\section{Structure of the Protocol}

The SIP protocol is structured as a layered protocol, which means that its behavior is described in terms of a set of fairly independent processing stages, with only a loose coupling between each stage. The structuring of the protocols into layers is for the purpose of presentation and conciseness; it allows the grouping of functions common across elements into a single place. It does not dictate an implementation in any way. When we say that an element ``contains'' a layer, that means it is compliant to the set of rules defined by that layer.

Not every element specified by the protocol contains every layer. Furthermore, the elements specified by SIP are logical elements, not physical ones. A physical realization can choose to act as different logical elements, perhaps even on a transaction by transaction basis. 
The lowest layer of the SIP protocol is its syntax and encoding. Its encoding is specified using a BNF. The complete BNF is specified in Section \ref{sec:abnf}. However, a basic overview of the structure of a SIP message can be found in Section \ref{sec:message}. This section introduces enough of an understanding of the format of a SIP message to facilitate understanding the remainder of the protocol.

The next higher layer is the transport layer. This layer defines how a client takes a request, and physically sends it over the network, and how a response is sent by a server, and then received by a client. All SIP elements contain a transport layer. The transport layer is described in Section \ref{sec:transport}.
The next higher layer is the transaction layer. Transactions are a fundamental component of SIP. A transaction is a request, sent by a client transaction (using the transport layer), to a server transaction, along with all responses to that request sent from the server transaction back to the client. The transaction layer handles retransmissions, matching of responses to requests, and timeouts. Any task that a UAC wishes to accomplish takes place using a series of transactions. Discussion of transactions can be found in Section \ref{sec:transactions}. User agents contain a transaction layer, as do stateful proxies. Stateless proxies do not contain a transaction layer.
The transaction layer has a client component (referred to as a client transaction), and a server component (referred to as a server transaction), each of which are represented by an FSM that is constructed to process a particular request. The layer on top of the transaction layer is called the transaction user (TU), of which there are several types. When a TU wishes to send a request, it creates a client transaction instance and passes it the request, along with the destination IP address, port, and transport to send the request to.
SIP provides the ability for a transaction to be canceled by the client which initiated it. When a client cancels a transaction, it requests that the server give up on further processing, revert to the state that existed before the transaction was initiated, and generate a specific error response to that transaction. This is done with a {\CANCEL} request, which constitutes its own transaction, but references the transaction to be cancelled. Cancellation is described in Section \ref{sec:canceling}.
The next layer depends on the element type. A UAC contains a UAC core, a UAS contains a UAS core, and a proxy contains a proxy core. The behavior of the UAC and UAS cores depend largely on the method. However, there are some common rules for all methods. These rules are captured in Section \ref{sec:ua}. The primarily deal with construction of a request, in the case of a UAC, and processing of that request, and generation of a response, in the case of a UAS.
UAC and UAS core behavior for the {\REGISTER} method is described in Section \ref{sec:reg}. Registrations play an important role in SIP. In fact, a UAS that handles a {\REGISTER} is given a special name – a registrar, and it is described in that section.
UAC and UAS core behavior for the {\OPTIONS} method, used for determining the capabilities of a UAC, are described in Section \ref{sec:query-for-capabilities}.

Certain other requests are sent within a {\em dialog}. A dialog is a peer-to-peer SIP relationship between a two user agents that persists for some time. The dialog facilitates sequencing of messages between the user agents, and proper routing of requests between both them. One way to setup a dialog is with the {\INVITE} method. When a UAC sends a request that is within the context of a dialog, it follows the common UAC rules as discussed in Section \ref{sec:ua}, but also the rules for mid-dialog requests. Section \ref{sec:dialog} discusses dialogs, and presents the procedures for their construction, and maintenance, in addition to construction of requests within a dialog.
The most important method in SIP is the {\INVITE} method, which is used to establish a multimedia session between participants. Section \ref{sec:initiate} discusses how sessions are initiated, resulting in one or more SIP dialogs. Section \ref{sec:modify} discusses how characteristics of that session are modified, through the use of an {\INVITE} request within a dialog. Finally, section \ref{sec:terminate} discusses how a session is terminated. 
The procedures of Sections \ref{sec:ua}, \ref{sec:reg}, 
\ref{sec:query-for-capabilities}, \ref{sec:dialog}, \ref{sec:initiate}, \ref{sec:modify}, and \ref{sec:terminate} deal entirely with the UA core. Section \ref{sec:proxy} discusses the proxy element, which facilitates routing of messages between user agents. 
