\section{Transactions}
\label{sec:transactions}

SIP is fundamentally a transactional protocol. This means that

interactions between components take place in a series of independent

message exchanges. Specifically, a SIP transaction consists of a single

request, and any responses to that request (which include zero or more

provisional responses and one or more final responses). In the case of a

transaction where the request was an {\INVITE} (known as an {\INVITE}

transaction), the transaction also includes the {\ACK} only if the

final response was not a 2xx response. If the response was a 2xx, the {\ACK}

is not considered part of the transaction. \motivation{The reason for this separation is rooted in the importance of delivering all 200 OK responses to an {\INVITE} to the UAC. To deliver them all to the UAC, the UAS alone takes responsibility for retransmitting them, and the UAC alone takes responsibility for acknowledging them with {\ACK}. Since this {\ACK} is retransmitted only by the UAC, it is effectively considered its own transaction.}

Transactions have a client side and a server side. The client side is known as a client transaction, and the server side, as a server transaction. The client transaction sends the

request, and the server transaction sends the response. The client and server transactions are

logical functions that are embedded in any number of

elements. Specifically, they exist within user agents and stateful

proxy servers. Consider the example of Section \ref{sec:overview-of-operations}. In

this example, the UAC executes the client transaction, and its outbound proxy executes the
server transaction. The outbound proxy also executes a client transaction, which sends the request

to a server transaction in the inbound proxy. That proxy also executes a client transaction,

which in turn, sends the request to a server transaction in the UAS. This is

shown pictorially in Figure \ref{fig:tmodel}.

\txtpsfigsize{!}{!}{tmodel}{Transaction relationships}

A stateless proxy does not contain a client or server transaction. The transaction

exists between the UA or stateful proxy on one side of the stateless

proxy, and the UA or stateful proxy on the other side. As far as SIP

transactions are concerned, stateless proxies are effectively

transparent.
The purpose of the client transaction is to receive a request from the element the

client is embedded in (call this element the ``Transaction User'' or TU; it can

be a UA or a stateful proxy), and

reliably

deliver the request to that server transaction. The client transaction is also responsible for

receiving responses, and delivering them to the TU, filtering

out any retransmissions or disallowed responses (such as a response to

{\ACK}). In the case of an {\INVITE} transaction, that includes

generation of the {\ACK} request for any final response excepting a 2xx

response.

Similarly, the purpose of the server transaction is to receive requests from the

transport layer, and deliver them to the TU. The server transaction filters any

request retransmissions from the network. The server transaction accepts responses

from the TU, and delivers them to the transport layer for transmission over the network. In the case

of an {\INVITE} transaction, it absorbs the {\ACK} request for any final

response excepting a 2xx response.
The 2xx response, and the {\ACK} for it, have special treatment. This response is retransmitted only by a UAS, and its {\ACK} generated only by the UAC. This end-to-end treatment is needed so that a caller knows the entire set of users that have accepted the call. Because of this special handling, retransmissions of the 2xx response are handled by the UA core, not the transaction layer. Similarly, generation of the {\ACK} for the 2xx is handled by the UA core. Each proxy along the path merely forwards each 2xx response to {\INVITE}, and its corresponding {\ACK}.
\subsection{Client transaction}
\label{sec:transactions:client}
The client transaction provides its functionality through the maintenance of a

state machine

.

The TU communicates with the client transaction through a simple

interface. When the TU wishes to initiate a new transaction, it

creates a client transaction, and passes it the SIP request to send,

a value for timer C (described below), and an IP address, port, and transport to send it to.

The client transaction begins execution of its state machine.
Valid responses are past up to the TU from the client transaction.
There are two types of client transaction state machines, depending on the

method the request passed by the TU. One handles client

transactions for {\INVITE} request. This type of machine is referred

to as an {\INVITE} client transaction. Another type handles client

transactions for all requests except {\INVITE} and {\ACK}. This is

referred to as a non-{\INVITE} client transaction. There is no client transaction for {\ACK}. If the TU wishes to send an {\ACK}, it passes one directly to the transport layer for transmission.

The {\INVITE} transaction is different from those of other methods

because of its extended duration. Normally, human input is required in

order to respond to an {\INVITE}. The long delays expected for sending a

response argue for a three way handshake. Requests of other methods,

on the other hand, are expected to completely rapidly. In fact,

because of its reliance on just a two way handshake, TUs

{\SHOULD} respond immediately to non-{\INVITE} requests. Protocol extensions

which require longer durations for generation of a response (such as a

new method that does require human interaction) {\SHOULD} instead use

two transactions - one to send the request, and another in the

reverse direction to convey the result of the request.

\subsubsection{{\INVITE} Client Transaction}

\label{sec:transactions:client:invite}

\paragraph{Overview of {\INVITE} Transaction}
\label{sec:transactions:client:invite:overview}
The {\INVITE} transaction consists of a three-way handshake. The client transaction
sends an {\INVITE}, the server transaction sends responses, and the client transaction sends an

{\ACK}. For unreliable transports (such as UDP), the client transaction will retransmit requests at an interval that starts at

T1 seconds and doubles after every retransmission. The request is not retransmitted over reliable transports. After receiving a

1xx response, any retransmissions cease altogether, and the client waits

for further responses. The server transaction can send additional 1xx responses, which are not transmitted reliably. Eventually, the server transaction decides to send a final response. For unreliable transports, that response is retransmitted periodically, and for reliable transports, its sent once. For each final response that is received at the client transaction, the client transaction
sends an {\ACK}, the purpose of which is to quench retransmissions of the

response.
\paragraph{Formal Description}
\label{sec:transactions:client:invite:formal}
\txtpsfigsize{!}{!}{invite-client}{{\INVITE} client transaction}

The state machine for the {\INVITE} client transaction is shown in Figure

\ref{fig:invite-client}. The initial state, ``calling'', {\MUST} be entered

when the TU initiates a new

client transaction with an {\INVITE} request. The client transaction {\MUST} pass the request to the transport layer for transmission (see Section \ref{sec:transport
}). If an unreliable transport is being used, the client transaction {\SHOULD } start timer A with a value of T1, and {\SHOULDNOT} start timer A when a reliable transport is being used (Timer A controls request retransmissions). For any transport, the client transaction {\MUST} start timer B with a value of 64*T1 seconds (Timer B controls transaction timeouts).

When timer A fires, the client transaction {\SHOULD}
retransmit the request by passing it to the transport layer, and {\SHOULD } reset the timer with a value of 2*T1. When the

timer fires 2*T1 seconds later, the request {\SHOULD }be retransmitted again

(assuming the client transaction is still in this state). This process

{\SHOULD }continue, so that the request is retransmitted with intervals

that double after each transmission. These retransmissions {\SHOULD }only

be done while the client transaction is in the ``calling'' state.
The default value for T1 is 500ms. T1 is an estimate of the RTT between the client and server transactions. The optional RTT estimation procedure of Section \ref{sec:transactions:rtt} {\MAY} be followed, in which case the resulting estimate {\MAY} be used instead of 500ms. If no RTT estimation is used,
other values {\MAY }be used in private networks

where it is known that
RTT has a different value. On the public Internet, T1 {\MAY} be chosen larger, but {\SHOULDNOT} be smaller.

If the client transaction is still in the ``calling'' when timer B fires, the

client transaction {\SHOULD }

 inform the TU that a timeout has occurred. The client transaction
{\MUSTNOT} generate an {\ACK}. The value of 64*T1 is equal to the

amount of time required to send seven requests in the case of an

unreliable transport.

If the client transaction receives a provisional response while in the “calling” state, it transitions to the

``proceeding'' state. Upon entering this state, the client transaction {\MUST} start timer C with the value provided by the TU when the client transaction was created. This timeout dictates how

long the client transaction waits for a final response before giving up (i.e., roughly how

long does it ``let the phone ring''). In the ``proceeding'' state, the client transaction {\SHOULDNOT} retransmit

the request any longer. Furthermore, the provisional response {\MUST} be

passed to the

TU. Any further provisional responses

{\MUST} be passed up to the

TU while in the ``proceeding'' state.

When timer C fires, the

client transaction {\MUST} transition to the terminated state, and it

{\MUST} inform the TU of the timeout.

When in either the “calling'' or ``proceeding'' states, reception of

a response with status code from 300-699 {\MUST} cause the client

transaction to transition to ``completed''. The client transaction {\MUST} pass the received

response up to the TU, and it {\MUST} generate an {\ACK}

request, even if the transport is reliable (guidelines for

constructing the {\ACK} from the response are given in Section

\ref{sec:transactions:client:invite:ack}) and then pass the {\ACK} to the transport layer for transmission. The {\ACK} {\MUST} be sent to the same

address, port and transport that the original request was sent to. The client

transaction {\SHOULD } start timer D when it enters the ``completed'' state, with a value of T3 seconds for unreliable transports, and zero seconds for reliable transports. T3 is the

total amount of time that the server transaction can remain in the

``completed'' state when unreliable transports are used. For the default values of the timers below, this

is 16 seconds.
\motivation{OPEN ISSUE \#210: Timer D should be based on the values of the timers selected at the server, but these values aren’t known by the client. We could alternatively specify an absolute minimum.}

Any retransmissions of the final response that are

received while in the ``completed'' state {\SHOULD} cause the {\ACK} to be

re-passed to the transport layer for retransmission, but the newly received response {\MUSTNOT} be passed up to the TU. A retransmission of the response is defined as any response which would match the same client transaction, based on the rules of Section \ref{sec:transactions:client:match}.
If timer D fires while the client transaction is in the ``completed'' state, the client transaction {\MUST} move to the terminated state, and it {\MUST} inform the TU of the timeout.

When in either the ``calling'' or ``proceeding'' states, reception of

a 2xx response {\MUST} cause the client transaction to enter the

terminated state, and the response {\MUST} be passed up to the

TU. The handling of this response depends on whether the TU is a proxy or a UAC. A UAC will handle generation of the {\ACK} for this response, while a proxy will always forward the 200 OK upstream. The differing treatment of 200 OK between proxy and UAC is the reason that handling of it does not take place in the transaction layer.

The client transaction {\MUST} be destroyed the instant it enters

the terminated state. This is actually necessary to guarantee correct

operation. The reason is that 2xx responses to an {\INVITE} are treated differently; each one is forwarded by proxies, and the {\ACK} handling in a UAC is different. Thus, each 2xx needs to be passed to a proxy core (so that it can be forwarded) and to a UAC core (so it can be acknowledged). No transaction layer processing takes place. Whenever a response is received by the transport, if the transport layer finds no matching client transaction (using the rules of Section \ref{sec:transactions:client:match}, the response is passed directly to the core. Since the matching client transaction is destroyed by the first 2xx, subsequent 2xx will find no match and therefore be passed to the core.

\paragraph{Construction of the {\ACK} Request}
\label{sec:transactions:client:invite:ack}
The {\ACK} request constructed by the client transaction {\MUST} contain values

for the Call-ID, To, From, and Request-URI which are equal to the

values of those headers in the request that created the

client transaction (call this the ``original request’’). The {\ACK} {\MUST} contain a single Via header, and this

{\MUST} be equal to the top Via header of the
original request. The {\ACK} request {\MUSTNOT} contain any Route headers. The

CSeq header in the {\ACK} {\MUST} contain the same value for the sequence number as was present in the original request, but

the method parameter {\MUST} be equal to ``{\ACK}''.

These rules for construction of {\ACK} only apply to the client transaction. A UAC core
which generates an {\ACK} for 2xx {\MUST} instead follow the rules

described in Section \ref{sec:initiate}.

For example, consider the following request:

\begin{verbatim}

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=88sja8x

Call-ID: 987asjd97y7atg@10.1.3.3

CSeq: 986759 INVITE

\end{verbatim}

The {\ACK} request for a non-2xx final response to this request would look

like:

\begin{verbatim}

ACK sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=88sja8x

Call-ID: 987asjd97y7atg@10.1.3.3

CSeq: 986759 ACK

\end{verbatim}

\subsubsection{non-{\INVITE} Client Transaction}
\label{sec:trans:client:noninv}
\paragraph{Overview of the non-{\INVITE} Transaction}
\label{sec:trans:client:noninv:overview}
non-{\INVITE} transactions do not make use of {\ACK}. They are a simple

request-response interaction.
For unreliable transports, requests are retransmitted at an interval which

starts at T1, and doubles until it hits T2. If a provisional response is received, retransmissions continue for unreliable transports, but at an interval of T2.

The server transaction retransmits the last response it sent (which can be a provisional or final response) only when a retransmission of the request is received. This is why request retransmissions need to

continue even after a provisional response,
they are what ensure reliable delivery of the final
response.

Unlike an {\INVITE} transaction, a non-{\INVITE} transaction has no special handling for the 2xx response. The result is that only a single 2xx response to a non-{\INVITE} is ever delivered to a UAC.
\paragraph{Formal Description}
\label{sec:trans:client:noninv:formal}
\txtpsfigsize{!}{!}{noninvite-client}{non-{\INVITE} client transaction}

The state machine for the non-{\INVITE} client transaction is shown in

Figure \ref{fig:noninvite-client}. It is very similar to the state

machine for {\INVITE}.

The ``Trying'' state is entered when the TU initiates a new client transaction with a request.
When entering this state, the client transaction {\SHOULD} set

Timer F to fire in T3 seconds. The request {\MUST} be passed to the transport layer for transmission
. If an unreliable transport is in use, the client transaction {\MUST} set timer E to fire in T1 seconds. If timer E fires while still in this state, the timer is reset, but this time with a value of MIN(2*T1, T2). When the timer fires again, it is reset to a MIN(4*T1, T2). This process continues, so that retransmissions occur with an exponentially increasing inverval that caps at T2. The default value of T2 is 4s, and it represents the amount of time a non-{\INVITE} server transaction will take to respond to a request, if it does not respond immediately. For the default values of T1 and T2, this results in intervals of 500~ms, 1~s, 2~s, 4~s, 4~s, 4s, etc.

If Timer F fires while the client transaction is still in the ``Trying'' state,

the client transaction {\SHOULD} inform the TU about the timeout, and

then it {\SHOULD }enter the ``Terminated'' state. If a provisional

response is received while in the ``Trying'' state, the response {\MUST} be passed to
the TU, and then

the client transaction {\SHOULD} move to the ``Proceeding'' state. If a final

response (status codes 200-699) is received while in the ``Trying'' state, the

response {\MUST} be passed to the TU, and the client transaction

{\MUST} transition to the ``Completed'' state.

If Timer E fires while in the ``Proceeding'' state, the request {\MUST} be passed to the transport layer for retransmission, and Timer E {\MUST} be reset with a value
of T2 seconds. If timer F fires while in the ``Proceeding'' state, the TU {\MUST} be informed of a timeout, and the client transaction {\MUST} transition to the terminated state.

If a final

response (status codes 200-699) is received while in the ``Proceeding'' state, the

response {\MUST} be passed to the TU, and the client transaction

{\MUST} transition to the ``Completed'' state.
Once the client transaction enters the ``Completed'' state, it {\MUST} set Timer K to fire in T4 seconds for unreliable transports, and zero seconds for reliable transports.
 The ``Completed'' state exists to buffer any additional response

retransmissions that may be received (which is why the client transaction remains there only for unreliable transports). T4 represents the amount of time the network will take to clear messages between client and server transactions. The default value of T4 is 5s. A response is a retransmission when it matches the same transaction, using the rules specified in Section \ref{sec:transactions:client:match}. If Timer K fires while in this state,
the client transaction {\MUST}
transition to the ``Terminated'' state.
\motivation{OPEN ISSUE \#211: This special treatment for reliable transports, where the state machine transactions directly to terminated, is new.}
Once the transaction is in the terminated state, it {\MUST} be

destroyed. As with client transactions, this is needed to ensure

reliability of the 2xx responses to {\INVITE}.
\subsubsection{Matching Responses to Client Transactions}

\label{sec:transactions:client:match}

When the transport layer in the client receives a response, it has to figure out which client transaction will handle the response, so that the processing of

Sections \ref{sec:transactions:client:invite} and \ref{sec:trans:client:noninv} can take place.

A response matches a client transaction through a comparison process

with fields in the request that created the transaction. Specifically,

the From, Call-ID, CSeq, and the topmost Via header {\MUST} match the

same fields in the request, using the matching operations for those

headers defined in Section [Alan's headers section]. If the To field

in the request had a tag, the To field in the response {\MUST} match the

To field in the request, as described in Section [Alan's To

section]. However, if the To field in the request did not contain a

tag, the To field in the response {\MUST} match that in the request,

except that the tag {\MUSTNOT} be considered as part of the matching

process. This is needed since a UAS will add a tag to the To field

of the response.

\subsubsection{Handling Transport Errors}

\label{sec:transactions:client:error}

When the client sends a request to the transport layer to be sent, the following procedures are followed if the transport layer indicates a failure.

The client transaction {\SHOULD} generate a 500 response to the request, using the procedures of Section \ref{sec:general:serv-resp}. Processing continues as if this response were received on the network, however, an {\ACK} {\MUSTNOT} be sent.
\subsection{Server Transaction}
\label{sec:transactions:server}
The server transaction is responsible for the delivery of requests to the

TU, and the reliable transmission of responses. It

accomplishes this through a state machine
. Server transactions are created by the core when a request is received, and transaction handling is desired for that request (this won’t always be the case).

As with the client transactions, the state machine depends on whether the received request is an {\INVITE} request or not.

\subsubsection{{\INVITE} Server Transaction}
\label{sec:transactions:server:invite}
\txtpsfigsize{!}{!}{invite-server}{{\INVITE} server transaction}

The state diagram for the {\INVITE} server transaction is shown in Figure

\ref{fig:invite-server}.

When a server transaction is constructed with a request, it enters the ``Proceeding''
 state. The server transaction {\MUST} generate a 100 response

(not any status code - the specific value of 100) unless it knows that

the TU will generate a provisional or final response within

200 ms, in which case it {\MAY} generate a 100 response. This provisional response is needed to rapidly quench request retransmissions in order to avoid network congestion.

The request {\MUST} be passed to the TU
.
The TU passes any number of provisional responses to the

server transaction. So long as the server transaction is in the

``Proceeding'' state, each of these {\MUST} be passed to the transport layer for transmission. They are not sent reliably (they are not retransmitted), and do not cause a

change in the state of the server transaction. If a request retransmission is received while in the ``Proceeding'' state, the most recent provisional response that was received from the TU {\MUST} be passed to the transport layer for retransmission. A request is a retransmission if it matches the same server transaction based on the rules of Section \ref{sec:transactions:server:match}.
If, while in the ``proceeding'' state, the TU passes a 2xx

Response to the server transaction, the server transaction {\MUST} pass this response to the transport layer for transmission. It is not

retransmitted by the server transaction; retransmissions of 2xx responses are

handled by the TU. The server transaction {\MUST} then transition to the

``terminated'' state.
While in the ``Proceeding'' state, if the TU passes a response

with status code from 300 to 699 to the server transaction, the response {\MUST} be passed to the transport layer for transmission, and the state machine {\MUST} enter the

``Completed'' state. For unreliable transports, timer G is set to fire in T1 seconds, and is not set to fire for reliable transports.

\motivation{This is a change from RFC2543, where responses were always retransmitted, even over reliable transports.}

When the ``Completed'' state is entered, timer H {\MUST} be set to fire in 64*T1 seconds, for all transports. Timer H determines when the server transaction gives up retransmitting the response. Its value is chosen to equal Timer B, the amount of time a client transaction will continue to retry sending a request. If timer G fires, the response is passed to the transport layer once more for retransmission, and timer G is set to fire in MIN(2*T1, T2) seconds. From then on, when timer G fires, the response is passed to the transport again for transmission, and timer G is reset with a value that doubles, unless that value exceeds T2, in which case it is reset with the value of T2. This is identical to the retransmit behavior for requests in the ``Trying'' state of the non-{\INVITE} client transaction.

Furthermore, while in the

``completed'' state, if a request retransmission is received, the server SHOULD pass the response to the transport for retransmission.

If an {\ACK} is received while the server transaction is in the ``Completed'' state, the server transaction {\MUST} transition to the

``confirmed'' state. As Timer G is ignored in this state, any retransmissions of the response will cease.

If timer H fires while in the ``Completed'' state, it implies that the {\ACK} was never received. In this case, the server transaction {\MUST}
transition to the

terminated state, and {\MUST} indicate to the TU that a transaction

failure has occurred.

The purpose of the ``confirmed'' state is to absorb any additional {\ACK}

messages that arrive, triggered from retransmissions of the final

response. When this state is entered, timer I is set to fire in T4 seconds for unreliable transports, and zero seconds for reliable transports. Once timer I fires, the server {\MUST} transition to the ``Terminated'' state.

Once the transaction is in the terminated state, it {\MUST} be

destroyed. As with client transactions, this is needed to ensure

reliability of the 2xx responses to {\INVITE}.

\subsubsection{non-{\INVITE} Server Transaction}
\label{sec:transactions:server:noninv}
\txtpsfigsize{!}{!}{noninvite-server}{non-{\INVITE} server transaction}

The state machine for the non-{\INVITE} server transaction is shown in

Figure \ref{fig:noninvite-server}.

The state machine is initialized in the ``Trying'' state, and is passed a request other

than {\INVITE} or {\ACK} when initialized. This request is

passed up to the TU. Once in the ``Trying'' state, any

further request retransmissions are discarded. A request is a retransmission if it matches the same server transaction, using the rules specified in Section \ref{sec:transactions:server:match}.
While in the ``Trying'' state, if the TU passes a provisional response to the server transaction,
the server transaction {\MUST} enter the ``Proceeding'' state. The response {\MUST}

be passed to the transport layer for transmission. Any further provisional responses that are received from the TU while in the ``Proceeding'' state {\MUST} be

passed to the transport layer for transmission. If a retransmission of the request is received while in the ``Proceeding'' state, the most

recently sent provisional response {\MUST} be passed to the transport layer for retransmission. If the

TU passes a final response (status codes 200-699) to the server while in the ``Proceeding'' state, the transaction

{\MUST} enter the ``Completed'' state, and the response {\MUST} be passed to the transport layer for transmission.

When the server transaction enters the ``Completed'' state, it {\MUST} set Timer J to

fire in T3 seconds for unreliable transports, and zero seconds for reliable transports. While in the ``Completed'' state, the server transaction {\MUST}

pass the final response to the transport layer for retransmission whenever a retransmission of the request

is received. Any other final responses passed by the TU to the server transaction {\MUST} be discarded while in the ``Completed'' state. The server transaction remains in this state until Timer J
fires, at which point it {\MUST} transition to the ``Terminated'' state.

The server transaction {\MUST} be destroyed the instant it enters the ``Terminated''
state.

\subsubsection{Matching Requests to Server Transactions}

\label{sec:transactions:server:match}

When an {\INVITE} or {\ACK} request is received from the network by the

server, it has to be matched to an existing transaction. Either of these requests
matches a transaction if the Request-URI, To, From Call-ID, CSeq

number (not the method), and top Via header match those of the {\INVITE}

request which created the transaction.
For all other request methods, a request is matched to a transaction if the \header{Request-URI}, \header{To}, \header{From}, \header{Call-ID} and \header{Cseq} (including the method) and top \header{Via} header match those of the request which created the transaction. Matching is done based on the

matching rules defined for each of those headers.
Because the matching rules include the \header{Request-URI}, the server cannot

match a response to a transaction. When the TU passes a

response to the server, it must inform the TU which

transaction the response is for.

\subsection{RTT Estimation}
\label{sec:transactions:rtt}
Most of the timeouts used in the transaction state machines derive from T1, which is an estimate of the RTT between the client and server transactions. This subsection defines optional procedures that a client can use to build up estimates of the RTT to a particular IP address. To perform this procedure, the client {\MUST} maintain a table of variables for each destination IP address to which an RTT estimate is being made.
\motivation{OPEN ISSUE \#212: Is destination IP address the right index for an RTT estimate? How about \header{Request-URI}?}
If a client wishes to measure RTT for a particular IP address, it {\MUST} include a \header{Timestamp} header into a request containing the time when the request is initially created and passed to a new client transaction, which transmits the request. If a 100 response (not any 1xx, only the 100 response) is received before the client transaction generates a retransmission, an RTT estimate is made. This is consistent with the RFC 2988 requirements on TCP for using Karn’s algorithm in RTT estimation.

The estimate, called R, is made by computing the difference between the current time and the value of \header{Timestamp} header in the 100 response. The value of R is applied to the estimation of RTO as described in Section 2 of RFC 2988 \cite{rfc2988}, with the following differences. First, the initial value of RTO is 500~ms for SIP, not 3~s as is used for TCP. Second, there is no minimum value for the RTO, as there is for TCP, if SIP is being run on a private network. When run on the public Internet, the minimum is 500~ms, as opposed to 1~s for TCP. This difference is because of the expected usage of SIP in private networks where rapid call setup times are service critical. Once RTO is computed, the timer T1 is set to the value of RTO, and all other timers scale proportionally as described above.

