\section{SIP Messages}

\label{sec:message}

SIP is a text-based protocol and uses the ISO 10646 character set in

UTF-8 encoding (RFC 2279 \cite{rfc2279}).

A SIP message is either a request from a client to a server, or a

response from a server to a client.

Both \header{Request} (section \ref{sec:request}) and \header{Response}

(section \ref{sec:response}) messages use the \header{generic-message}

format of RFC 822 \cite{rfc822}. Both types of messages consist of a

\header{start-line}, one or more header fields (also known as

``headers''), an empty line indicating the end of the header fields, and

an optional \header{message-body}.

\begin{syntax}

generic-message & = & start-line\\

 & & *message-header\\

 & & CRLF\\

 & & [message-body]\\

\end{syntax}

The start-line, each message-header line, and the empty line

{\MUST} be terminated

by a carriage-return line-feed sequence (\header{CRLF}). Note that the

empty line {\MUST} be present even if the message-body is not.

Except for the above difference in character sets,

much of SIP's message and header field syntax is identical to

HTTP/1.1. Rather than repeating the syntax and semantics here we use

[HX.Y] to refer to Section X.Y of the current HTTP/1.1 specification

(RFC 2616 \cite{rfc2616}).

Note, however, that SIP is not an extension of HTTP.

\subsection{Requests}

\label{sec:message-requests}

\label{sec:request}

\label{sec:Request-Line}

SIP Requests are distinguished by having a \header{Request-Line}

for a \header{start-line}. A \header{Request-Line} begins with a method token, followed by the

\header{Request-URI} and the protocol version, and ending with

\header{CRLF}. The elements are separated by \header{SP} characters.

No \header{CR} or \header{LF} are allowed except in the end-of-line

\header{CRLF} sequence. No LWS is allowed in any of the elements.

\begin{center}

\begin{sf}

Method Request-URI SIP-Version

\end{sf}

\end{center}

\begin{itemize}

\item{Method}

This specification defines six methods : {\REGISTER}

for registering contact information, {\INVITE}, {\ACK} and {\CANCEL}

for setting up sessions, {\BYE} for terminating sessions and {\OPTIONS}

for querying servers about their

capabilities. SIP extensions may define additional methods.

\item{Request-URI}

The \header{Request-URI} is a SIP URL as described in

Section~\ref{sec:sip-url} or a general URI (RFC~2396~\cite{rfc2396}).

It indicates the user or service to which this request is

being addressed.

The \header{Request-URI} {\MUSTNOT} contain unescaped spaces or control

characters and

{\MUSTNOT} be enclosed in "$<>$".

SIP servers {\MAY} support \header{Request-URI}s with schemes other than

``sip'', for example the ``tel'' URI scheme of RFC~2806~\cite{rfc2806}. It {\MAY}

translate non-SIP URIs using any mechanism at its disposal, resulting in

either a SIP URI or some other scheme.

\item{SIP Version}

Both request and response messages include the version of SIP in use,

and follow [H3.1] (with HTTP replaced by SIP, and HTTP/1.1 replaced by

SIP/2.0) regarding version ordering, compliance requirements, and

upgrading of version numbers. To be compliant with this specification,

applications sending SIP messages {\MUST} include a \header{SIP-Version}

of ``SIP/2.0''. The string is case-insensitive, but implementations

{\MUST} send upper-case.

\motivation{Unlike HTTP/1.1, SIP treats the

version number as a literal string. In practice, this should make no

difference.}

\end{itemize}

\subsection{Responses}

\label{sec:message-responses}

\label{sec:response}

\label{sec:Status-Line}

SIP Responses are distinguished by having a \header{Status-Line}

for a \header{start-line}.

A \header{Status-Line},

consists of the protocol version

followed by a numeric \header{Status-Code} and its associated textual

phrase, with each element separated by SP characters. No \header{CR} or

\header{LF} is allowed except in the final \header{CRLF} sequence.

\begin{center}

\begin{sf}

SIP-version Status-Code Reason-Phrase

\end{sf}

\end{center}

The \header{Status-Code} is a 3-digit integer result code that indicates

the outcome of an attempt to understand and satisfy a request. The

\header{Reason-Phrase} is intended to give a short textual description

of the \header{Status-Code}. The \header{Status-Code} is intended for

use by automata, whereas the \header{Reason-Phrase} is intended for the

human user. A client is not required to examine or display the

\header{Reason-Phrase}.

The first digit of the \header{Status-Code} defines the class of response.

The last two digits do not have any categorization role. For this reason, any response with a status code between 100 and 199 is referred to as a ``1xx response'', any response with a status code between 200 and 299 as a ``2xx response'', and so on. SIP/2.0 allows

6 values for the first digit:

\begin{description}

\item[1xx:] Informational -- request received, continuing to process the

request;

\item[2xx:] Success -- the action was successfully received, understood,

and accepted;

\item[3xx:] Redirection -- further action needs to be taken in order to

complete the request;

\item[4xx:] Client Error -- the request contains bad syntax or cannot be

fulfilled at this server;

\item[5xx:] Server Error -- the server failed to fulfill an apparently

valid request;

\item[6xx:] Global Failure -- the request cannot be fulfilled at any

server.

\end{description}

%SIP response codes are extensible. Applications {\MUST}

%treat any response they do not recognize as being equivalent to the

%x00 response code of that class.

%For example, if a client receives an

%unrecognized response code of 431, it can safely assume that there was

%something wrong with its request and treat the response as if it had

%received a 400 (Bad Request) response code.

%%Not sure this next sentence belongs in this section

%In such cases, user agents

%{\SHOULD} present to the user the message body returned with the

%response, since that message body is likely to include human-readable

%information which will explain the unusual status.

%

Full definitions of these classes and each registered code appear

in Section \ref{sec:response-codes}.

\subsection{Header Fields}

\label{sec:message-header-fields}

SIP header fields are similar to HTTP header fields in both syntax and

semantics. In particular, SIP header fields follow the [H4.2] definitions

of syntax for message-header, the rules for extending header

fields over multiple lines, the use of multiple message-header fields

with the same field-name, and the rules regarding ordering of header

fields.

\subsubsection{Header Field Format}

\label{sec:header-format}

Header fields follow the same generic header format as that given in

Section 3.1 of RFC 822 \cite{rfc822}. Each header field consists

of a field name followed by a colon (":") and the field value.

\begin{center}

\begin{sf}

field-name: field-value

\end{sf}

\end{center}

% Verify that Brian's expansion does, in fact, say this

Note that the formal grammar for a \header{message-header} specified in

Section~\ref{sec:abnf} allow for an arbitrary amount of whitespace

on either side of the colon. No space before the colon and a single space

(SP) between the colon and the field-value is preferred. That is,

\begin{verbatim}

Subject: lunch

Subject : lunch

Subject :lunch

Subject: lunch

\end{verbatim}

are all valid, and equivalent, but the last is the preferred form.

Header fields can be extended over multiple lines by preceding each extra

line with at least one \header{SP} or horizontal tab (HT). The line break

and the whitespace at the beginning of the next line are treated as a single

SP character. Thus the following are equivalent:

\begin{verbatim}

Subject: I know you're there, pick up the phone and talk to me!

Subject: I know you're there,

 pick up the phone

 and talk to me!

\end{verbatim}

% The following was a carry-forward from H[4.2]. Such "common forms"

% are never explicitly defined. It appears to be a call to apply

% Postel's Maxim when generating header fields - make them look

% like the examples... So, here's a removal of a MUST.

% Applications {\MUST} follow HTTP ``common form'' when

% generating these constructs, since there might exist some

% implementations that fail to accept anything beyond the

% common forms.

The relative order of header fields with different field names is not

significant. The relative order of those with the same field name is important.

Multiple header fields with the same field-name may be

 present in a message if and only if the entire field-value for that

header field is defined as a comma-separated list (i.e.,

\header{\#(values)}).

It {\MUST} be possible to combine the multiple header fields into one ``field-name: field-value'' pair,

without changing the semantics of the message,

by appending each subsequent \header{field-value} to the first,

each separated by a comma.

Implementations {\MUST} be able to process multiple header fields with

the same name in any combination of the single-value-per-line or

comma-separated value forms.

The following blocks of headers are valid and equivalent:

\begin{verbatim}

Route: sip:alice@atlanta.com

Subject: Lunch

Route: sip:bob@biloxi.com

Route: sip:carol@chicago.com

Route: sip:alice@atlanta.com, sip:bob@biloxi.com

Route: sip:carol@chicago.com

Subject: Lunch

Subject: Lunch

Route: sip:alice@atlanta.com, sip:bob@biloxi.com, sip:carol@chicago.com

\end{verbatim}

Each of the following blocks is valid but not equivalent to the others:

\begin{verbatim}

Route: sip:alice@atlanta.com

Route: sip:bob@biloxi.com

Route: sip:carol@chicago.com

Route: sip:bob@biloxi.com

Route: sip:alice@atlanta.com

Route: sip:carol@chicago.com

Route: sip:alice@atlanta.com,sip:carol@chicago.com,sip:bob@biloxi.com

\end{verbatim}

The format of a header field-value is defined per header-name. It will

always be either an opaque sequence of TEXT-UTF8 octets, or a combination

of whitespace, tokens, separators, and quoted strings. Many of them will

adhere to the general form of a value followed by a semi-colon separated

sequence of parameter-name, parameter-value pairs:

\begin{center}

\begin{sf}

field-name: field-value *(;parameter-name=parameter-value)

\end{sf}

\end{center}

When comparing headers, field names are always case-insensitive.

Unless otherwise stated in the definition of a particular header

field, field values, parameter names, and parameter values (tokens

in general) are case-insensitive. Unless specified otherwise, values

expressed as quoted strings are case-sensitive.

The following are equivalent:

\begin{verbatim}

Contact: <sip:alice@atlanta.com>;expires=3600

CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600

Contact-Disposition: session;handling=optional

contact-disposition: Session;HANDLING=OPTIONAL

\end{verbatim}

The following are not equivalent;

\begin{verbatim}

Warning: 370 devnull "Choose a bigger pipe"

Warning: 370 devnull "CHOOSE A BIGGER PIPE"

\end{verbatim}

\subsubsection{Header Field Classification}

\label{sec:general-header}

Some header fields only make sense in requests or responses. These

are called Request Header Fields and Response Header fields respectively.

Those header fields that can appear in either a request or response

are called General Header Fields. If a header appears in a message not

matching its category (such as a request header in a response), it

{\MUST} be ignored. Section~\ref{sec:header-fields} defines the classification

of each header.

\subsubsection{Compact Form}

\label{sec:message-compact}

SIP provides a mechanism to represent common header fields in an

abbreviated form. This may be useful when messages would otherwise

become to large to be carried on the transport available to it

(exceeding the MTU when using UDP for example). These compact forms

are defined in Section~\ref{sec:header-fields}. A compact form {\MAY} be

substituted for the longer form of a header name at any time without

changing the semantics of a the message. Multiple header fields in

a message with the same header name {\MAY} appear with an arbitrary

mix of its long and short field name form. Implementations {\MUST}

accept both the long and short forms of each header name.

\subsection{Bodies}

\label{sec:message-bodies}

\label{sec:message-body}

Requests, including new requests defined in extensions to

this specification, {\MAY} contain message bodies unless otherwise noted.

For response messages, the request method and the response status code

determine the type and interpretation of any message body. All

responses {\MAY} include a body.

% This was the only semi-normative thing lost through ripping

% out semantics

%It is {\RECOMMENDED} that any human-readable information

%returned in 1xx and 300 and greater responses be of type

%{\tt text/plain} or {\tt text/html}.

\subsubsection{Message Body Type}

\label{sec:message-body-type}

The Internet media type of the message body {\MUST} be given by the

\header{Content-Type} header field. If the body has undergone any

encoding (such as compression) then this {\MUST} be indicated by the

\header{Content-Encoding} header field, otherwise

\header{Content-Encoding} {\MUST} be omitted. If applicable, the

character set of the message body is indicated as part of the

\header{Content-Type} header-field value.

The ``multipart'' MIME type defined in RFC~2046~\cite{rfc2046} {\MAY}

 be used within the body of the message.

%

% TODO Jonathan suggests more detail here

% Alan suggests an example of a multipart body

%

%changed this to Implementations instead of Client/Server

%since it applies to both the request and response of an

%INVITE transaction.

Implementations that send requests containing multipart

message bodies {\MUST} be able to send a session description as a

non-multipart message body if the remote implementation requests

this through an \header{Accept} header field.

\subsubsection{Message Body Length}

\label{sec:message-body-length}

The body length in bytes is provided by the

\header{Content-Length} header field. Section~\ref{sec:Content-Length}

describes the necessary contents of this header in detail.

The ``chunked'' transfer encoding of HTTP/1.1 {\MUSTNOT} be used for

SIP. (Note: The chunked encoding modifies the body of a message in

order to transfer it as a series of chunks, each with its own size

indicator.)

\subsection{Framing SIP messages}

\label{sec:message-framing}

Unlike HTTP, SIP {\MAY} use UDP or other unreliable datagram protocols.

Each such datagram carries one request or response. Datagrams,

including all headers, {\SHOULDNOT} be larger than the path maximum

transmission unit (MTU) if the MTU is known, or 1500 bytes if the MTU is

unknown. However, implementations {\MUST} be able to handle messages up

to the maximum datagram packet size. For UDP, this size is 65,535

bytes, including headers.

\motivation{The MTU of 1500 bytes accommodates encapsulation within the

``typical'' ethernet MTU without IP fragmentation. Recent studies

\cite[p.~154]{Stev94:TCP1} indicate that an MTU of 1500 bytes is a

reasonable assumption. The next lower common MTU values are 1006 bytes

for SLIP and 296 for low-delay PPP (RFC 1191 \cite{rfc1191}). Thus,

another reasonable value would be a message size of 950 bytes, to

accommodate packet headers within the SLIP MTU without fragmentation.}

In the interest of robustness, any leading empty line(s) {\MUST} be

ignored. In other words, if the \header{Request} or \header{Response}

message begins with one or more \header{CRLF}, \header{CR}, or

\header{LF}s, these characters {\MUST} be ignored.

% This is made up from whole cloth, but I don't know where else the

% concept is captured.

Likewise, Implementations processing SIP messages over stream oriented

transports {\MUST} ignore noise between messages.

