\section{Security Considerations}

\label{sec:security}

The fundamental security issues confronting SIP are: preserving the confidentiality and integrity of messaging, preventing replay attacks or message spoofing, ensuring the privacy of the participants in a session, and preventing denial of service attacks.

SIP messages frequently contain sensitive information about their senders – not just what they have to say, but with whom they communicate, when they communicate and for how long, and from where they participate in sessions. Many applications and their users require that this sort of private information be hidden from any parties that do not need to know it.

Encryption provides the best means to preserve the confidentiality of signaling – it can also guarantee that messages are not modified by any malicious intermediaries. However, SIP requests and responses cannot be encrypted end-to-end (that is, between a pair of distinct user agents who share encryption keys) in their entirety because message fields such as the \header{Request-URI}, \header{Route} and \header{Via} need, in most network architectures, to be visible to proxies so that SIP requests are routed correctly. Note that proxy servers need to modify signaling as well (adding \header{Via} headers) in order for SIP to function. Proxy servers must therefore be a part of trust relationships in SIP networks.

Note that there are also less direct ways in which private information can be divulged. If a user or service chooses to be reachable at an address that is guessable from the person's name and organizational affiliation (which describes most addresses of record), the traditional method of ensuring privacy by having an unlisted ``phone number’’ is compromised. A user location service can infringe on the privacy of the recipient of a session invitation by divulging their specific whereabouts to the caller; an implementation consequently {\SHOULD} be able to restrict, on a per-user basis, what kind of location and availability information is given out to certain classes of callers.
SIP entities also have a need to identify one another in a secure fashion. Ordinarily a SIP UA asserts an identity for the initiator of a request in the \header{From} header field, but in many systems this information is controlled directly by the end user, and thus spoofing the contents of the \header{From} is trivial. When a SIP endpoint asserts the identity of its user to a peer user agent or to a proxy server, that identity should in some way be verifiable. A cryptographic authentication mechanism is provided in SIP to address this requirement.

The most comprehensive mechanisms for securing SIP messages (providing confidentiality and integrity guarantees for signaling as well as authentication) make use of transport or network layer encryption. encryption encrypts the entire SIP request or response on the wire so that packet sniffers or other eavesdroppers cannot see who is calling whom.

Note that the security of SIP signaling itself has no bearing on the security of protocols used in concert with SIP such as RTP, or with any MIME types carried as SIP bodies, such as SDP. Any media associated with a session can be encrypted end-to-end without any of the problems associated with encrypting SIP signaling. Media encryption is outside the scope of this document.

\subsection{Transport and Network Layer Security}

\label{sec:security:transport}

SIP requests and responses {\MAY} be protected by security mechanisms at the transport or network layer. No particular mechanism is recommended by this document, but two popular alternatives are briefly examined: protection at the transport layer can be afforded by TLS \cite{rfc2246}, and network layer security is provided by IPSec \cite{rfc2401}.

Transport or network layer security encrypts signaling traffic, guaranteeing message confidentiality and integrity (note however that the originator and recipient of a session may be deducible by observers performing a network traffic analysis). The keys used to establish encrypt traffic can also be used to verify an asserted identity in many architectures, and therefore provide a means of authentication.

IPSec is a network layer protocol – essentially, a secure replacement for traditional IP (Internet Protocol). IPSec is most suited to VPN (virtual private network) architectures in which a set of SIP hosts (mingled user agents and proxy servers) or bridged administrative domains have a trust relationship with one another.

TLS is a transport protocol and hence, like TCP and UDP, TLS can be specified as the desired transport protocol within a \header{Via} header field or a SIP-URI. TLS is most suited to architectures in which a chain of trust joins together a set of hosts (e.g. Alice trusts her local proxy server, which in turn trust Bob’s local proxy server, which Bob trusts, hence Bob and Alice can communicate securely).

TLS must be tightly coupled with a SIP application. Note that transport mechanisms are specified on a hop-by-hop basis in SIP, and that in some networks TLS might be used for only certain portions of the signaling path.

It is {\RECOMMENDED} that SIP endpoints support TLS as a secure transport for SIP.
\subsection{SIP Authentication}

\label{sec:security:auth}

SIP provides a stateless challenged-based mechanism for authentication. Any time that a proxy server or user agent receives a request, they {\MAY} challenge the initiator of the request to provide assurance of their identity. Once the originator has been identified, the recipient of the request {\SHOULD} ascertain whether or not this user is authorized to make the request in question. No authorization systems are recommended or discussed in this document.
The ``basic'' and ``digest'' authentication mechanisms described in this section provide message authentication only, without message integrity or confidentiality. Protective measures above and beyond authentication need to be taken to prevent active attackers from modifying and/or replaying SIP requests and responses.

Due to its weak security, the usage of ``basic’’ authentication is

{\NOTRECOMMENDED}. However, servers {\MAY} support it to handle

older RFC 2543 clients that might still use it.
\subsubsection{Framework}

\label{sec:security:auth:framework}
The framework for SIP authentication closely parallels that of HTTP (RFC 2617 \cite{rfc2617}). In particular, the BNF for \header{auth-scheme}, \header{auth-param}, \header{challenge}, \header{realm},

\header{realm-value}, and \header{credentials} is identical. The 401

response is used by user agent servers in SIP to challenge the

identity of a user agent client. Additionally, registrars and

redirect servers {\MAY} make use of 401 (Unauthorized) responses for authentication, but proxies {\MUSTNOT}, and instead {\MAY} use the 407 (Proxy Authentication Required) response. The requirements for inclusion of the \header{Proxy-Authenticate}, \header{Proxy-Authorization}, \header{WWW-Authenticate}, and \header{Authorization} in the various messages are identical to those described in RFC 2617 \cite{rfc2617}.

Since SIP does not have the concept of a canonical root URL, the notion

of protection spaces is interpreted differently in SIP. The realm is a protection domain for all SIP URIs with the same value for the

\header{userinfo}, \header{host} and \header{port} part of the SIP

\header{Request-URI}. For example:

\begin{verbatim}

 INVITE sip:bob@biloxi.com SIP/2.0

 WWW-Authenticate: Basic realm="business"

\end{verbatim}

and

\begin{verbatim}

 INVITE sip:robert@biloxi.com SIP/2.0

 WWW-Authenticate: Basic realm="business"

\end{verbatim}

Generally, SIP authentication is for a specific request \header{Request-URI} and realm, a protection domain. Thus, for basic and digest authentication, each such protection domain has its own set of user names and secrets. If a user agent does not care about different \header{Request-URI}s, it makes sense to establish a ``global'' user name, secret and realm that is the default challenge if a particular \header{Request-URI} does not have its own realm or set of user names (e.g. an INVITE to ‘sip:10.3.6.6’). Similarly, SIP entities representing many users, such as PSTN gateways, {\MAY} try a pre-configured global user name and secret when challenged, independent of the \header{Request-URI}.
\subsubsection{User to User Authentication}

\label{sec:security:auth:u2u}

When a UAS receives a request from a UAC, the UAS {\MAY} authenticate the originator before the request is processed. If no credentials (in the \header{Authorization} header field} are provided in the request, the UAS can challenge the originator to provide credentials by rejecting the request with a 401 (Unauthorized) status code.

The \header{WWW-Authenticate} response-header field {\MUST} be included

in 401 (Unauthorized) response messages. The field value consists of at least one challenge that indicates the authentication scheme(s) and

parameters applicable to the \header{Request-URI}. See [H14.47] for a

definition of the syntax.

An example of the \header{WWW-Authenticate} in a 401 challenge is:

\begin{verbatim}

 WWW-Authenticate: Basic realm="business"

\end{verbatim}

When the originating UAC receives the 401 it {\SHOULD}, if it is able, re-originate the request with the proper credentials. The UAC may require input from the originating user before proceeding. The content of the ``\header{realm}'' parameter of the \header{WWW-Authenticate} header {\SHOULD} be displayed to the user. Once authentication credentials have been supplied (either directly by the user, or discovered in a keyring), user agents {\SHOULD} cache the credentials for a given value of the \header{Request-URI} and ``\header{realm}'' and attempt to re-use these values on the next request for that destination.

Any user agent that wishes to authenticate itself with a UAS or registrar -- usually, but not necessarily, after receiving a 401 response -- {\MAY} do so by including an \header{Authorization} header field with the request. The \header{Authorization} field value consists of credentials containing the authentication information of the user agent for the realm of the resource being requested.

An example of the \header{Authorization} header is:

\begin{verbatim}

 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

\end{verbatim}
When a UAC resubmits a request with its credentials after receiving a

401 (or 407) response, it {\MUST} increment the \header{CSeq} header field as it would normally do when sending an updated request.
\subsubsection{Proxy to User Authentication}

\label{sec:security:auth:p2u}

Similarly, when a UAC sends a request to a proxy server, the proxy server {\MAY} authenticate the originator before the request is processed. If no credentials (in the \header{Proxy-Authorization} header field) are provided in the request, the UAS can challenge the originator to provide credentials by rejecting the request with a 407 (Proxy Authentication Required) status code. The proxy {\MUST} populate the 407 (Proxy Authentication Required) message with a \header{Proxy-Authenticate} header applicable to the proxy for the requested resource.

The use of the \header{Proxy-Authentication} and

\header{Proxy-Authorization} parallel that described in

\cite[Section~3.6]{rfc2617}, with one difference. Proxies {\MUSTNOT}

add the \header{Proxy-Authorization} header. 407 (Proxy Authentication

Required) responses {\MUST} be forwarded upstream towards the UAC

following the procedures for any other response. It is the client's

responsibility to add the \header{Proxy-Authorization} header containing credentials for the realm of the proxy which has asked for authentication.

\motivation{If a proxy were to resubmit a request with a

\header{Proxy-Authorization} header field, it would need to increment

the \header{CSeq} in the new request. However, this would mean that the UAC which submitted the original request would discard a response from the UAS, as the \header{CSeq} value would be different.}

When the originating UAC receives the 407 it {\SHOULD}, if it is able, re-originate the request with the proper credentials. It should follow the same procedures for the display of the ``\header{realm}’’ parameter that are given above for responding to 401.
Any user agent that wishes to authenticate itself to a proxy server -- usually, but not necessarily, after receiving a 407 response -- {\MAY} do so by including an \header{Proxy-Authorization} header field with the request. The \header{Proxy-Authorization} request-header field allows the client to identify itself (or its user) to a proxy which requires authentication. The \header{Proxy-Authorization} field value consists of credentials containing the authentication information of the user agent for the proxy and/or realm of the resource being requested.

A \header{Proxy-Authorization} header field applies only to the proxy whose realm is identifier in the ``\header{realm}’’ parameter
(this proxy may previously have demanded authentication using the \header{Proxy-Authenticate} field). When multiple proxies are used in a chain, the \header{Proxy-Authorization} header field {\MUSTNOT} be consumed by any proxy whose realm does not match the ``\header{realm}’’ parameter specified in the \header{Proxy-Authorization} header.

Note that if an authentication scheme is used in the \header{Proxy-Authorization} that does not support realms, a proxy server {\MUST} attempt to parse all \header{Proxy-Authorization} headers to determine whether or not one of them has what it considers to be valid credentials. Because this is potentially very time consuming in large networks, proxy servers {\SHOULD} use an authentication scheme that supports realms in the \header{Proxy-Authorization} header.

It is also possible that a 401 or 407 response will contain several challenges, from a mixture of proxies and user agent servers, if the request was forked. If at least one user agent responds to a request with a challenge, than a 401 should be used; otherwise a 407 should be used. The response should contain all of the \header{WWW-Authenticate} and \header{Proxy-Authenticate} headers received in responses to the forked request. As a forking proxy server waits to collect responses to a forked message, it {\SHOULD} aggregate all challenges it receives so that they can be transmitted to the user in a single response. When resubmitting its request in response to the challenge, the UAC needs to include an Authorization for each WWW-Authenticate and Proxy-Authorization for each Proxy-Authenticate.
See [H14.34] for a definition of the syntax of \header{Proxy-Authentication} and \header{Proxy-Authorization}.
\subsubsection{Authentication Schemes}

\label{sec:security:auth:scheme}

SIP implementations {\MAY} use HTTP's basic and digest authentication

mechanisms (\cite{rfc2617}) to provide a rudimentary form of

security. This section overviews usage of these mechanisms in SIP. The scheme usage is almost completely identical to that for HTTP

\cite{rfc2617}. This section outlines this operation, pointing to RFC

2617 (\cite{rfc2617}) for details and noting the differences that arise when using SIP. Since RFC 2543 is based on HTTP basic and digest as defined in RFC 2069 \cite{rfc2069}, SIP servers supporting RFC 2617 {\MUST} ensure they are backwards compatible with RFC 2069. Procedures for this backwards compatibility are specified in RFC 2617.
\paragraph{HTTP Basic}

The rules for basic authentication follow those defined in

\cite[Section~2]{rfc2617} but with the words ``origin server'' replaced

with ``user agent server, redirect server , or registrar''.

Since SIP URIs are not hierarchical, the paragraph in

\cite[Section~2]{rfc2617} that states that ``all paths at or deeper than the depth of the last symbolic element in the path field of the

Request-URI also are within the protection space specified by the Basic

realm value of the current challenge'' does not apply for SIP. SIP

clients {\MAY} preemptively send the corresponding \header{Authorization} header with requests for SIP URIs within the same protection realm (as defined above) without receipt of another challenge from the server.

\paragraph{HTTP Digest}

The rules for digest authentication follow those defined in

\cite[Section~3]{rfc2617}, with ``HTTP 1.1'' replaced by ``SIP/2.0'' in

addition to the following differences:

\begin{enumerate}

\item The URI included in the challenge has the following BNF:

\begin{syntax}

URI & = & SIP-URL

\end{syntax}

\item The BNF in RFC 2617 has an error in that the URI is not enclosed

in quotation marks. (The example in Section 3.5 is correct.) For SIP,

the URI {\MUST} be enclosed in quotation marks.

\item The BNF for \header{digest-uri-value} is:

\begin{syntax}

digest-uri-value & = & Request-URI ; \textrm{as defined in Section~\ref{sec:abnf}}

\end{syntax}

\item The example procedure for choosing a nonce based on \header{Etag}

does not work for SIP.

\item The text in RFC 2617 \cite{rfc2617} regarding cache operation does not apply to SIP.

\item RFC 2617 \cite{rfc2617} requires that a server check that the URI

in the request line, and the URI included in the \header{Authorization}

header, point to the same resource. In a SIP context, these two URI's

may actually refer to different users, due to forwarding at some proxy.

Therefore, in SIP, a server {\MAY} check that the \header{Request-URI} in the \header{Authorization} header corresponds to a user for whom that the server is willing to accept forwarded or direct calls.

\end{enumerate}

RFC2543 did not allow usage of the \header{Authentication-Info} header (it effectively used RFC 2069). However, we now allow usage of this header, since it provides integrity checks over the bodies and provides mutual authentication. RFC2617 \cite{rfc2617} defines mechanisms for backwards compatibility using the qop attribute in the request. These mechanisms {\MUST} be used by a server to determine if the client supports the new mechanisms in RFC 2617 that were not specified in RFC 2069.
\subsection{SIP Encryption}

\label{sec:security:encrypt}

No mechanism is currently specified for encrypting entire SIP messages end-to-end for the purpose of confidentiality. This is a hard problem because network intermediaries (like proxy servers) need to view certain headers in order to route messages correctly, and if these intermediaries are excluded from security associations then SIP messages will essentially be unroutable.

That much said, SIP messages carry MIME bodies and the MIME standard includes mechanisms for securing MIME contents to ensure both integrity and confidentiality (including the ‘multipart/encrypted’ MIME type, see \cite{rfc1847}), but detailed description of the use of secure MIME types are outside the scope of this document. Implementors should note, however, that there may be rare network intermediaries (not typical proxy servers) that rely on viewing or modifying the bodies of SIP messages (especially SDP), and that secure MIME may prevent these sorts of intermediaries from functioning. \motivation{This applies particularly to certain types of firewalls.}

End-to-end encryption relies on keys shared by the two user agents

involved in the request. Typically, the message is sent encrypted

with the public key of the recipient, so that only that recipient can

read the message. SIP does not define any mechanism for end-to-end key exchange.
\motivation{Note that the PGP mechanism for encrypting the headers and bodies of SIP messages described in RFC2543 has been deprecated.}

\subsection{Denial of Service}

\label{sec:security:dos}

Denial of service attacks focus on rendering a particular network element unavailable, usually by directing an excessive amount of network traffic at its interfaces. A distributed denial of service attack allows one network user to cause multiple network hosts to flood a target host with a large amount of network traffic.

In many architectures SIP proxy servers face the public Internet in order to accept requests from worldwide IP endpoints. When the host on which a SIP proxy server is operating is routable from the public Internet, it should be deployed in an administrative domain with secure routing policies (blocking source-routed traffic, preferably filtering ping traffic).

SIP creates a number of potential opportunities for distributed denial of service attacks that must be recognized and addressed by the implementors and operators of SIP systems.

Floods of messages directed at proxy servers can lock up proxy server resources and prevent desirable traffic from reaching its destination. There is a computational expense associated with processing a SIP transaction at a proxy server, and that expense is greater for stateful proxy servers that it is for stateless proxy servers. Therefore stateful proxies are more susceptible to flooding than stateless proxy servers.

Attackers can create bogus requests that contain a falsified \header{Via} header field which identifies a targeted host as the originator of the message and then send this message to a large number of SIP network elements, thereby using hapless SIP UAs or proxies to generate denial of service traffic aimed at the target.

Similarly, attackers might use falsified \header{Route} headers in a request that identify the target host and then send such messages to forking proxies that will amplify messaging sent to the target. \header{Record-Route} could be used to similar effect when the attacker is certain that the SIP dialog initiated by the request will result in numerous transactions originating in the backwards direction.

One could prevent one’s host from being commandeered for such an attack by disallowing requests that do not make use of a persistent security association established through a transport or network layer security instrument such as TLS or IPsec. This could be an appropriate security solution for two proxy servers that trust one another and exchange significant amounts of signaling traffic with one another, or between a user agent and its outbound proxy.

Both TLS and IPSec can also make use of bastion hosts at the edges of administrative domains that participate in the security associations to aggregate secure tunnels and sockets. These bastion hosts can also take the brunt of denial of service attacks, ensuring that SIP hosts within the administrative domain are not encumbered with superfluous messaging.

If such a persistent security association is not feasible, user agents and proxy servers {\SHOULD} challenge questionable requests with only a \emph{single} 401 (Unauthorized) or 407 (Proxy Authentication Required) – forgoing the normal response retransmission algorithm. \motivation{Retransmitting the 401 or 407 status response amplifies the problem of an attacker using a falsified header (such as \header{Via}) to direct traffic to a third party.}

A number of denial of service attacks open up if {\REGISTER} requests are not properly authenticated and authorized by registrars. Attackers could de-register some or all users in an administrative domain, thereby preventing these users from being invited to new sessions. An attacker could also register a large number of contacts designating the same host for a given address of record in order to use the registrar and any associated proxy servers as amplifiers in a denial of service attack. Attackers might also attempt to deplete available memory and disk resources of a registrar by registering huge numbers of bindings.

With either TCP or UDP, a denial of service attack exists by a rogue

proxy sending 6xx responses. Although a client {\SHOULD} choose to

ignore such responses if it requested authentication, a proxy cannot

do so. It is obliged to forward the 6xx response back to the client.

The client can then ignore the response, but if it repeats the request

it will probably reach the same rogue proxy again, and the process

will repeat.

The use of multicast to transmit SIP requests can greatly increase the potential for denial of service attacks.

