\newif\ifmulticast

\global\multicasttrue

\section{Proxy Behavior}

\label{sec:proxy}

\subsection{Overview}
\label{sec:proxy-overview}
SIP proxies are elements that route SIP requests to user agent servers

and SIP responses to user agent clients. A request may traverse several

proxies on its way to a UAS. Each will make routing decisions,

modifying the request before forwarding it to the next element.

Responses will route through the same set of proxies traversed by the request in the

reverse order.

It is important to note that being a proxy is a logical role for a SIP element.

When a request arrives, an element that can play the role of a proxy

must first decide if it needs to respond to the request on its own. For

instance, the request could be malformed

or the element may need credentials from the client before acting

as a proxy.

The element {\MAY} respond with any appropriate error code.

When responding directly to a request, the element is playing the role of a UAS and

{\MUST} behave as described in

Section~\ref{sec:general:req-process}. %Spaces count in labels :(

A proxy can operate in either a stateful or stateless mode for

each new request.

When stateless, a proxy acts as a simple forwarding element.

It forwards each request downstream to a single element determined

by making a routing decision based on the request. It simply
 forwards every response it receives upstream. A stateless proxy
 discards information about a message once it has been forwarded.

On the other hand, a stateful proxy remembers information (specifically, transaction state) about each

incoming request and any requests it sends as a result of processing

the incoming request. It uses this information to affect the processing of future messages

associated with that request. A stateful proxy {\MAY} chose to ``fork''

a request, routing it to multiple destinations. Any request that is forwarded to more than one location {\MUST} be handled statefully. Any request processed using TCP (or any other mechanism that is inherently stateful), {\MUST} be handled statefully.
Much of the processing involved when acting statelessly or statefully

for a request is identical. The next several subsections are written from

the point of view of a stateful proxy. The last section calls out those

places where a stateless proxy behaves differently.

\subsection{Stateful Proxy}
\label{sec:proxy-stateful}

When stateful, a proxy is purely a SIP transaction processing engine.

Its behavior

is modeled here in terms of the Server and Client Transactions

defined in Section~\ref{sec:transactions}.%(Jonathan's first section)

A stateful proxy has a server transaction associated with one or more

client transactions by a higher layer proxy processing component (see

figure~\ref{fig:statefulproxymodel}), known as a proxy core. An incoming request is processed by

a server transaction.

Requests from the server transaction are passed to a proxy core.

The proxy core determines

where to route the request, choosing one or more next-hop locations.

An outgoing request for each next-hop location is processed

by its own associated client transaction. The proxy core
collects the responses from

the client transactions and uses them to send responses to the server transaction.

A stateful proxy creates a new server transaction for each new request

received. Any retransmissions of the request will then be handled by

that server transaction per Section~\ref{sec:transactions}.

Note that this is a model of proxy behavior, not of software. An

implementation is free to take any approach that replicates the

external behavior this model defines.

\txtpsfigsize{!}{!}{statefulproxymodel}{Stateful Proxy Model}

For all new requests, including any

with unknown methods, an element intending to proxy the request {\MUST}:

\begin{enumerate}

\item{Validate the request}
(Section~\ref{sec:proxy-request-validation})

\item{Make a routing decision}
(Section~\ref{sec:proxy-routing-decision})

\item{Forward the request to each chosen destination} (Section~\ref{sec:proxy-request-processing})

\item{Process all responses}
(Section~\ref{sec:proxy-response-processing})

\end{enumerate}

\subsection{Request Validation}

\label{sec:proxy-request-validation}

Before an element can proxy a request, it {\MUST} verify the

message's validity. A valid message must pass the following

checks:

\begin{enumerate}

\item Reasonable Syntax

\item Max-Forwards

\item Loop Detection

\item Proxy-Require

\item Proxy-Authorization

\end{enumerate}

If any of these checks fail, the element

{\MUST} behave as a user agent server

(see Section~\ref{sec:general:req-process})

and respond with an error code.

\begin{enumerate}

\item Reasonable Syntax check

The request {\MUST} be well-formed enough to be handled with a

server transaction. Any components involved in the remainder

of these Request Validation steps or the Request Processing

section {\MUST} be well-formed. Any other components,

well-formed or not, {\SHOULD} be ignored. For instance,

an element {\SHOULDNOT} reject a request because of a malformed

\header{Date} header field.

This protocol is designed to be extended. Future extensions

may define new methods and header fields at any time.

An element {\MUSTNOT} refuse to proxy a request because it

contains a method or header field it does not know about.

\item Max-Forwards check

The \header{Max-Forwards} header

(Section~\ref{sec:Max-Forwards})

is used to limit the number

of elements a SIP request can traverse.

If the request does not contain a \header{Max-Forwards} header

field, this check is passed.

If the request contains a \header{Max-Forwards} header field with

a field value greater than zero, the check is passed.

If the request contains a \header{Max-Forwards} header field with

a field value of zero (0), the element {\MUSTNOT} forward the

request. If the request was for {\OPTIONS}, the element {\MAY}

act as the final recipient and respond per

Section~\ref{sec:query-for-capabilities}.
Otherwise, the element {\MUST} return a 483 (Too many

hops) response.

\item Loop Detection check

\label{sec:loop-detection}

An element {\MUST} check for forwarding loops before forwarding a

request.

If the request contains a \header{Via} header field value with

A sent-by value that equals a value placed into previous requests by the proxy, the request has been forwarded

by this element before. The request has either looped or is

legitimately spiraling through the element.

To determine if the request has looped, the element

{\MUST} perform the \header{branch} parameter calculation

described in Section~\ref{sec:proxy-request-processing-via}

on this message and compare it to the parameter received in

that \header{Via} field value.

If the parameters match, the request has looped. If they

differ, the request is spiraling, and processing continues. If a loop is detected,

the element {\MUST} return a 482 (Loop Detected) response.

\ifmulticast

An element {\MUSTNOT} forward a request to a multicast group which

already appears in any of the \header{Via} headers.

\fi

\item Proxy-Require check

Future extensions to this protocol may introduce features

that require special handling by proxies. Endpoints will

include a \header{Proxy-Require} header in requests that

use these features,

telling the proxy it should not process the request

unless the feature is understood.

If the request contains a \header{Proxy-Require} header

(Section~\ref{sec:Proxy-Require})

with one or more option-tags this element does not understand,

the element {\MUST} return a 420 (Bad Extension) response.

The response {\MUST} include an \header{Unsupported}

(Section~\ref{sec:Unsupported}) header field listing those

option-tags the element did not understand.

\item Proxy-Authorization check

If an element requires credentials before forwarding a request,

the request {\MUST} be inspected as described in

Section~\ref{sec:security:auth:p2u}.

That section also defines what the element must do if the

inspection fails.

\end{enumerate}

\subsection{Making a Routing Decision}

\label{sec:proxy-routing-decision}

At this point, the proxy must decide where to forward the request.

This can be modeled as computing a set of destinations for the request.

This set will either be predetermined by the contents of the request

or will be obtained from an abstract location service. Each destination

is represented as a URI and an optional IP address,

port and transport. This combination is

referred to as a ``next-hop location''.

First, the proxy core checks the received request for \header{Route} headers. If any \header{Route} header fields are present in the request, the

element {\MUST} use the URL (including all of its parameters) from

the topmost Route header field as only next hop URI in the destination set, with no IP address, port and transport set for that next hop. The destination

set is complete, containing \textbf{only} this URL, and the proxy

{\MUST} proceed to the Request Processing of
Section~\ref{sec:proxy-request-processing}.

% Robert – I reorganized this a bit since there are really two

% separate forwarding decisions – one is the next hop IP, and

% the other is the next hop URI. You can choose different

% next hop Ips even though the URI is obtained from the route header.

% So, I model the location service as providing the next hop uri,

% and discuss selection of the next hop ip (through DNS or outbound)

% in the subsections below on sending.

The \header{Route} mechanism is used to control the path a request takes through SIP

elements, much like strict IP source routing. The UAC will insert
\header{Route} header fields (see Section~\ref{sec:dialog}), usually based on information

provided by proxies through \header{Record-Route} header fields (see

Section~\ref{sec:proxy-request-processing-record-route}).
Assuming there were no \header{Route} headers in the received request, the proxy checks the \header{Request-URI} of the received request. If it has an maddr parameter, and that parameter does not indicate an interface the proxy is listening on, the \header{Request-URI} {\MUST} be placed into the destination set as the only next hop URI, with no IP address, port and transport set for that next hop, and the proxy {\MUST} proceed to Section \ref{sec:proxy-request-processing}. If the maddr parameter was present, but did indicate an interface the proxy is listening on, the proxy {\MUST} strip the maddr and continue processing as if no maddr were present.

\motivation{OPEN ISSUE \#213: Do we strip just the maddr, or the port and transport as well?}
If the domain of the \header{Request-URI} indicates a domain this element

is not responsible for, it {\SHOULD} set the next hop URI to the \header{Request-URI}, and leave the IP address, port and transport of the next hop empty. That next hops {\MUST} be placed into the destination set as the only next hop, and the element {\MUST} proceed to the

task of Request Processing (Section \ref{sec:proxy-request-processing}.

\motivation{

There are many circumstances in which a proxy might receive a request for

a domain it is not responsible for. A firewall proxy handling outgoing

calls (the way HTTP proxies handle outgoing requests) is an example of where

this is likely to occur.

}

If the destination set for the request has not been predetermined

as described above, this implies that the element is responsible for the domain in the \header{Request-URI}, and
the element {\MAY} use whatever mechanism it desires to determine

where to send the request. Any of these mechanisms can be modeled as

accessing an abstract Location Service. This may consist of obtaining

information from a location service created by a SIP Registrar, reading a database, consulting a

presence server, utilizing other protocols, or simply performing an

algorithmic substitution on the \header{Request-URI}. The output of these

mechanisms is used to construct the destination set.

Any information in or about the request or the current environment of

the element {\MAY} be used in the construction of the

destination set. For instance, different sets may be constructed depending

contents or presence of header fields and bodies, the time of day

of the request's arrival, the interface on which the request arrived,

failure of previous requests, or even the element's current level of utilization.

As potential destinations are located through these services, their

next hops are added to the destination set. Next-hop locations may only be placed in the

destination set once. If a next-hop location is already present

in the set (based on the definition of equality for the URI type

and equality of the optional parameters), it {\MUSTNOT}

be added again.

A proxy {\MAY} continue to add destinations to the set after beginning

Request Processing. It {\MAY} use any information obtained during that

processing to determine new locations. For instance, a proxy may choose

to incorporate contacts obtained in a redirect response (3xx class)

into the destination set. If a proxy uses a dynamic source of information while building the destination set (for instance, if it consults a SIP Registrar), it {\SHOULD} monitor that source for the duration of processing the request. New locations {\SHOULD} be added to the destination set as they become available. As above, any given URI {\MUSTNOT} be added to the set

more than once.

\motivation{Allowing a URI to be added to the set only once reduces

unnecessary network traffic, and in the case of incorporating contacts

from redirect requests prevents infinite recursion.}

An example trivial location service is achieved by configuring an

element with a default outbound destination. All requests are forwarded

to this location. The \header{Request-URI} of the request is placed in

the destination set with the optional next-hop IP address, port and transport parameters set to the

default outbound destination. The destination set

is complete, containing \textbf{only} this URI, and the element proceeds to the

task of Request Processing.

If the \header{Request-URI} indicates a resource at this proxy that does

not exist, the proxy {\MUST} return a 404 (Not Found) response.

If the destination set remains empty after applying all of the

above, the proxy {\MUST} return an error response, which

{\SHOULD} be the 480 (Temporarily Unavailable) response.

\subsection{Request Processing}

\label{sec:proxy-request-processing}

As soon as the destination set is non-empty, a proxy {\MAY}

begin forwarding the request.

A stateful proxy

{\MAY} process the set in any order. It {\MAY} process multiple

destinations serially, allowing each client transaction

to complete before starting the next. It {\MAY} start client

transactions with every destination in parallel. It also

{\MAY} arbitrarily divide the set into groups, processing

the groups serially and processing the destinations in

each group in parallel.

A common ordering mechanism is to use the qvalue parameter

of destinations obtained from Contact header fields (see

Section~\ref{sec:Contact}). Destinations are processed from

highest qvalue to lowest. Destinations with equal qvalues

may be processed in parallel.

A stateful proxy must have a mechanism to maintain the destination

set as responses are received and associate the responses

to each forwarded request with the original request. For the purposes

of this model, this mechanism is a ``response context'' created by the

proxy layer before forwarding the first

request.

For each destination, the proxy forwards the request following

these steps:

\begin{enumerate}

\item Make a copy of the received request

\item Update the Request-URI

\item Add a Via header field value

\item Update the Max-Forwards field if present

\item Update the Route header field if present

\item Optionally add a Record-route header field value

\item Optionally add additional headers

\item send the new request

\end{enumerate}

Each of these steps is detailed below:

\begin{enumerate}

\item Copy request

The proxy starts with a copy of the received request.

The copy {\MUST} initially contain all of the

header fields from the received request. Only those fields detailed in

the processing described below may be removed.

The copy {\SHOULD} maintain the ordering of the header fields

as in the received request. The proxy {\MUSTNOT} reorder field values with a common field name (See Section~\ref{sec:header-format}.
\motivation{An actual implementation need not perform a copy; the primary requirement is that the processing of each next hop begin with the same request.}
\item Request-URI

The \header{Request-URI} in the copy's start line {\MUST} be replaced

with the URI for this destination. If the URI contains any parameters not allowed in a Request-URI, they {\MUST} be removed.
This is the essence of a proxy's role. This is the mechanism

through which a proxy routes a request toward its destination.

\item Via

\label{sec:proxy-request-processing-via}

The proxy {\MUST} insert a \header{Via} header field into the copy before the existing \header{Via} header fields. The \header{Via} header maddr, ttl, and sent-by components will be set when the request is processed by the transport layer (Section \ref{sec:transport}).

The \header{Via} headers ensure that responses will follow the same set of elements that the request traversed.

The proxy {\MUST} include a ``\header{branch}'' parameter (Section~\ref{sec:Via})

in the \header{Via} header.
When the path of a request through

one or more forking proxies is graphed, the result is a tree. The branch parameter

identifies the ``branch'' each request was forwarded on.

The \header{branch} parameter value {\MUST} be unique for each client

transaction to which the request is forwarded.

The precise format of the \header{branch}.

token is implementation-defined. In order to be able to both detect

loops and associate responses with the corresponding request, the

parameter {\SHOULD} consist of two parts separable by the

implementation. The first part is used to detect loops and distinguish

loops from spirals. The second is used to match responses to requests.

Loop detection is performed by verifying that those fields having an

impact on the routing decision have not changed. The value placed in the

this part of the \header{branch} parameter {\SHOULD} reflect all of those

fields (which include any \header{Proxy-Require} and
\header{Proxy-Authorization} headers). This is to ensure that if the request is routed back to the proxy,

and one of those fields changes, it is treated as a spiral and not a loop

(Section~\ref{sec:loop-detection}).

A common way to create this value is to compute a cryptographic hash

of the \header{To}, \header{From}, \header{Call-ID} header fields, the

\header{Request-URI} of the request received (before translation) and

the sequence number from the \header{CSeq} header field, in addition to any \header{Proxy-Require} and \header{Proxy-Authorization} fields that may be present.

The algorithm

used to compute the hash is implementation-dependent, but MD5

\cite{rfc1321}, expressed in hexadecimal, is a reasonable choice. (Note

that base64 is not permissible for a \header{token}.)

In order to correctly match responses to requests

(Section~\ref{sec:transactions:client:match}),

the value {\SHOULD} also

contain a part that is a globally unique function of

of the branch on which this request will be forwarded.

One example is a hash of a sequence number, local IP

address and \header{request-URI} of the request
For example: \texttt{7a83e5750418bce23d5106b4c06cc632.1}

\motivation{The ``\header{branch}'' parameter {\MUST} depend on

all information used for routing decisions, including the

incoming \header{request-URI} and any header values

affecting the routing choices. This is necessary to distinguish looped requests

from requests whose routing parameters have changed before returning

to this server.}

% cancel and ack sections mandate that cancel and ack have the exact

% same value of via as the request they cancel, so a stateful proxy

% could use the request method, and just remember what it used when

% building the cancel

Note that the request method {\MUSTNOT} be included in the

calculation of the \header{branch} parameter. In

particular, {\CANCEL} and {\ACK} requests {\MUST} have the same

\header{branch} value as the corresponding request they cancel

or acknowledge. The \header{branch} parameter is used in

correlating those requests at server handling them (see

Section~\ref{sec:transactions:server:match}~and~\ref{sec:canceluas}).

\item Max-Forwards

If the copy contains a Max-Forwards header field, the proxy

must decrement its value by one (1).

\item Route

% add some text here on local outbound proxies for Route headers –

% don’t pop in that case

If the copy contains a Route header field, the proxy must

remove the first (topmost) value. Note that this value was

placed in the destination set and then into the \header{Request-URI}

of this copy in previous steps.

\item Record-Route

\label{sec:proxy-request-processing-record-route}

If this proxy wishes to request to remain on the path of future

requests in this dialog, it {\MUST} insert a

\header{Record-Route} header value (Section~ref{sec:record-route})

into the copy before

any existing \header{Record-Route} header values.

See Section~\ref{sec:dialog} for details on whether this request

will be honored.
Each proxy in the path of a request makes this request independently – the presence of a Record-Route header does not obligate this proxy to add a value.
If the request is honored, the information the proxy places

in the \header{Record-Route} header value will be used at the endpoints

to construct \header{Route} headers. As shown in the processing

steps above, \header{Route} headers determine forwarding destinations

much like strict IP source routing.

The URL placed in the \header{Record-Route} header value {\MUST}

be a SIP URL. This URL {\MAY} be different for each destination

the request is forwarded to. The URL {\SHOULDNOT} contain the

transport parameter unless the proxy has knowledge (such as in

a private network) that the next downstream element that will

be in the path of subsequent requests supports that transport.

%

% Being a SIP URL could be softened to SHOULD using the

% same argument that is used for the transport parameter.

% If I know the next thing that cares supports tel: URLs,

% I could use them...

% Jonathan does not want to open that box yet.

%

\motivation{The URL this proxy provides

will be used by some other element to make a routing decision. This

proxy, in general, has no way to know what the capabilities of

that element are, so it must restrict itself to the mandatory

elements of a SIP implementation: SIP URLs and UDP transports.}

The URL placed in the \header{Record-Route} header value {\MUST}

resolve to this element when the server location procedures of

Section~\ref{sec:srv}%Locating a SIP Server

are applied to it. This ensures subsequent requests are routed

back to this element.

The URL placed in the \header{Record-Route} header value

{\SHOULD} be such that if a subsequent request is received with this

URL in the \header{Request-URI}, the proxy's normal request processing

will cause it to be forwarded to one of the previous elements, including

the originating client, traversed by the original request.

This improves robustness, ensuring

that the \header{Request-URI} contains enough information to forward subsequent

requests to a reasonable destination even in the absence of \header{Route}

headers.

The URL placed in the \header{Record-Route} header value

{\MUST} vary with the \header{Request-URI} in the received request.

A request may legitimately pass through this proxy more than

once on the way to its final destination (this is called a

spiraling request). The \header{Request-URI}

will be different each time the request passes through. If

this proxy places the same URL in the Record-Route header

field each time, subsequent requests will be rejected as looped

requests. It is insufficient to simply copy the \header{Request-URI}

from each request into the Record-Route header. Some modification,

such as adding an maddr parameter, is necessary.

%

%TODO

% Why insufficient? The spec says this now, but I can't remember what %would break?

% If this is real, it should probably be rephrased as more obviously

% normative.

% Jonathan remembers this being motivated by default outbound proxies

% handling subsequent requests. This section needs more work.

URLs satisfying the above paragraphs can be constructed in many ways.

One way is to use a URL that is nearly the same as the

\header{Contact} header in the initial request (if present, else the

\header{From} field), but with the maddr and port set to resolve to the

proxy, and with a transaction identifier added to the user part of the

request-URI (in order to meet the requirement that the URL in the

\header{Record-Route} be different for each distinct

\header{Request-URI}). A call stateful proxy could use a URL of the form

sip:proxy.example.com and use information from the stored call state to

meet the requirements.

%Jon suggests removing the following paragraph

The proxy {\MAY} include \header{Record-Route} header parameters

in the value it provides. These will be returned in some responses

to the request (200 responses to {\INVITE} for example) and may be

useful for pushing state into the message.

The \header{Record-Route} process is designed to work for any

SIP request that initiates a dialog. The only such

request in this specification is {\INVITE}. Extensions to the

protocol {\MAY} define others, and the mechanisms described here

will apply.

The request that initiates a

dialog and all refreshes (re-{\INVITE} for example) {\MUST} have

\header{Record-Route} header values added to them if the proxy wishes

to remain in the request path. This means a proxy will often need to

record-route requests that contain \header{Route} headers.

Section~\ref{sec:dialog}
 describes how this will affect a dialog.

\motivation{Including Record-Route even when Route headers already

exist in a request improves robustness in the presence of a preloaded

\header{Route} header field and recovery from endpoint failure.}

If a proxy needs to be in the path of any type of dialog (such

as one straddling a firewall), it {\SHOULD} add a \header{Record-Route}

header value to every request with a method it doesn't understand.

Generally, the choice about whether to

record-route or not is a tradeoff of features vs. performance.

Faster request processing and higher scalability is achieved when

proxies do not record route. However, provision of certain services

may require a proxy to observe all messages in a dialog. It is

{\RECOMMENDED} that proxies do not automatically record route. They

should do so only if specifically required.

\item Adding Additional Headers

The proxy {\MAY} add any other appropriate headers to the copy

at this point.

\item Forward Request

%where does it say to put the next hop uri into the request URI???
%RjS – In the step titled Request-URI above (step 2 as of now).
A stateful proxy creates a new client transaction for this request

as described in Section~\ref{sec:transactions:client}.

If the next-hop location used in building this request

contains the optional addressing parameters,

the transaction is instructed to send the request based on those parameters.

Otherwise, the proxy uses the procedures of Section \ref{sec:srv} to compute an ordered set of addresses from the \header{Request-URI}, and as described there, attempts to contact the first one by instructing the client transaction to send the request there. If this fails, the stateful proxy continues down the list. Each attempt is a new client transaction, and therefore represents a new branch, so that the processing described above for each branch would need to be repeated. This results in a requirement to use a different branch ID parameter for each attempt.

\end{enumerate}

\subsection{Response Processing}

\label{sec:proxy-response-processing}

When a response is received by an element, it first tries to locate

a client transaction (Section~{sec:9}) matching the response. If none is

found, the element {\MUST} process the response (even if it is an informational

response) as a stateless proxy (described below).

If a match is found, the response is handed to the client transaction.

\motivation{Forwarding responses for which a client transaction (or more

generally any knowledge of having sent an associated request) is not

found improves robustness. In particular, it ensures that ``late'' 2xx

class responses to INVITE requests are forwarded properly.}

As client transactions pass responses to the proxy layer,

the following processing {\MUST} take place:

\begin{enumerate}

\item Find the appropriate response context

\item Remove the topmost Via

\item Add the response to the response context

\item Check to see if this response should be forwarded

\end{enumerate}

%Jonathan objected that the below sentence didn't make sense given that

%only one of the 3 steps below is performed for provisional responses.

%Adding "if necessary" below was the best solution I found, splitting

%the handling of provisional and final responses became very messy.

The following processing {\MUST} be performed on each response that is

forwarded. Note that more than one response to each request will likely

be forwarded - each provisional and one final at the least.

\begin{enumerate}

\item Aggregate authorization header fields if necessary

\item Forward the response

\item Generate any necessary {\CANCEL} requests

\end{enumerate}

If no final response has been forwarded after every client transaction

associated with the response context has been terminated, the

proxy must choose and forward the ``best'' response from those it has

seen so far.

Each of the above steps are detailed below:

\begin{enumerate}

\item Find Context

The proxy locates the ``response context'' it created before

forwarding the original request using the key described in

Section~\ref{sec:proxy-request-processing}. The remaining

processing steps take place in this context.

\item Via

\label{sec:proxy-response-processing-via}

The proxy removes the topmost \header{Via} field value from the response.

The address in this value necessarily matches the proxy since the response

matched a client transaction above. The branch parameter from this value

can be used to determine which branch the response corresponds to.

If no \header{Via} field values remain in the response, the response was

meant for this element and {\MUSTNOT} be forwarded. The remainder of the

processing described in this section is not performed on this message.

This will happen, for instance, when the element generates {\CANCEL} requests

as described in Section~{sec:proxy-response-processing-cancel}.

\item Add response to context

\label{sec:proxy-response-processing-add-to-context}

Final responses received are stored in the response context until a final

response is generated on the server transaction associated with

this context. The response may a candidate for the best

final response to be returned on that server transaction. Information

from this response may be needed in forming the best response even

if this response is not chosen.

If the proxy chooses to recurse on a 3xx class response,

it {\MUSTNOT} add the response to the response context

\item Check response for forwarding

Until a final response has been sent on the server transaction,

the following responses {\MUST} be forwarded immediately:

\begin{itemize}

\item Any provisional response other than 100 Trying

\item Any 2xx class or 6xx class response

\end{itemize}

After a final response has been sent on the server transaction,

the following responses {\MUST} be forwarded immediately:

\begin{itemize}

\item Any 2xx class response to an {\INVITE} request

\end{itemize}

A stateful proxy {\MUSTNOT} immediately forward any other

responses. In particular, a stateful

proxy {\MUSTNOT} forward any 100 Trying response. Those

responses that are candidates for forwarding later as

the ``best'' response have been gathered as described in

step ``Add Response to Context’’.

Any response chosen for immediate forwarding {\MUST} be processed

as described in steps ``Aggregate authorization headers’’
through ``Record-Route’’.
\item Choosing the best response

A stateful proxy {\MUST} send a final response to a response context's

server transaction if no final responses have been immediately

forwarded by the above rules and all client transactions in this

response context have been terminated.

The stateful proxy {\MUST} choose the ``best'' final response among

those received and stored in the response context.

If there are no final responses in the context, the proxy {\MUST}

send a 408 (Request Timeout) response to the server transaction.

Otherwise, the proxy {\MUST} forward one of the responses from

the lowest response class stored in the response context. The

proxy {\MAY} select any response within that lowest class.

The proxy {\SHOULD} give preference to responses that

provide information affecting resubmission of this request, such

as 401, 407, 415, 420, and 484.

A proxy which receives a 503 response {\SHOULDNOT} forward

it upstream unless it can determine that any subsequent requests it

might proxy will also generate a 503. In other words, forwarding a

503 means that the proxy knows it cannot service any requests, not

just the one for the \header{Request-URI} in the request which generated the

503.

The forwarded response {\MUST} be processed

as described in

steps ``Aggregate authorization headers’’

through ``Record-Route’’.

For example, if a proxy forwarded a request to 4 locations, and

received 503, 407, 501, and 404 responses, it may choose to forward

the 407 response.

The tag in the \header{To} header field serves to distinguish responses

at the UAC. If the forwarded response did not have one, it
{\MUSTNOT} be inserted into the response by the proxy.
\item Aggregate authorization headers

\label{sec:proxy-response-processing-aggregate-headers}

%Jon suggests this should live in the security section

% This is new

% Is this a MUST? If so, it's a functional change.
% JDR - keep it here
If the selected response is a 401 or 407, the

proxy {\MUST} collect any

\header{WWW-Authenticate} and \header{Proxy-Authenticate} header

fields

from all other 401 and 407 responses received so for in this response context

and add them to this response before forwarding.

This is necessary because any or all of the destinations the

request was forwarded to may have requested credentials. The

client must receive all of those challenges and supply credentials

for each of them when it retries the request
. Motivation for this behavior is provided

in Section~\ref{sec:security}.

\item Record-Route

\label{sec:proxy-response-processing-record-route}

If the selected response contains a \header{Record-Route} header field

value originally provided by this proxy, the proxy {\MAY} chose to

rewrite the value before forwarding the response.

This allows the proxy to provide different URLs for itself to the next

upstream and downstream elements. A proxy may choose to use this

mechanism for any reason. For instance, it is useful for multi-homed

hosts.

The new URL provided by the proxy {\MUST} satisfy the same constraints

on URLs placed in \header{Record-Route} header fields in requests (see

Section~\ref{sec:proxy-request-processing-record-route}) with the

following modifications:

The URL {\SHOULDNOT} contain the

transport parameter unless the proxy has knowledge

that the next upstream (as opposed to downstream) element that will

be in the path of subsequent requests supports that transport.

The URL placed in the \header{Record-Route} header value

{\SHOULD} be such that if a subsequent request is received with this

URL in the \header{Request-URI}, the proxy's normal request processing

will cause it to be forwarded to the same next-hop element (as opposed

to some previous element) as the originally forwarded request.

When a proxy does decide to modify the \header{Record-Route} header in

the response, one of the operations it must perform is to locate the

\header{Record-Route} that it had inserted. If the request spiraled,

and the proxy inserted a \header{Record-Route} in each iteration of the

spiral, locating the correct header in the response (which must be the

proper iteration in the reverse direction) is tricky. Note that the

rules above dictate that a proxy insert a different URI into the

\header{Record-Route} for each distinct \header{Request-URI}

received. The two issues can be solved jointly. A {\RECOMMENDED}

mechanism is for the proxy to append a piece of data to the user

portion of the URL. This piece of data is a hash of the transaction

key for the incoming request, concatenated with a unique identifier

for the proxy instance. Since the transaction key includes the

\header{Request-URI}, this key will be unique for each distinct

\header{Request-URI}. When the response arrives, the proxy modifies

the first \header{Record-Route} whose identifier matches the proxy

instance. The modification results in a URI without this piece of data

appended to the user portion of the URI. Upon the next iteration, the

same algorithm (find the topmost \header{Record-Route} header with the

parameter) will correctly extract the next

\header{Record-Route} header inserted by that proxy.

\item Forward response

After performing the processing described in
steps ``Aggregate authorization headers’’

through ``Record-Route’’,
 the proxy

may perform any feature specific manipulations
on the selected response.

Unless otherwise specified, the proxy {\MUSTNOT} remove the

message body or any header

values other than the \header{Via} header value discussed

in Section~ref{sec:proxy-response-processing-via}.

The proxy {\MUST} pass the response to the server transaction

associated with the response context. This will result in the

response being sent to the location now indicated in the topmost

\header{Via} field value. If the server transaction is no longer

available to handle the transmission, the element {\MUST} forward

the response statelessly by sending it to the server transport.

% That last sentence is from the outline. Its a pretty bizarre

% edge condition - if the server transaction isn't around, its

% very unlikely that a client transaction would have been around

% to match at the start of this section, so this kind of response

% would have been statelessly forwarded anyhow...
%

% JDR – the reason is that the server transction self destructs

% after the first 2xx
%

% RjS – and in that case, the response would have been forwarded

% statelessly by the instructions at the very beginning of

% the section – there wouldn’t be a server transaction to

% match there.
Even after forwarding a final response, the

proxy {\MUST} maintain the response context until all of its

associated transactions have been terminated.

\item Generate {\CANCEL}s

\label{sec:proxy-response-processing-cancel}

OPEN ISSUE \#7: If CANCEL is restricted to INVITE only, this behavior

must restrict itself to INVITE requests.

OPEN ISSUE \#122: The {\MUST} below reflects list discussion, but the

question of how strong this requirement should be was not formally closed.

If the forwarded response was a final response, the proxy {\MUST}

generate a {\CANCEL} request for all pending client transactions

associated with this response context. A pending client transaction

is one that has received a provisional response, but no final response and has not had an associated {\CANCEL} generated for it.
Generating {\CANCEL} requests is described in Section~\ref{sec:canceluac}.

\end{enumerate}

\subsection{Handling transport errors}

\label{sec:proxy-transport-errors}

If the transport layer notifies a proxy of an error when it tries to forward a request (see Section~{sec:transport:error)}, the proxy {\MUST} behave as if the forwarded request received a 400 response.

If the proxy is notified of an error when forwarding a response, it drops the response. The proxy {\SHOULDNOT} cancel any outstanding client transactions associated with this response context due to this notification.

\motivation{If a proxy cancels its outstanding client transactions, a single malicious or misbehaving client can cause all transactions to fail through its Via header field.}
\subsection{{\CANCEL} Processing}

\label{sec:proxy-cancel-processing}

A stateful proxy may generate a {\CANCEL} to any other request

it has generated at any time. For instance, it may choose to
generate {\CANCEL}s based on
having a transaction exceed the

time specified in the \header{Expire} header of certain requests, or

as a result of any logic it applies while forwarding requests. A proxy
{\MUST} cancel any pending client transactions associated with a

response context when it receives a matching CANCEL request.
\motivation{OPEN ISSUE \#185: Should generating CANCEL at a proxy
based on
 Expires in INVITE be deprecated?}
While a {\CANCEL} request is handled in a stateful proxy by its own

server transaction, a new response context is not created for it.

Instead, the proxy layer searches its existing response contexts for the server transaction

handling the request associated with this {\CANCEL}.

If a matching response context is found, the element {\MUST} immediately

return a 200 OK response to the {\CANCEL} request. In this case, the element is acting

as a user agent server as defined in
Section~\ref{sec:general:req-process}.

Furthermore, the element {\MUST} generate {\CANCEL}

requests for all pending client transactions in the context as described in

Section~\ref{sec:proxy-response-processing-cancel}.

If a response context is not found, the element does not have

any knowledge of the request to apply the {\CANCEL} to. It {\MUST} forward

the {\CANCEL} request statelessly (it may have statelessly forwarded the associated

request previously).

\subsection{Stateless proxy}
\label{sec:proxy-stateless}
When acting statelessly, a proxy is a simple message forwarder.

Much of the processing

performed when acting statelessly is the same as when behaving statefully. The differences

are detailed here.

A stateless proxy does not have any notion of a transaction, or of the response context

used to describe stateful proxy behavior. Instead, the stateless proxy takes messages,

both requests and responses, directly from the transport layer (See section~\ref{sec:transport}).

As a result, stateless proxies do not retransmit messages on their own. They do, however,

forward all retransmission they receive (they do not have the ability to distinguish a

retransmission from the original message). Furthermore, when handling a request statelessly,

an element {\MUSTNOT} generate its own 100 Trying (or any other provisional) response.

A stateless proxy must validate a request as described in

Section~\ref{sec:proxy-request-validation}

A stateless proxy must make a routing decision as described in

Section~\ref{sec:proxy-routing-decision} with the following

exception:

\begin{itemize}

\item A stateless proxy {\MUST} choose

 one and only one destination from the

 destination set. This choice {\MUST} only rely on

 fields in the message and time-invariant properties

 of the server. In particular, a retransmitted request

 {\MUST} be forwarded to the same destination each time

 it is processed. Furthermore, {\CANCEL} and non-Routed

 {\ACK} requests {\MUST} generate the same choice as their

 associated {\INVITE}.

\end{itemize}

A stateless proxy must process the request before forwarding as

described in Section~\ref{sec:proxy-request-processing} with the

following exceptions:

\begin{itemize}

\item

The \header{branch} parameter on the inserted \header{Via} header

field {\MUST} be the same each time a retransmitted request is

forwarded. Thus for a stateless proxy, the \header{branch} parameter

calculation {\MUST} \textbf{only} depend on message parameters affecting

the routing of the request which are invariant on retransmission.

\item

The request is sent directly to the transport layer

instead of through a client transaction. If the next-hop destination

parameters don't provide an explicit destination, the element applies

the procedures of Section~\ref{sec:srv} to the \header{Request-URI} to
 determine where to send the request.

\end{itemize}

Stateless proxies {\MUSTNOT} perform special processing for {\CANCEL} requests.

They are processed by the above rules as any other requests.

Response processing as described in
Section~\ref{sec:proxy-response-processing}

does not apply to a proxy behaving statelessly. When a response arrives at a

stateless proxy, the proxy inspects the address in the first (topmost) \header{Via} header value.

If that address matches the proxy, the proxy {\MUST} remove that value from

the response and forward the result to the location indicated in the next

\header{Via} header value. Unless specified otherwise, the proxy {\MUSTNOT}

remove any other header values or the message body. If the address does not

match the proxy, the message {\MUST} be silently discarded.

