Some general guidelines:

1. Focus on processing, not on syntax. The spec is very “syntactically oriented”, as it focuses on headers, with processing in many places. Rather, focus on the processing piece. Having sections like “UAC Behavior” that goes through the steps is the best thing

2. Do not duplicate rules! A single piece of behavior should never be described twice. Describe it once, reference it elsewhere if needed. There is tons of redundancy in the spec, much of it inconsistent.

3. Use MUST/MAY/SHOULD!! Statements like “the proxy sends X” are bad. Instead, “The proxy MUST send”. We have had interop issues because of this.

4. When you are done with your sections, please make sure that tables 4/5 are correct and reflect reality!

5. Explain the motivation for things that might be confusing – understanding why helps people get things correct. Don’t be afraid to add examples and tutorials throughout the document.

6. Whenever the grammar does not allow implicit LWS, you must explicitly note that with a statement like “The grammar for XXX does not allow for implicit LWS, as discussed in Appendix C”. This is the case for the sip url, and the request and status lines at least. Might be others. Please check carefully in your section whether this applies.

7. Whenever the syntax defines something as case sensitive, include a consistent piece of text which labels it as such, and mention that this is different from the general rule of insensitivity as defined in XXX – “The value of foo is case sensitive, making it an exception to the general rule described in Section XXX”.

8. Use common actors in examples – alice and bob, with the same urls. (Robert will do, and email around first)
1. Introduction

Editor: Jon
Basic problem statement
½ page
2. Overview of Functionality

Editor: Gonzalo

Most of section 1.1. Possibly some rewording and additional context.

Include additional text emphasizing that SIP is a component, not a vertically integrated communications systems. Convey some of the philosophy: generality, don’t standardize services, standardize primitives. Reuse existing IP protocols. Define logical elements only.
½ page to a page
3. Terminology

Henning is editor.

Section 1.2

4. Overview of Operation

Editor: Alan

Tutorial style overview of sip operation, with forward references to

sections that give more details. Roughly two to three pages in

length. This has to be really good, and easy to understand for a sip novice. Avoid the deep dives. Just the bigger picture. No MUST MAY or SHOULD in this section. Explicitly state that it is not normative.

Description of the SIP trapezoid, usage of that as the baseline picture for discussions in the document.

Emphasize logical elements as opposed to physical ones (bottom parts of section 1.4)

Use REGISTER + INVITE/BYE through the trapezoid as the canonical example for this tutorial.

Need to talk about that its more than setting up – can send other requests besides INVITE to facilitate communications.
Simple example request and response, hopefully should be correct and complete.
Pieces of section 1.4.4. Update those old pictures to the trapezoid model though.

Pieces of 1.4.5

Pieces of 1.4.6

Pieces of 1.4.7.

End result should be a coherent overview of operation.

DISCARD section 1.5. It says next to nothing and has caused confusion.
2-3 ppg
5. Definitions
Editor: Henning

Section 1.4 definition pieces only.

I think Table 1 is confusing and should be removed. Rather, more rigorous definitions of these logical elements will happen below. Some of the sources of confusion: proxy “accepts” ACK – what does that mean? It proxies some ACKs, absorbs some others. Depends on a bunch of things.

6. SIP URL

Editor: Robert
Section 1.4.1. Need to improve this text. Better align discussion with rfc2396. Define a SIP URL as “identifying a communications resource” or some other such thing.

Section 2. Need to better define which characters need to be escaped in which components, since this is not defined.

In discussion of user, note that user alone can’t be empty. In discussion of telephone subscriber, need not be a host of a telephony gateway. In discussion of host, update to include Ipv6. Meaning of SHOULD is not clear there.

Go through table 2 and make sure its right. Table 2 also repeats things described in text above. Remove that text from above, so that the constraints are in one place only.

Section 2.1.

Delete section 2.2. Constraints on URLs for these places are described elsewhere.

7. SIP Message Syntax

Editor: Robert
(section 3)

Need to rework the text on message limits. We never concluded the open issue discussion on minimum sizes.
Strictly syntactic normative text.
Things like folding, explicit LWS, comma/multipl eheader issues, etc. General syntax issues.
Any BNF is for explanatory purposes only (general header structure)
7.1. Requests

Section 4.2, 4.3. Remove the stuff in 4.2 about proxy treament of requests being method independent. That should rather go in the section on proxy behavior, not in a syntax section. Remove the stuff in 4.3 about proxy removing of transport params that shouldn’t be there. Remove motivational text on top of page 17, its also out of place. This should rather belong in the sections on proxy processing and routing. Include 4.3.1 here.

7.2. Responses

Section 9. Section 9.1.1. Need to cleanup section that talks about required codes – there are some status codes that MUST be understood, I think, so the blanket statement “SIP response codes are extensible. SIP applications are not required to understand the meaning of all

registered response codes, though such understanding is obviously desirable.” Is dangerous at best. Better wording is needed here, along with consistency checks to verify that this is or isn’t true.

7.3. Header Fields

Start with section 10.5. Clarify line folding, esp. in terms of being an instance of the usage of implicit LWS. Define or remove the bit about “http common form”. Clarify multiple header names and comma separated lists, give an example of it. Clarify that implementations MUST understand both. More detail on case sensitivity – i.e., what are parameter names, values? Give examples. The bit about <> for To, From, Contact is out of place, and belongs in the contact section first, with much more detail, and an example. From/To should then reference the section on Contact about that.

Next is 10. Followed by pieces of 10.1, 10.2, 10.3, 10.4, although I think its useful to drop the distinction between the header types. The statements on extensibility make no sense, as nothing else in the specification backs up or provides more detail on what this means.

Next is section 13. Remove bit about authorization header, since that usage is deprecated.

7.4. Bodies

Section 12.1, 12.2, 12.3. Remove all references to specific semantics in the usage within various requests and responses. Just general statements like “CANCEL MUSTNOT contain bodies. Other requests MAY, responses MAY.” Etc. More detail on multipart.

7.5. Option Tags

Section 4.4 verbatim.

8. Locating a SIP Server
Editor: Henning

Section 1.4.2.

Section 14.5 is inconsistent with SRV procedures, otherwise would go here?

9. SIP Transaction Model

Editor: Jonathan Rosenberg

“Client Transaction” (CT)

“Server Transaction” (ST)

Both run state machines. Include some of text from 1.4.3 which defines transactions.

9.1. Client Processing

Receive request from upper layer.

Any via header addition/modification? Maybe maddr? Setting of sent-by? Branch-id needs to be set by higher layer.

Perform dns/searching functions.

Follow state machine. Will generate provisional and/or final results that are passed up.

Add picture:

 Please view in a fixed-width font such as

 Courier.

 request +---------+

 --------->| |

 | |

 | |

 higher zero+ | | network

 layer provision | CT |

 <---------| |

 | |

 <---------| |

 1 non-2xx +---------+

 or 1+ 2xx

Describe how responses are matched to appropriate client machine instance. Be sure to talk about tag case – if request has tag, look for tag in response. If request had no tag, ignore tag in response. Provide implementation suggestions?

Generation of ACK for non-2xx happens at this layer. Describe construction of this ACK. Take non-2xx pieces of section 5.1

503 handling here? (bug 128)

Via processing – section 10.46.1

CANCEL processing in the case of multicast requests (ie, send CANCEL after final response) from 14.1. Does that go here? SIP multicast anyway is fubar really, lots of odd things in there. I wonder if that’s not another thing for the deprecation list…

(Unify UDP and TCP machines (TCP = UDP with infinitely long T1)

These machines should all have consistent states, a clear end state at which the transaction can be destroyed.) Clarify that there is a difference, since its been separate in rfc2543.
9.1.1. Non-INVITE State Machine

Reliability rules of 14.3.1

9.1.2. INVITE State Machine

Update motivcation of 14.4 its out of date.

Reliability rules of 14.4.1 for client. Lots of the text in 14.4.1 is old, wrong, and doesn’t belong here (things like contact usage, which elements send which message)– keep the text that deals with the reliability and state machine processing.

9.2. Server Processing

Similar picture to above – server side receives requests, delivers a single one to higher layer. Receives provisional responses from higher layer and sends them. Sends one final response, reliably sends that, or transparently forwards 2xx responses received from higher layer in the case of INVITE. ACK for non-200 is aborbed; ACK-200 is forwarded up.

Detecting retransmissions.

Matching ACK to a transaction.

Via – 10.46.2 for incoming requests

Via – 10.46.4/5 unified now

Sending responses via multicast – pieces of 14.1. Multicast specifics should be specified here so the basic processing is transport independent. This means that the higher layer may request a response to be sent, but it actually won’t be sent by the server transaction since its multicast.

9.2.1. Non-INVITE State Machine

14.3.1 rules for server

9.2.2. INVITE State Machine

14.4.1 rules for server

9.3. Connection Management

When its time to send a request, find a connection. Basic algorithm is to look up destination ip/port/transport in a table of stored connections. Use an existing connection if found. When a TCP connection is created for a new transaction, MUST be stored for lifetime of transaction. MAY be stored longer, allowing persistent connections. Section 1.4.3 has some relevant text here.

Connection management text from 14.2.

10. General UA Higher layer Processing

Editor: Jon
Now that UA is modeled as “higher layer” piece plus CT/ST, describe some basic guidelines on the higher layer piece that are applicable across all methods. Need better terms for this “higher layer” piece.

Emphasize thes rules apply for all methods.

10.1. UAC HL Processing

Include to, from, call-id, cseq. Section 10.25 on request usage.

r-uri equals the to field in general, unless needed otherwise (register)

10.2. UAS HL Processing

Require processing/420 (Section 10.35)

Content processing – inspection of content type, content-encoding, generate 415

Method inspection – 405 if not known

Authentication – see section XXX for details.

General use of redirection. Formal definition of a redirect server. Section 10.14 redirect contact processing.

General construction of responses – copying to, from, called, cseq into response. Copy via. Section 10.25 on From response processing.

Big idea: when a proxy responds, it’s a UAS. A redirect server is a UAS also. Thus, they follow this section.

11. Registrations

Editor: Jon Peterson
11.1. Overview of usage

Defined as a binding operation, so that routing rules can be installed in the “location service” for registrations at a proxy. Mention that this location service can be anything, possibly not co-located with proxy, possibly shared (which will be needed for fault tolerance) Discuss most common case, right side of trapezoid. Mention configuration requirements and issues. Discuss basic primitives – add contacts, remove contacts, fetch contacts, and what they are for, and how each is done. Discuss the fact that they are soft state, need to be refreshed. Briefly overview the expires negotiation algorithm.

11.2. Construction of REGISTER request

· First, follow general UAC higher layer guidelines, but a few exceptions as noted here

· Bits of 10.12 on call-id – probably must be the same within a reboot cycle to handle misordering?

· Parts of 7.3, 7.2

· Contact usage in register from 10.14

· Action param/expires from 10.14

· Strike all the stuff on visitors, as this is changing with new source routing stuff and there is much more to the problem than this

· Setting of Expires, both as header and contact param – when to use each.

· Pass to CT

11.3. Processing of REGISTER at the Registrar

Formal definition of a registrar. Logical entity that responds to a register request, storing the information about registrations in a DB that is accessible to the proxy for the domain. May or may not be co-located with proxy.

· Current text is awful in this regard. Basic flow is:

· Authenticate

· Determine if authenticated user is authorized for request

· Find user of To field (be sure to talk about proper URL comparison – i.e., use the whole URL as the index!!!!)

· For each contact in register message,

· Find matching contact in DB for user in To

· If a match, update expiration time, append/set any new contact params to entry in DB, even unknown ones, including q

· If no match, add contact, set expiration time, set contact params

· Remove any contacts that expire now

· Generate response. To do that, include all registered contacts for that user, if any.

· Mention failure cases – 409 for action mismatch (did we decide to ditch it? I don’t even remember), 404 if user in To is not valid in the domain

11.4. UAC Processing of REGISTER response

· determine when to refresh – find your contact in the 2xx (how to easily do this, btw? URL comparison? Could include a cookie in the contact header, and get it back in the 2xx?) get the expires, send before then

12. Querying for Capabilities

Editor: Alan
Discuss the point – to query for capabilities. Discuss forking limitations.

12.1. Construction of OPTIONS Request

12.2. Process of OPTIONS request

Allow, Supported, Accept, etc. are added to response.

SDP describing capabilities in response. ?how is this structured? Separate spec for it? Appendix?

Contact insertion from 10.14.

13. Proxy Behavior

 (discard 17.1, 17.2)
Editor: Robert
13.1. Overview

Formal definition of a proxy.

Primary function is routing. Method independence. When responding, follow the rules for UAS. Stateless vs. stateful from Section 17.3. Text in 17.3 on b2bua can go. We now have a more correct definition – a stateful proxy is a server transaction plus one or more client transactions glued together with a proxy processing component:

Please view in a fixed-width font such as Courier.

 +--+

 | C|

 | l|

 | i|

 | e|

 | n|

 +-t+

 +----------------------+ +---+

 | | | C |

 +--+ | | | l |

 | | | | | i |

 | | | Proxy | | e |

 | S| | "higher" layer | | n |

 | e| | | +-t-+

 | r| | |

 | v| | |

 | e| | |

 | r| | | +---+

 | | | | | |

 | | | | | C |

 | | | | | l |

 +--+ +----------------------+ | i |

 | e |

 | n |

 | t |

 | |

 +---+

Focus on the fact that it is a transaction processing engine. Define it as a server transaction, a proxy processing component, and 1 to N client transactions depending on routing/forking decisions.

New text below unifies stateless and stateful proxying, noting the differences in the sections where relevant. Mostly these have to do with the non-existence of server and client transactions.

A logical proxy always proxies. If your network element rejects, it acts as a uas for the purposes of that transaction. Thus everything below from “making a routing decision on” is about proxy.

Processing steps:

Check for the existence of a matching ST based on above rules. If none, create one if you are a stateful proxy, pass request to it. If one exists, pass request to it. Now, ST will pass up to proxy a new request possibly. By referencing the usage of the ST machine above, you eliminate the need for describing retransmit, non-2xx ACK behaviors here. Therefore,sections 17.3.4, 17.3.5 aren’t needed.

For new request from ST, or any request for stateless:

Validation

Routing decision.

For each output of the routing decision:

 Request processing

As responses arrive, response processing

Define a “higher layer proxy processing context” – basically the state machine that is associated with the response processing and best response selection. It has the output of the routing decisions as its state. Define a key for it – to/from/call-id/cseq/r-uri but NOT top via. Needed for cancel correlation below.

13.2. Request Validation

Don’t reject a request if it has invalid header fields that you don’t care about.

Max-Forwards checks (section 10.27)

Via loop detection checks.

Merged request processing ?

Proxy-Require processing (section 10.33)

Proxy-autentication – reference later section

17.3.1 on loop detection.

If all is OK, generate 100 response. Then, go to next section.

13.3. Making a Routing Decision

Compute a set of destinations – route header processing (section 16.5), local outbound processing, otherwise talk about abstract location service, how routing can be flexible, based on lots of headers, etc. Once a destination set is computed, section “Request Processing” below is followed. A proxy can create new destinations at any time before sending a final response to the request (this would then cover parallel, sequential, or any other variants). Don’t add a destination you’ve already sent to (need to specify comparison rule for that)

Support for non-sip r-uri.

R-uri processing from section 4.3 – proxy or 404 requests that aren’t yours.

Recommended q value processing?

13.4. Request Processing

Decrement m-f

Record-route

Via processing, 10.46.6 proxy rules – make sure this text works in the model of separated transaction from proxy logic.

Update request URI to new target, if needed (17.3.1), can also add/remove headers (17.3.1).

For stateful proxies, create a CT machine, and pass request to it to send. For stateless, just send it using dns procedures from “Locating sip server” above

13.5. Response Processing

Take response, find matching client transaction, apply those procedures from client transaction. If no match is found, if top via doesn’t match the server at all, discard (17.3.2). Else, pop top via, send to next via. This includes all responses, including informational (17.3.3)

If match was found:

Removal of top via (Section 10.46.3)

Selection of best response (section 17.4). Ditch the C code? Its confusing and mixes lots of stuff in there. Ditch discussion from 17.4 on contact/RR.

Be clear on invite vs. non-invite

Aggregation of proxy-auth, www-auth if needed. ?does this merging need to occur for other response codes?

To send response, pass to ST machine if exists, else send.

Recursion (or more generally, can add a new destination at any time, see above)

Generation of cancel – describe conditions (2xx, 6xx), and then refer to section below on how to generate and send

17.3.6 should no longer be needed.

13.6. CANCEL Processing

CANCEL remains kind of ugly for proxy, as even though it’s a separate CT/ST model, the higher layer processing is coupled with the transaction being cancelled. Need to be clear on that.

Basic processing:

Find associated higher layer processing by constructing key

If none exists, re-run routing decision as if this were a non-invite

If you find a higher layer context that matches key, then:

 Create new cancel, copy specific fields – to/from/call-id/cseq (10.20 on cseq in cancel)

 For each routing decision in existing context that hasn’t generated a final response, add r-uri for that destination to cancel, and send to a CT.

Set timeout for final response to original transaction

Proxy generates its own final response to CANCEL, doesn’t wait for final response from upstream (next to last paragraph, 14.3.1)

Proxy pieces of section 5.2

Does this belong here? INVITE specific depending on list discussion….

14. Initiating a Session

Editor: Gonzalo
14.1. Overview

Send invite, will get provisionals, one final or multiple 2xx. Must generate ack for each 2xx. There is a call machine for client and server, which we should document – emphasize that this is the minimal machine. Distinction between call and call leg should be discussed here.

14.2. Caller Processing

14.2.1. Creating the initial INVITE

Which headers need to be there, what they are for. Generation of Contact header, and its role in

INVITE (from 10.14). Generation of Call-ID, and its role. Parts of section 10.12. Initial Call-iD must be random.

Choosing the initial

Cseq (10.20). Place offer if you want into body. Inclusion of supported, accept, etc. Subject header, mention some other relevant headers for invite.

Text from 15.1 on initial INVITE.

Fold in the first few paragraphs of 5.1, but change these to convey the offer/answer model that we now have. Mention that offer/answer might be within a multipart – look for content-disposition headers.

Send to CT.

Mention that it will be proxied, arrives at ST of UAS.

14.2.2. Processing INVITE responses

Establishment of Call Legs. Make sure multiple 2xx case is covered, describes creation of multiple call legs. Section 15.3.

1xx/2xx with tag, rr headers. Storage of rr/cseq. Record-route processing from 16.1. Cseq processing in 2xx from 10.20.

Generation of ACK for 2xx responses (the 2xx sections of 5.1). Contact header (10.14).

Emphasize that retrasmissions of ACK on each 2xx are handled by UA only.

14.3. Callee Processing

14.3.1. UAS higher layer processing of INVITE

Run generic stuff above for uas (require, auth, etc.), some of 15.2

Check for initial vs. re-INVITE (to tag). Discussion from 15.5 on this subject. This section is for initial INVITE.

If new, check if this request is really for me. To do that, look at r-uri. Whether to accept or not is a policy decision. Generally, SHOULD accept requests with r-uri that match registered contacts or address of record. This supercedes the text on top of page 29, section 5.1 that talks about gateways vs. ua’s accepting of invite depending on type of URL.

Paragraph of 10.12 that talks about invites to existing conferences with different call-id. Emphasize that this is really multicast only.

Generate response; provisional responses should have tags/rr

Final response once known – provide some guidelines on typical responses – 486 for example.

If 2xx, mention offer/answer, tags/rr inclusion, accept, supported, allow, etc.. Section 16.2., 15.2

Periodically send 2xx to ST machine.

Processing of ACK-200 to stop retransmission.

Update contact header for route set

15. Mid-Call Requests

Editor: Gonzalo
General principles – updating of Cseq. Non-overlapping non-INVITE.

Can send anything you can send outside of a leg as well, semantics are unchanged.

Route construction issues of 16.4. Local outbound proxies, 16.4.

Rejecting mid-call out of order requests from 10.20

Matching a mid-call request to an existing leg, using to/from/call-id with tags. Some text in 10.25 on this goes here, also some text from 15.5.

Section 15.4 mostly goes here.

16. Modifying an Existing Session

Gonzalo
16.1. UAC Behavior

Formulating re-INVITE. Follow procedures above for mid-call – same called, cseq increment.

Section 16.4 on UAC rules specific for INVITE processing – updating of contact in route set.

16.2. UAS Behavior

Request glare processing, from section 5.1 plus more details.

Never send 3xx to re-invite

Overlapping INVITE rules – can (or cannot?) send an INVITE while one is in progress on the same call leg.

Middle paragraphs of page 29, section 5.1 that deal with re-invite.

Parts of second paragraph of 10.12 on silent acceptance.

Section 16.4 on UAS processing specific to invite – update of contact in route set.

17. Terminating a Session

Gonzalo
Use CANCEL before a leg has been established, either an early leg or a final leg. Text from 15.1 on this subject.

17.1. Cancelling an INVITE

17.1.1. UAC Behavior

Relevant pieces of 5.2. Once cancel is constructed, sent to CT. It is its own transaction. Cseq pieces from 10.20

17.1.2. UAS Behavior

Relevant pieces of 5.2.

17.2. Terminating a Leg with BYE

17.2.1. UAC Behavior

Relevant pieces of section 6. Mention the BYE/200 race condition.

17.2.2. UAS Behavior

Relevant pieces of section 6. BYE/200 race condition.

18. Security

Jon Peterson
18.1. Transport Security

TLS vs IPSec? Describe usage cases

18.2. SIP Authentication

18.2.1. Framework

Stateless challenge based mechanism.

Section 19.1

18.2.2. User to User Authentication

Describe 401/ retry

18.2.3. Proxy to User Authentication

Section 10.32.

Aggregation of challenges in proxies

18.2.4. Authentication Schemes

18.2.4.1. HTTP Basic

Section 19.2

18.2.4.2. HTTP Digest

Section 19.3

18.3. SIP Encryption

?? anything? With PGP gone, we have nothing to say here…?

18.4. Denial Of Service Attacks

Enumerate them, and preventive measures. Lots of work needed here.

19. Header Fields

Alan Johnston

notes on header fields with examples. Overview of the fact that all headers are of a general form with comma separated values and parameters, some can have muliple values, some can have parameters. Descriptions below should talk about that. Be sure to move as much of the semantics out of this section, into the sections above.

19.1. Alert-Info

More detail needed. Security implications need to be discussed.

19.2. Allow

19.3. Authorization

19.4. Call-ID

Strike second paragraph.

Move third paragraph to INVITE processing.

Strike matching stuff – its elsewhere.

This section should focus on the syntax, global uniqueness, short form. General definition as a correlation identifier, for calls, registrations, etc.

19.5. Call-Info

More details needed here on usage. We probably need an IANA procedure for registering tokens. Security issues should be discussed here. Stress the importance of this header for converged applications. Other uses include things like monitors of call duration remaining.

This can be in INVITE or in other methods – mention mid-call uses in INFO.

19.6. Contact

Did we decide to keep contact usage in 4xx, etc.? I seem to recall a separate header proposed for this.

Move much of this section to the relevant sections above on INVITE, contact, etc.

19.7. Content-Disposition

19.8. Content-Encoding

19.9. Content-Language

19.10. Content-Length

19.11. Content-Type

19.12. Cseq

Move much of this into sections above.

19.13. Date

19.14. Encryption

Does this get deleted?

19.15. Error-Info

Do we need contact in 4xx if we have this?

Need more information here on recommended semantics of this header.

19.16. Expires

Move the register related stuff to the registration section.

Deprecate usage in INVITE? If not, move to above section on INVITE construction.

19.17. From

First paragraph moves to “General UA Higher layer Processing” section above.

19.18. In-Reply-To

A bit more detail needed here.

19.19. Max-Forwards

Copy most of this section to proxy processing section. Just do syntax here.

19.20. MIME-Version

19.21. Organization

19.22. Priority

No semantics are associated with this. We should explicitly state that. If its not true, we need to define those semantics.

19.23. Proxy-Authenticate

Need more detail on caching of credentials, which anyway belongs elsewhere depending on how the caching is done.

19.24. Proxy-Authorization

Move to section on http auth.

Bug 189.

19.25. Proxy-Require

Move text to Proxy request validation section.

19.26. Record-Route

19.27. Require

Move semantics to UAS HL processing

19.28. Response-Key

If the sip security stuff is being reworked, this should probably be removed.

19.29. Retry-After

Move semantics to above somewhere.

Bug 191.

19.30. Route

19.31. Server

Need to define some additional semantics – what do you do with it?

19.32. Subject

Define semantics better.

Need a better example. “tune in” is reminiscent of the old multicast days…

19.33. Supported

Remove the SHOULD, reference sections above with relevant text.

19.34. Timestamp

Bug 71.

19.35. To

19.36. Unsupported

19.37. User-Agent

19.38. Via

This text gets spread around. Just the syntax remains here.

19.39. Warning

19.40. WWW-Authenticate

20. Response Codes

Alan

Mostly the same.

21. Examples

Alan

Section 20. Should review the examples to make sure they provide sufficient coverage. Some obvious missing ones are an authentication example.

22.

23. Collected BNF
Editor: Brian Rosen
Appendix C
BNF for the headers
Explicit LWS! Use the new official syntax (rfc2234)
24. IANA Considerations

Editor: Jon
Appendix D.

