\section{Initiating a Session}

\label{sec:initiate}

\subsection{Overview}

\label{sec:initiateoverview}

When a user agent client desires to initiate a session (for example, audio, video, or a game), it formulates an {\INVITE} request. The {\INVITE} request asks a server to establish a session. This request is forwarded by proxies, eventually arriving at one or more UAS which can potentially accept the invitation. These UAS’s will frequently need to query the user about whether to accept the invitation. After some time, those UAS can accept the invitation (meaning the session is to be established) by sending a 2xx response. If the invitation is not accepted, a 3xx,4xx,5xx or 6xx response is sent, depending on the reason for the rejection. Before sending a final response, the UAS can also send a provisional response (1xx) to advise the UAC of progress in contacting the called user.

After possibly receiving one or more provisional responses, the UA will get one or more 2xx responses or one non-2xx final response. Because of the protracted amount of time it can take to receive final responses to {\INVITE}, the reliability mechanisms for {\INVITE} transactions differ from those of other requests (like {\OPTIONS}). Once it receives a final response, the UAC needs send an {\ACK} for every final response it receives. The procedure for sending this {\ACK} depends on the type of response. For final responses between 300 and 699, the {\ACK} processing is done in the transaction layer, and follows one set of rules (See Section \ref{sec:transactions}). For 2xx responses, the {\ACK} is generated by the UAC core.
A 2xx response to an {\INVITE} establishes a session, and it also creates a dialog between the UA that issued the {\INVITE} and the UA that generated the 2xx response. Therefore, when multiple 2xx responses are received from different remote UAs (because the {\INVITE} forked), each 2xx establishes a different dialog. All these dialogs are part of the same call.

This section provides details on the establishment of a session using {\INVITE}.
\subsection{Caller Processing}

\label{sec:initiatecaller}

\subsubsection{Creating the Initial {\INVITE}}

\label{sec:initiateuac}

Since the initial {\INVITE} represents a request outside of a dialog, its construction follows the procedures of Section \ref{sec:general:gen}. Additional processing is required for the specific case of {\INVITE}.

An \header{Allow} header field (Section ~\ref{sec:Allow}) {\SHOULD} be present in the {\INVITE}. It indicates what methods can be invoked within a dialog, on the UA sending the {\INVITE}, for the duration of the dialog. For example, a UA capable of receiving {\INFO} requests within a dialog \cite{rfc2976} {\SHOULD} include an \header{Allow} header listing the {\INFO} method.
A \header{Supported} header field (Section ~\ref{sec:Supported}) {\SHOULD} be present in the {\INVITE}. It enumerates all the extensions understood by the UAC.
An \header{Accept} (Section ~\ref{sec:Accept}) header field {\MAY} be present in the {\INVITE}. It indicates which content-types are acceptable to the UA, in both the response received by it, and in any subsequent requests sent to it within dialogs established by the {\INVITE}. The \header{Accept} header is especially useful for indicating support of various session description formats.
The UA {\MAY} add an \header{Expires} header field (Section ~\ref{sec:Expires}) to limit the validity of the invitation. If the time indicated in the \header{Expires} header field is reached and no final answer for the {\INVITE} has been received the UAC core {\SHOULD} generate a {\CANCEL} request for the original {\INVITE}.
A UAC {\MAY} also find useful to add, among others, \header{Subject} (Section ~\ref{sec:Subject}), \header{Organization} (Section ~\ref{sec:Organization}) and \header{User-Agent} (Section ~\ref{sec:User-Agent}) header fields. They all contain useful information related to the {\INVITE}.

The UAC {\MAY} choose to add a message body to the {\INVITE}. Section ~\ref{sec:general:uac:steps} deals with how to construct the header fields- \header{Content-Type} among others- needed to describe the message body.

There are special rules for message bodies that contain a session description - their corresponding \header{Content-Disposition} is ``session''. SIP uses an offer/answer model where one UA sends a session description, called the offer, which contains a proposed description of the session. The offer indicates the desired communications means (audio, video, games), parameters of those means (such as codec types) and addresses for receiving media from the offerer. The other UA responds with another session description, called the answer, which indicates which communications means are accepted, the parameters which apply to those means, and addresses for receiving media from the answerer. The offer/answer model can be mapped into the {\INVITE} transaction in two ways. The first, which is the most intuitive, is that the {\INVITE} contains the offer, the 2xx response contains the answer, and no session description is provided in the {\ACK}. In this model, the UAC is the offerer, and the UAS is the answerer. A second model is that the {\INVITE} contains no session description, the 2xx response contains the offer, and the {\ACK} contains the answer. In this model, the UAS is the offerer, and the UAC is the answerer. The second model is useful for gateways from H.323v1 to SIP, where the H.323 media characteristics are not known until the call is established. This is also useful for sessions that use third-party call control. As a result of these models, if the {\INVITE} contains a session description, the {\ACK} {\MUSTNOT} contain one. Conversely, if the caller chooses to omit the session description in the {\INVITE}, the {\ACK} {\MUST} contain one (if a 2xx response is received). 2xx responses to an {\INVITE} {\MUST} always contain a session description. All user agents that support {\INVITE} {\MUST} support both models.
The Session Description Protocol (SDP) \cite{rfc2327} {\MUST} be supported by all user agents as a means to describe sessions, and its usage for construction offers and answers {\MUST} follow the procedures defined in
\cite{draft-rosenberg-mmusic-sdp-offer-answer}.
Note that the restrictions of the offer-answer model (session description only in the {\INVITE} OR in the {\ACK}, but not in both) just described only apply to bodies whose \header{Content-Disposition} header field is ``session''. Therefore, it is possible that both the {\INVITE} and the {\ACK} contain a body message (e.g., the {\INVITE} carries a photo (\header{Content-Disposition}: render) and the {\ACK} a session description (\header{Content-Disposition}: session)).

 \motivation{If the \header{Content-Disposition} header field is missing, bodies of \header{Content-Type} \texttt{application/sdp} imply the disposition ``session'', while other content types imply ``render''.}

Once the {\INVITE} has been created, the UAC follows the procedures defined for sending requests outside of a dialog (Section \ref{sec:ua}). This results in the construction of a client transaction that will ultimately send the request and deliver responses to the UAC.
%jdr – this is still ill defined.
If a UA A sends an {\INVITE} request to B and receives an {\INVITE} request from B before it has received the response to its request from B, A {\MAY} return a 500 (Internal Server Error), which {\SHOULD} include a \header{Retry-After} header field specifying when the request should be resubmitted.

\subsubsection{Processing {\INVITE} Responses}

\label{sec:initiateresponses}

Once the {\INVITE} has been passed to the {\INVITE} client trasaction, the UAC waits for responses for the {\INVITE}. Responses are matched to their corresponding {\INVITE} because they have the same \header{Call-ID}, the same \header{From} header field, the same \header{To} header field, excluding the tag, and the same \header{CSeq}. Rules for comparisons of these headers are described in Section \ref{sec:header-fields}.

\paragraph{\header{1xx responses}}

Zero, one or multiple provisional responses may arrive before one or more final responses are received. Provisional responses for an {\INVITE} request can create ``early dialogs''. If a provisional response has a tag in the \header{To} field, and if the dialog ID of the response does not match an existing dialog, one is constructed using the procedures defined in Section \ref{sec:dialog:construct:uac}.

The early dialog will only be needed if the UAC needs to send a request to its peer within the dialog before the initial {\INVITE} transaction completes. Header fields present in a provisional response are applicable for the duration of the early dialog (e.g., an \header{Allow} header field in a provisional response contains the methods that can be used in the early dialog).

%jdr -recursion needs more definition and probably extraction elsewhere
\paragraph{\header{3xx responses}} A 3xx response may contain a \header{Contact} header field providing new addresses where the callee might be reachable. Depending on the status code of the 3xx response (see Section ~\ref{sec:response-codes:3xx}) the UAC {\MAY} choose to try those new addresses.

\paragraph{\header{4xx, 5xx and 6xx responses}} A single non-2xx final response may be received for the {\INVITE}. 4xx, 5xx and 6xx responses may contain a \header{Contact} header field indicating the location where additional information about the error can be found.

All early dialogs are considered terminated upon reception of the non-2xx final response.

After having received the non-2xx final response the UAC core considers the {INVITE} transaction completed. The {\INVITE} client transaction handles generation of {\ACK}s for the response (see Section ~\ref{sec:transactions}).

\paragraph{\header{2xx responses}} Multiple 2xx responses may arrive at the UAC for a single {\INVITE} request due to a forking proxy. Each response is distinguished by the \header{tag} parameter in the \header{To} header field, and each represents a distinct dialog, with a distinct dialog identifier.
If the dialog identifier in the 2xx response matches the dialog identifier of an existing dialog, the dialog {\MUST} be transitioned to the ``established'', and the route set for the dialog {\MUST} be recomputed based on the 2xx response using the procedures of Section \ref{sec:dialog:construct:uac}. Otherwise, a new established dialog is constructed in the same fashion.
\motivation{The route set only is recomputed for backwards compatibility. RFC 2543 did not mandate mirroring of \header{Record-Route} headers in a 1xx, only 2xx. However, we cannot update the entire state of the dialog, since mid-dialog requests may have been sent within the early call leg, modifying the sequence numbers, for example.}
The UAC core {\MUST} generate an {\ACK} request for each 2xx received from the transaction layer. The header fields of the {\ACK} are constructed in the same way as for any request sent within a dialog (see Section ~\ref{sec:dialog}) with the exception of the \header{CSeq}. The sequence number of the \header{CSeq} header field {\MUST} be the same as the {\INVITE} being acknowledged, but the \header{CSeq} method {\MUST} be {\ACK}. If the {\INVITE} did not contain an offer, the 2xx will contain one, and therefore the {\ACK} {\MUST} carry an answer in its body.
Once the {\ACK} has been constructed, the procedures of Section \ref{sec:srv} are used to send it. However, the request is passed to the transport layer directly for transmission, rather than a client transaction. This is because the UAC core handles retransmissions of the {\ACK}, not the transaction layer. The {\ACK} {\MUST} be passed to the client transport every time a retransmission of the 2xx final response that triggered the {\ACK} arrives.

The UAC core considers the {\INVITE} transaction completed 62*T1 seconds after the reception of the first 2xx response. At this point all the early dialogs that have not transitioned to established dialogs are terminated. Once the {\INVITE} transaction is considered completed by the UAC core, no more new 2xx responses are expected to arrive.

If, after acknowledging any 2xx response to an {\INVITE}, the caller does not want to continue with that dialog, then the caller {\MUST} terminate the dialog by sending a {\BYE} request as described in Section \ref{sec:terminate}.

\subsection{Callee Processing}

\label{sec:initiatecallee}

\subsubsection{Processing of the INVITE}

\label{sec:initiateuas}

The UAS core will receive {\INVITE} requests from the transaction layer. It first performs the request processing procedures of Section \ref{sec:general:req-process}, which are applied for both requests inside and outside of a dialog.

Assuming these processing states complete without generating a response, the UAS core performs the additional processing steps:

\begin{enumerate}

\item If the request is an {\INVITE} that contains an \header{Expires} header field the UAS core inspects this header field. If the {\INVITE} has already expired a 487 response is generated.

\item If the request has no tag in the \header{To} the UAS core checks ongoing transactions. If the \header{To}, \header{From}, \header{Call-ID},

\header{CSeq} exactly match (including tags) those of any

request received previously, but the branch-ID in the topmost

\header{Via} is different from those received previously, the UAS core {\SHOULD} generate a 482 (Loop detected) response and pass it to the server transaction.

\motivation{The same request that was generated by the UAC has arrived to the UAS more than once following different paths. The UAS processes the request that was received first and responds with 482 (Loop detected) to the rest of them.}

If no match is found, the request does not belong to any existing dialog. If the request is an {\INVITE} the UAS core follows the procedures described in this section.

\item If the request is a mid-dialog request, the method-independent processing described in Section \ref{sec:midcalluas} is first applied. It might also modify the session; Section \ref{sec:modify} provides details.

\item If the request has a tag in the \header{To} header field but the dialog identifier does not match any of the existing dialogs, the UAS may have crashed and restarted, or may have received a request for a different (possibly failed) UAS. The UAS {\MAY} either accept or reject the request. Accepting the request provides robustness, so that dialogs can persist even through crashes. UAs wishing to support this capability must choose monotonically increasing \header{CSeq} sequence numbers even across reboots. This is because subsequent requests from the crashed-and-rebooted UA towards the other UA need to have a \header{CSeq} sequence number higher than previous requests in that direction.

Note also that the crashed-and-rebooted UA will have lost any \header{Route} headers which would need to be inserted into a subsequent request. Therefore, it is possible that the requests may not be properly forwarded by proxies.

\motivation{RTP media agents allowing restarts need to be robust by accepting out-of-range timestamps and sequence numbers.}

If the UAS wishes to reject the request, because it does not wish to recreate the dialog, it {\MUST} respond to the request with a 481 (Call/Transaction Does Not exist) status code and pass that to the server transaction.

\end{enumerate}

Processing from here forward assumes that the {\INVITE} is outside of a dialog, and is thus for the purposes of establishing a new session.

The {\INVITE} may contain a session description, in which case the UAS is being presented with an offer for that session. It is possible that the user is already a participant in that session, even though the {\INVITE} is outside of a dialog. This can happen when a

user is invited to the same multicast conference by multiple other participants. If desired, the UAS {\MAY} use identifiers within the session description to detect this duplication. For example, SDP contains a session id and version number in the origin (\header{o}) field. If the user is already a member of the session and the session parameters contained in the session description have not changed, the UAS {\MAY} silently accept the {\INVITE}
%jdr – the above behavior is dictating a UI behavior. Do we need statements on

% how a UI may be constructed? I don’t think so, and recommend removing it
The {\INVITE} may not contain a session description at all, in which case the UAS is being asked to participate in a session, but the UAC has asked that the UAS provide the offer of the session.

The callee can indicate progress, accept, redirect, or reject the invitation. In all of these cases, it formulates a response using the procedures described in Section ~\ref{sec:general:serv-resp}.

\paragraph{Progess}

The UAS may not be able to answer the invitation immediately, and might choose to indicate some kind of progress to the caller (for example, an indication that a phone is ringing). This is accomplished with a provisional response between 101 and 199. These provisional responses establish early dialogs and therefore follow the procedures of Section \ref{sec:dialog:construct:uas} in addition to those of Section \ref{sec:general:serv-resp}. A UAS {\MAY} send as many provisional responses as it likes. Each of these {\MUST} indicate the same dialog ID. SIP, however, does not guarantee that these provisional responses are reliably delivered to the UAC.

%redirection and recursion belong somewhere else.
\paragraph{\header{The {\INVITE} is redirected}} If the UAS decides to redirect the call, a 3xx response is sent. A 300 (Multiple Choices), 301 (Moved Permanently) or 302 (Moved Temporarily) response {\SHOULD} contain a \header{Contact} header field containing URIs of new addresses to be tried. The response is passed to the {\INVITE} server transaction, which will deal with its retransmissions.

\paragraph{\header{The {\INVITE} is rejected}} A common scenario occurs when the callee is currently not willing or able to take additional calls at this end system. A 486 (Busy Here) {\SHOULD} be returned in such scenario. If the UAS knows that no other end system will be able to accept this call a 600 (Busy Everywhere) response {\SHOULD} be sent instead. However, it is unlikely that a UAS will be able to know this in general, and thus this response will not usually be used. The response is passed to the {\INVITE} server transaction, which will deal with its retransmissions.

\paragraph{\header{The {\INVITE} is accepted}} The UAS core generates a 2xx response.
This response establishes a dialog, and therefore follows the procedures of Section \ref{sec:dialog:construct:uas} in addition to those of Section \ref{sec:general:serv-resp}.

A 2xx response to an {\INVITE} {\SHOULD} contain the \header{Allow} header field and the \header{Supported} header field, and {\MAY} contain the \header{Accept} header field. Including these header fields allows the UAC to determine the features and extensions supported by the UAS for the duration of the call, without probing.

If the {\INVITE} request contained an offer, the 2xx {\MUST} contain an answer. If the {\INVITE} did not contain an offer, the 2xx {\MUST} contain an offer.

Once the response has been constructed it is passed to the {\INVITE} server transaction. Note, however, that the {\INVITE} server transaction does not retransmit 2xx responses to an {\INVITE}. Therefore, it is necessary to pass periodically the response to the server transaction until the {\ACK} arrives. The 2xx response is resubmitted to the server transaction with an interval that starts at T1 seconds and doubles for each retransmission until it reaches T2 seconds (T1 and T2 are defined in Section \ref{sec:transactions}). Response retransmissions cease when an {\ACK} request is received with the same dialog ID as the response. This is independent of whatever transport protocols are used to send the response.
\motivation{Since 2xx is retransmitted end-to-end, there may be hops between UAS and UAC which are UDP. To ensure reliable delivery across these hops, the response is retransmitted periodically even if the transport at the UAS is reliable.}

If the server retransmits the 2xx response for 64*T1 seconds without receiving an {\ACK}, it considers the dialog completed, the session terminated, and therefore it {\SHOULD} send a {\BYE}.

