for a display name; this is meant to contain a descriptive version of the URI,
and is intended to be displayed to a user interface.

A UAC may learn how to populate the \header{To} header field for a particular request in a number of ways. Usually the user will suggest the \header{To} header field through a human interface, perhaps inputting the URI manually or selecting it from some sort of address book.
A request outside of a dialog {\MUSTNOT} contain a tag; the tag in the \header{To} field of a request identifies the peer of the dialog. Since no dialog is established, no tag is present.

For further information on the \header{To} header see Section~\ref{sec:To}.

The following is an example of valid \header{To} header:

\begin{verbatim}

 To: Carol <sip:carol@chicago.com>

\end{verbatim}

\paragraph{\header{From}}

\label{sec:general:uac:header:from}

The \header{From} general-header field indicates the logical identity of the initiator of the request, possibly the user’s address of record. Like the \header{To} field, it contains a URI and optionally a display name. It is used by SIP elements to determine processing rules to apply to a request (for example, automatic call rejection). As such, it is very important that the URI not contain IP addresses or host names, since these are not logical names.
The \header{From} header field allows for a display name; this is meant to contain a descriptive version of the URI, and is intended to be displayed to a user interface. A UAC {\SHOULD} use the display name ``Anonymous'' if the identity of the client is to remain hidden.

Usually the value that populates the \header{From} header field in requests generated by a particular user agent is pre-provisioned by the user or by the administrators of the user's local domain. If a particular user agent is used by multiple users, it might have switchable profiles that include a URI corresponding to the identity of the profiled user. Recipients of requests can authenticate the originator of a request in order to ascertain that they are who their \header{From} header field claims they are (see Section~\ref{sec:security:auth} for more on authentication).

The \header{From} field {\MUST} contain a new ``\header{tag}'' parameter
, chosen by the UAC. See Section \ref{sec:common-message:tags} for details on choosing a tag.
For further information on the \header{From} header see Section~\ref{sec:From}.

Examples:

\begin{verbatim}

 From: "Bob" <sip:bob@biloxi.com> ;tag=a48s

 From: sip:+12125551212@server.phone2net.com;tag=887s

 From: Anonymous <sip:c8oqz84zk7z@privacy.org>;tag=hyh8

\end{verbatim}

\paragraph{\header{Call-ID}}

\label{sec:general:uac:header:Call-ID}

The \header{Call-ID} general-header field acts as a unique identifier to group together series of messages. It is always the same for all requests and responses sent by either UA in a dialog. It is also the same in each registration from a UA within a single boot cycle.
In a new request created by a UAC outside of any dialog, unless overridden by method specific behavior, it {\MUST} be selected by the UAC as a
a globally unique identifier over space and time; all SIP user agents must have a means to guarantee that the \header{Call-ID} headers they produce will not be inadvertently generated by any other user agent.
Use of cryptographically random identifiers \cite{rfc1750} in the generation of Call-IDs is {\RECOMMENDED}. Implementations {\MAY} use the form ``localid@host''. \header{Call-IDs} are case-sensitive and are simply compared byte-by-byte. \motivation{Using cryptographically random identifiers provides some protection against session hijacking, and reduces the likelihood of unintentional Call-ID collisions.}

No provisioning or human interface is required for the selection of the \header{Call-ID} header field value for a request.

For further information on the \header{Call-ID} header see Section~\ref{sec:Call-ID}.

Example:

\begin{verbatim}

 Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@foo.bar.com

\end{verbatim}

\paragraph{\header{CSeq}}

\label{sec:general:uac:header:CSeq}

The \header{Cseq} header serves as a way to identify and order transactions. It consists of a sequence number and a method. The method {\MUST} match that of the request. The sequence number value is arbitrary, but {\MUST} be expressible as a 32-bit unsigned integer and {\MUST} be less than 2**31.

As long as it follows the above guidelines, a client may use any mechanism it would like to select \header{CSeq} header field values.
For further information on the \header{CSeq} header see Section~\ref{sec:CSeq}.

Example:

\begin{verbatim}

 CSeq: 4711 INVITE

\end{verbatim}

\paragraph{\header{Via}}

\label{sec:general:uac:header:via}

The \header{Via} header is used to determine the transport to use for sending a request, and for identifying the IP address and port where the response is to be sent. Rules for setting and using the values in this header are described in Section \ref{sec:transport}.

For further information on the \header{Via} header see Section~\ref{sec:Via}.

\paragraph{\header{Contact}}

\label{sec:general:uac:header:contact}

The \header{Contact} header provides a SIP URI that can be used to contact that specific instance of the user agent for subsequent requests. The \header{Contact} header {\MUST} be present in any request that can result in the establishment of a dialog. For the methods defined in this specification, that includes only the {\INVITE} request. For these requests, the scope of the \header{Contact} is the dialog. That is, the \header{Contact} header refers to the URL that the UA would like to receive requests at, for requests that are part of that dialog only. Only a single URI {\MUST} be present.
For further information on the \header{Contact} header, see Section \ref{sec:Contact}.
\paragraph{\header{Request-URI}}

\label{sec:general:uac:header:ruri}

The initial \header{Request-URI} of the message {\SHOULD} be set to the value of the URI in the \header{To} field. One notable exception is the {\REGISTER} method; behavior for setting the \header{Request-URI} of register is given in Section~\ref{sec:reg}. Another exception is the case of pre-existing \header{Route} headers; in that case, the procedures of Section~\ref{sec:dialog:uac:generate} as they pertain to the \header{Request-URI} are followed, even though there is no dialog.

\paragraph{Additional Message Components}

\label{sec:general:uac:steps}

After a new request has been created, the headers described above have been properly constructed, any additional optional headers are added, as are any headers specific to the method.
SIP requests {\MAY} contain a MIME-encoded message-body. Regardless of the type of body that a request contains, certain headers must be formulated to characterize the contents of the body. For further information on these headers see Section~\ref{sec:message-bodies}.
\subsubsection{Sending the Request}
\label{ sec:general:sending }
The destination for the request is then computed. This can be a preconfigured IP address, port and transport of an outbound proxy, or it can be determined through DNS procedures applied to the \header{Request-URI}. These procedures are described in Section \ref{sec:srv}, which yield an ordered set of address, port and transports to attempt. The UAC {\SHOULD} follow the procedures defined there for stateful elements, trying each address until a server is contacted. Each try constitutes a new transaction, and therefore a new client transaction {\MUST} be constructed for each.
\subsubsection{Processing Responses}
\label{sec:general:resp-proc}

Responses are first processed by the transport layer, and then passed up to the transaction layer. The transaction layer performs its processing, and then passes it up to the TU. The majority of response processing in the TU is method specific. However, there are some general behaviors independent of the method.

\paragraph{Unrecognized Responses}

A UAC MUST treat any

response they do not recognize as being equivalent to the x00 response code

of that class, and {\MUST} be able to process the x00 response code for all

classes.

For example, if a UAC receives an unrecognized response code of 431, it can safely assume that there was something wrong with its request and treat the response as if it had received a 400 (Bad Request) response code.

%Not sure this next sentence belongs in this section
%JDR – just strike
%In such cases, user agents {\SHOULD} present to the user the message body %returned with the response, since that message body is likely to include human-%readable information which will explain the unusual status.
\paragraph{Vias}

If more than one \header{Via} header field is present in a response, the UAC {\SHOULD} discard the message. \motivation{The presence of additional \header{Via} header fields that precede the originator of the request suggests that the message was misrouted or possibly corrupted.}

\paragraph{Recursion}

%JDR: This is sort of out of place here. The UAC should really

% have the same process for recursion as the proxy, and this is a

% non-trivial process. We need to describe how to take the previous

% request, and then use the Contact URL to construct the URI, and

% perhaps other headers, possibly overriding certain headers.

% we need to discuss branch IDs as well. Where does this behavior go??

Upon receipt of a redirection response (e.g. a 3xx response status code), clients {\SHOULD} use the URI(s) in the \header{Contact} header field to formulate a new request.

To do that, the client copies all but the

``\header{method-param}'' and ``\header{header}'' elements of the

\header{addr-spec} part of the \header{Contact} header field into the

\header{Request-URI} of the request. It uses the ``\header{header}''

parameters to create headers for the request, replacing any default

headers normally used.

In all other respects, requests sent upon receipt of a redirect response {\SHOULD} re-use the headers and bodies of the original request.

The \header{Contact} values present in redirection responses {\SHOULDNOT} be cached across calls, as they may not represent the most desirable location for a particular destination address.
% this is inconsistent with 301, which is commonly cached across calls.
\subsection{UAS Behavior}

\label{sec:general:req-process}

When a request outside of a dialog is processed by a UAS, there are a set of processing rules which are followed, independent of the method. Section \ref{sec:dialog} gives guidance on how a UAS can tell whether a request is inside or outside of a dialog.

\subsubsection{Authentication/Authorization}

\label{sec:general:req-process:auth}

A UAS {\MAY} authenticate the originator of a request, and this process may require the server to issue a challenge for credentials. The required behavior is independent of the method of the request, and is detailed in Section~\ref{sec:security:auth}.

\subsubsection{Method Inspection}

\label{sec:general:req-process:method}

Once a request is authenticated (or no authentication was desired), the UAS {\MUST} inspect the method of the request. If the UAS does not support the method of a request it {\MUST} generate a 405 (Method Not Allowed) response. Procedures for generation of responses are described in Section \ref{sec:general:serv-resp}. The UAS {\MUST} also add an \header{Allow} header to the 405 response.
The \header{Allow} header field {\MUST} list the set of methods supported by

the UAS generating the message.

The \header{Allow} header is presented in Section \ref{sec:Allow}.

If the method is one supported by the server, processing continues.
\subsubsection{Header Inspection}

\label{sec:general:req-process:header}

If a UAS does not understand a header field in a request (i.e. the header is not defined in this specification or in any supported extension), the server {\MUST} ignore that header and continue processing the message. A UAS {\SHOULD} ignore any malformed headers which are not necessary for processing requests.

\paragraph{\header{To} and \header{Request-URI}}

The \header{To} header field identifies the original recipient of the request designated by the user identified in the \header{From} field. The original recipient may or may not be the UAS processing the request, do to call forwarding or other proxy operations. A UAS {\MAY} apply any policy it wishes in determination of whether to accept requests when the \header{To} field is not the identity of the UAS. However, it is {\RECOMMENDED} that a UAS accept requests even if they do not recognize the URI

scheme (e.g., a \texttt{tel:} URI) in the \header{To} or \header{From}, or if the \header{To} header does not address a known or current user of this UAS.
However, the \header{Request-URI} identifies the UAS that is to process the request. If the \header{Request-URI} does not identify an address that the UAS is willing to accept requests for, it {\SHOULD} reject the request with a 404 (Not Found) response. If the \header{Request-URI} does not provide sufficient information for the UAS to determine whether it is willing to process the request, it {\SHOULD} return a 485 (Ambiguous) response. This response {\SHOULD} contain a \header{Contact} header field containing URIs of new addresses to be tried.
%jdr – I don’t like this, as it defines yet another meaning for Contact,

% which is different for usage of contact in other 4xx (place to go for

% error information.
Typically, a UA which uses the {\REGISTER} method to bind its address of record to a specific contact address, will see requests whose \header{Request-URI} equals those contact addresses.

\paragraph{\header{Require}}

Assuming the UAS decides that it is the proper element to process the request, it examines the \header{Require} header field, if present.

The \header{Require} general-header field is used by UAC to tell

UAS about SIP extensions that the UAC expects the UAS to

support in order to properly process the request. If a UAS does not

understand an option listed in a \header{Require} header field, it {\MUST} respond by generating a response with status code 420 (Bad Extension). The UAS {\MUST} add a \header{Unsupported}, and list in it those options it does not understand amongst those in the \header{Require} header of the request. Upon receipt of the 420 the client {\SHOULD} retry the request, this time without using those extensions listed in the Unsupported header in the response.
Example:

\begin{verbatim}

UACC->UAS: INVITE sip:watson@bell-telephone.com SIP/2.0

 Require: com.example.billing

 Payment: sheep_skins, conch_shells

UASS->UAC: SIP/2.0 420 Bad Extension

 Unsupported: com.example.billing

\end{verbatim}

\motivation{This is to make sure that the client-server interaction will proceed without delay when all options are understood by both sides, and only slow down if options are not understood (as in the example above). For a well-matched client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms. In addition, it also removes ambiguity when the client requires features that the server does not understand. Some features, such as call handling fields, are only of interest to end systems.}

\subsubsection{Content Processing}

\label{sec:general:req-process:content}

Assuming the UAS understands any extensions required by the client, the UAS examines the body of the message, and the headers that describe it. If there are any bodies whose type (indicated by the \header{Content-Type}), language (indicated by the \header{Content-Language}) or encoding (indicated by the \header{Content-Encoding}) are not understood, and that body part is not optional (as indicated by the \header{Content-Disposition}) header, the UAS {\MUST} reject the request with a 415 (Unsupported Media Type) response. The response {\MUST} contain a \header{Accept} header listing the types of all bodies it understands, in the event the request contained bodies of types not supported by the UAS. If the request contained content encodings not understood by the UAS, the response {\MUST} contain an \header{Accept-Encoding} header listing the encodings understood by the UAS. If the request contained content with languages not understood by the UAS, the response {\MUST} contain an \header{Accept-Language} header indicating the languages understood by the UAS.

Beyond these checks, body handling is method and type specific.

For further information on the processing of Content-specific headers see Section~\ref{sec:message-bodies}.
\subsubsection{Processing the Request}
\label{sec:general:req-process:req}
Assuming all of the checks in the previous subsections are passed, the UAS processing becomes method specific. Section \ref{sec:reg} deals with the {\REGISTER} request, section \ref{sec:query-for-capabilities} deals with the {\OPTIONS} request, section \ref{sec:initiate} deals with the {\INVITE} request, and section \ref{sec:terminate} deals with the {\BYE} request.
\subsubsection{Generating the Response}

\label{sec:general:serv-resp}

When a UAS wishes to construct a response to a request, it follows these procedures. Additional procedures may be needed depending on the status code of the response and the circumstances of its construction. These additional procedures are documented elsewhere.

The \header{From} field of the response {\MUST} equal the \header{From} field of the request. The \header{Call-ID} field of the response {\MUST} equal the \header{Call-ID} field of the request. The \header{Cseq} field of the response {\MUST} equal the \header{Cseq} field of the request.

The \header{Via} headers in the response {\MUST} equal the \header{Via} headers in the request, and {\MUST} maintain the same ordering.
If a request contained a \header{To} tag in the request, the \header{To} field in the response {\MUST} equal that of the request. However, if the \header{To} field in the request did not contain a tag, the URI in the \header{To} field in the response {\MUST} equal the URI in the \header{To} field in the request. Additionally, the UAS {\MUST} add a tag to the \header{To} field in the response. This serves to identify the UAS that is responding, possibly resulting in a component of a dialog ID. The same tag {\MUST} be used for all responses to that request, both provisional and final. Procedures for generation of tags are defined in Section \ref{sec:common-message:tags}.

\subsection{Redirect Servers}

\label{sec:general:redirect}

In some architectures it may be desirable to reduce the processing load on proxy servers that are responsible for routing requests by relying on redirection. Redirection allows servers to push routing information for a request back in a response to the client, thereby taking themselves out of the loop of further messaging for this transaction while still aiding in locating the target of the request. When the originator of the request receives the redirection it will send a new request based on the routing information it has received. By propagating routing information from the core of the network to its edges, redirection allows for considerable network scalability.

A redirect server is logically constituted of a server transaction layer and a transaction user that has access to a location service of some kind (see Section~\ref{sec:reg} for more on registrars and location services). This location service is effectively a database containing mappings between a single URI and a set of one or more alternative locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After receiving a request other than {\CANCEL}, the server gathers the list of alternative locations from the location service and either returns a final response of class 3xx or it refuses the request. For well-formed {\CANCEL} requests, it {\SHOULD} return a 2xx response. This response ends the SIP transaction. The redirect server maintains transaction state for an entire SIP transaction. It is the responsibility of clients to detect forwarding loops between redirect servers.

When a redirect server returns a 3xx response to a request, it populates the list of (one or more) alternative locations into \header{Contact} headers. An ``\header{expires}'' parameter to the \header{Contact} header may also be supplied to indicate the lifetime of the \header{Contact} data.

The \header{Contact} header field contains URIs giving the new locations or user names to try, or may simply specify additional transport parameters. A 301 or 302 response may also give the same location and username that was targeted by the initial request but specify additional transport parameters such as a different server or multicast address to try, or a change of SIP transport from UDP to TCP or vice versa.

Note that the \header{Contact} header field {\MAY} also refer to a

different entity than the one originally called. For example, a SIP

call connected to GSTN gateway may need to deliver a special informational announcement such as ``The number you have dialed has been changed.''

A \header{Contact} response header field can contain any suitable URI

indicating where the called party can be reached, not limited to SIP

URIs. For example, it could contain URL's for phones, fax, or

\header{irc} (if they were defined) or a \header{mailto:} (RFC 2368,

\cite{rfc2368}) URL.

The ``\header{expires}'' parameter of the \header{Contact} header field indicates how long the URI is valid. The parameter is either a number indicating seconds or a quoted string containing a \header{SIP-date}. If this parameter is not provided, the value of the \header{Expires} header field determines how long the URI is valid. Implementations {\MAY} treat values larger than 2**32-1 (4294967295 seconds or 136 years) as equivalent to 2**32-1.

Redirect servers {\MUST} ignore features that are not understood (including unrecognized headers, \header{Require}d extensions, or even method names) and proceed with the redirection of the session in question. If a particular extension requires that intermediate devices support it, the extension {\MUST} be tagged in the \header{Proxy-Require} field as well (see Section~\ref{sec:Proxy-Require}).

